To realize content-hased retrieval of large image databases, it is required to develop an efficient index and retrieval scheme. This paper proposes an index algorithm of clustering called CMA, which supports fast retr...To realize content-hased retrieval of large image databases, it is required to develop an efficient index and retrieval scheme. This paper proposes an index algorithm of clustering called CMA, which supports fast retrieval of large image databases. CMA takes advantages of k-means and self-adaptive algorithms. It is simple and works without any user interactions. There are two main stages in this algorithm. In the first stage, it classifies images in a database into several clusters, and automatically gets the necessary parameters for the next stage-k-means iteration. The CMA algorithm is tested on a large database of more than ten thousand images and compare it with k-means algorithm. Experimental results show that this algorithm is effective in both precision and retrieval time.展开更多
Sea topography information holds significant importance in oceanic research and the climate change detection.Radar imaging altimetry has emerged as the leading approach for global ocean observation,employing synthetic...Sea topography information holds significant importance in oceanic research and the climate change detection.Radar imaging altimetry has emerged as the leading approach for global ocean observation,employing synthetic aperture radar(SAR)interferometry to enhance the spatial resolution of Sea topography.Nevertheless,current payload capacity and satellite hardware limitations prevent the extension of the interferometric baseline by enlarging the physical antenna size.This constraint hinders achieving centimeter-level accuracy in interferometric altimetry.To address this challenge,we conducted a numerical simulation to assess the viability of a large baseline interferometric imaging altimeter(LB-IIA).By controlling the baseline within the range of 600-1000 m through spiral orbit design in two satellites and mitigating baseline de-correlation with the carrier frequency shift(CFS)technique,we aimed to overcome the above limitations.Our findings demonstrate the efficacy of the CFS technique in compensating for baseline decoherence,elevating coherence from less than 0.1 to over 0.85.Concurrently.The height difference accuracy between neighboring sea surfaces reaches 1 cm within a 1 km resolution.This study is anticipated to serve as a foundational reference for future interferometric imaging altimeter development,catering to the demand for high-precision sea topography data in accurate global bathymetry inversion.展开更多
This paper presents a large gathering dataset of images extracted from publicly filmed videos by 24 cameras installed on the premises of Masjid Al-Nabvi,Madinah,Saudi Arabia.This dataset consists of raw and processed ...This paper presents a large gathering dataset of images extracted from publicly filmed videos by 24 cameras installed on the premises of Masjid Al-Nabvi,Madinah,Saudi Arabia.This dataset consists of raw and processed images reflecting a highly challenging and unconstraint environment.The methodology for building the dataset consists of four core phases;that include acquisition of videos,extraction of frames,localization of face regions,and cropping and resizing of detected face regions.The raw images in the dataset consist of a total of 4613 frames obtained fromvideo sequences.The processed images in the dataset consist of the face regions of 250 persons extracted from raw data images to ensure the authenticity of the presented data.The dataset further consists of 8 images corresponding to each of the 250 subjects(persons)for a total of 2000 images.It portrays a highly unconstrained and challenging environment with human faces of varying sizes and pixel quality(resolution).Since the face regions in video sequences are severely degraded due to various unavoidable factors,it can be used as a benchmark to test and evaluate face detection and recognition algorithms for research purposes.We have also gathered and displayed records of the presence of subjects who appear in presented frames;in a temporal context.This can also be used as a temporal benchmark for tracking,finding persons,activity monitoring,and crowd counting in large crowd scenarios.展开更多
Large field-of-view(FoV) three-dimensional(3 D) photon-counting imaging is demonstrated with a single-pixel single-photon detector based on a Geiger-mode Si-avalanche photodiode. By removing the collecting lens(C...Large field-of-view(FoV) three-dimensional(3 D) photon-counting imaging is demonstrated with a single-pixel single-photon detector based on a Geiger-mode Si-avalanche photodiode. By removing the collecting lens(CL)before the detector, the FoV is expanded to ±10°. Thanks to the high detection efficiency, the signal-to-noise ratio of the imaging system is as high as 7.8 dB even without the CL when the average output laser pulse energy is about 0.45 pJ/pulse for imaging the targets at a distance of 5 m. A 3 D image overlaid with the reflectivity data is obtained according to the photon-counting time-of-flight measurement and the return photon intensity.展开更多
Mesoscopy refers to imaging methodologies that provide a field of view(FOV)ranging from several millimeters to centimeters while achieving cellular or even subcellular resolution(Figure 1).This technological framework...Mesoscopy refers to imaging methodologies that provide a field of view(FOV)ranging from several millimeters to centimeters while achieving cellular or even subcellular resolution(Figure 1).This technological framework employs specially designed large-scale objective lenses to correct aberrations across extended FOVs,synchronized with light-field acquisition modalities through either scanning point detection or large-format array detection.Conventional microscopes,constrained by the limitations of objective lenses,exhibit a trade-off between the FOV and resolution.To achieve both high resolution and a large FOV,common approaches such as FOV stitching and Fourier ptychography were employed.However,these methods were extremely slow and imposed numerous constraints on samples.In 2016,a mesoscopic objective lens was introduced to address these challenges,achieving a 6 mm FOV and 0.7 mm resolution,thereby increasing the imaging throughput of conventional objective lenses by orders of magnitude.1 In the same year,this technology was recognized as one of the top ten physics breakthroughs worldwide by Physics World.Since then,mesoscopic imaging technology has gradually gained momentum and has been applied in various fields.展开更多
