期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Multi-Scale Adaptive Large Kernel Graph Convolutional Network for Skeleton-Based Action Recognition
1
作者 Yu-Qing Zhang Chen Pang +2 位作者 Pei Geng Xue-Quan Lu Lei Lyu 《Journal of Computer Science & Technology》 2025年第5期1285-1300,共16页
Graph convolutional networks(GCNs)have become a dominant approach for skeleton-based action recognition tasks.Although GCNs have made significant progress in modeling skeletons as spatial-temporal graphs,they often re... Graph convolutional networks(GCNs)have become a dominant approach for skeleton-based action recognition tasks.Although GCNs have made significant progress in modeling skeletons as spatial-temporal graphs,they often require stacking multiple graph convolution layers to effectively capture long-distance relationships among nodes.This stacking not only increases computational burdens but also raises the risk of over-smoothing,which can lead to the neglect of crucial local action features.To address this issue,we propose a novel multi-scale adaptive large kernel graph convolutional network(MSLK-GCN)to effectively aggregate local and global spatio-temporal correlations while maintaining the computational efficiency.The core components of the network include two multi-scale large kernel graph convolution(LKGC)modules,a multi-channel adaptive graph convolution(MAGC)module,and a multi-scale temporal self-attention convolution(MSTC)module.The LKGC module adaptively focuses on active motion regions by utilizing a large convolution kernel and a gating mechanism,effectively capturing long-distance dependencies within the skeleton sequence.Meanwhile,the MAGC module dynamically learns relationships between different joints by adjusting connection weights between nodes.To further enhance the ability to capture temporal dynamics,the MSTC module effectively aggregates the temporal information by integrating Efficient Channel Attention(ECA)with multi-scale convolution.In addition,we use a multi-stream fusion strategy to make full use of different modal skeleton data,including bone,joint,joint motion,and bone motion.Exhaustive experiments on three scale-varying datasets,i.e.,NTU-60,NTU-120,and NW-UCLA,demonstrate that our MSLK-GCN can achieve state-of-the-art performance with fewer parameters. 展开更多
关键词 skeleton-based action recognition graph convolutional network(GCN) multi-scale large kernel attention
原文传递
基于改进YOLOv5的柑橘病虫害检测 被引量:5
2
作者 李吴洁 危疆树 +2 位作者 王玉超 陈金荣 罗好 《南京农业大学学报》 CAS CSCD 北大核心 2024年第5期1000-1008,共9页
[目的]柑橘叶片受到病菌感染或虫害侵袭后,导致柑橘树生长发育异常、产量减少甚至死亡。早期柑橘叶片病虫害检测有助于做好预防措施减少损失。[方法]实际检测过程中YOLOv5s模型存在定位不精确、背景复杂等问题,受VAN(visual attention n... [目的]柑橘叶片受到病菌感染或虫害侵袭后,导致柑橘树生长发育异常、产量减少甚至死亡。早期柑橘叶片病虫害检测有助于做好预防措施减少损失。[方法]实际检测过程中YOLOv5s模型存在定位不精确、背景复杂等问题,受VAN(visual attention network)模型的启发,引入LKA(large kernel attention)模块,对YOLOv5s模型进行改进。改进的YOLOv5s模型可实现对图像信息的集中关注和精细抽取;使用CARAFE轻量级算子替换常规的上采样方法,能够提高特征重建质量,解决尺度不匹配问题并提高检测性能;使用FReLU激活函数,能够捕捉更多的柑橘病虫害的关键特征,提高检测准确度。此外,还构建了一个包含炭疽病、溃疡病和受潜叶蝇病虫侵害的柑橘叶片数据集,采用该数据集进行试验。[结果]改进后的模型YOLOv5-LC对于柑橘病虫害的检测结果显示:平均检测精度mAP50达到94.5%,mAP50:95为84.3%,较原模型分别提高了2.0%和4.4%,模型大小仅为7.3 MB。准确率为93.8%,召回率84.5%,浮点运算次数仅为18.5 G。[结论]改进后的YOLOv5-LC模型可以更加准确检测出柑橘病虫害。 展开更多
关键词 柑橘 病害 虫害 目标检测 YOLOv5 large kernel attention CARAFE FReLU
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部