Compound eyes(CEs),renowned for their extraordinary visual capabilities,offer significant potential for advanced micro-optical systems.However,their applications in wide field-of-view(FOV)imaging and dynamic tracking,...Compound eyes(CEs),renowned for their extraordinary visual capabilities,offer significant potential for advanced micro-optical systems.However,their applications in wide field-of-view(FOV)imaging and dynamic tracking,for instance,microscopic particle image velocimetry(μ-PIV)for microfluidics,remain constrained by limited spatial resolution.We present a compound eye-on-a-chip(CEoC)system integrating a seven-ommatidium CE with a microfluidic platform.When fabricated via femtosecond laser two-photon polymerization(TPP),the CE exhibits exceptional surface smoothness(<4 nm roughness)and achieves wide-FOV imaging(>120°)with submicrometer resolution.Through quantitative calibration using TPP-fabricated microstructures,we established precise 3D spatial positioning capabilities.Proof-of-conceptμ-PIV experiments using fluorescent microparticles successfully reconstructed high-speed trajectories(10 mm/s)from real-time CE-captured images.This integrated CEoC system has promising potential for advancing microfluidic analysis and optofluidic manipulation technologies.展开更多
The non-physiologic turbulent flows in centrifugal rotary blood pumps (RBPs) may result in complications such as the hemolysis and the platelet activation. Recent researches suggest that the turbulent viscous dissipat...The non-physiologic turbulent flows in centrifugal rotary blood pumps (RBPs) may result in complications such as the hemolysis and the platelet activation. Recent researches suggest that the turbulent viscous dissipation in the smallest eddies is the main factor of the blood trauma caused by the turbulent flow. The turbulent viscous shear stress (TVSS) was taken as the realistic physical force acting on the cells. However, limited by the temporal and spatial resolutions of the instrumentation currently available, very limited studies are available for the TVSS in the RBPs. In this paper, the large eddy particle image velocimetry (PIV) method is used to estimate the turbulent dissipation rate in the sub-grid scale, to investigate the effect of the TVSS on the blood trauma. Detailed flow characteristics, such as the relative velocity vectors, the estimated TVSS levels and the Kolmogorov length scales, are analyzed in three impeller phases at three constant flow rates (3 L/min, 5 L/min and 7 L/min). Over the measures range in this study, the maximum TVSS in the investigated RBP is lower than the reported critical value of stress. This study demonstrates that the large eddy PIV method is effective to evaluate the flow-dependent force on the cells. On the other hand, it is found that the TVSS is highly dependent on the flow behavior. Under severe off-design conditions, the complex flow characteristics, such as the flow separation and the vortical structures, will increase the TVSS. Thus, in order to reduce the hemolysis in the RBPs, the flow disturbance, induced by the departure of the incidence angle, should be avoided during the design of the RBPs.展开更多
The imaging mass spectrometry(IMS) technology has experienced a rapid development in recent years.A new IMS technology which is based on air flow assisted ionization(AFAI) was reported.It allows for the convenient...The imaging mass spectrometry(IMS) technology has experienced a rapid development in recent years.A new IMS technology which is based on air flow assisted ionization(AFAI) was reported.It allows for the convenient pretreatment of the samples and can image a large area of sample in a single measurement with high sensitivity.The AFAI in DESI mode was used as the ion source in this paper.The new IMS method is named AFADESI-IMS.The adoption of assisted air flow makes the sample pretreatment easy and convenient.An optimization of the distance between the ion transport tube and MS orifice increases the sensitivity of the system.For data processing,a program based on MATLAB with the function of numerical analysis was developed.A theoretical imaging resolution of a few hundred microns can be achieved.The composite AFAI-IMS images of different target analytes were imaged with high sensitivity.A typical AFAI-IMS image of the whole-body section of a rat was obtained in a single analytical measurement.The ability to image a large area for relevant samples in a single measurement with high sensitivity and repeatability is a significant advantage.The method has enormous potentials in the MS imaging of large and complicated samples.展开更多
For many information visualization applications, showing the transition when interacting with the data is critically important as it can help users better perceive the changes and understand the underlying data. In th...For many information visualization applications, showing the transition when interacting with the data is critically important as it can help users better perceive the changes and understand the underlying data. In this paper, we investigate the effectiveness of animated transition in a tiled image layout where the spiral arrangement of the images is based on their similarity. Three aspects of animated transition are considered, including animation steps, animation actions, and flying paths. Exploring and weighting the advantages and disadvantages of different methods for each aspect and in conjunction with the characteristics of the spiral image layout, we present an integrated solution, called AniMap, for animating the transition from an old layout to a new layout when a different image is selected as the query image. We show the effectiveness of our animated transition solution by demonstrating experimental results and conducting a comparative user study.展开更多
Size-scalable X-ray scintillators with high transparency and robust photon yield allow for imaging large objects with greater precision and detail.Solution-processable scintillators,typically crafted from quantum dots...Size-scalable X-ray scintillators with high transparency and robust photon yield allow for imaging large objects with greater precision and detail.Solution-processable scintillators,typically crafted from quantum dots(QDs),are promising candidates for highly efficient scintillation applications.However,the restricted size and low transparency in QD-based scintillators lead to less efficient X-ray imaging for large objects requiring high resolution.Herein,we demonstrate a meter-scale ZnO QD scintillator with a visible range transmittance exceeding 96%,featuring bright singlet-triplet hybrid self-trapping excitons(STEs).The quantum yields(QYs)of singlet excitons and triplet excitons are 44.7%and 26.3%.Benefiting from a large Stokes shift and bright triplet excitons,the scintillator has a negligible self-absorption and elevated photon yields.Additionally,the scintillator exhibits exchange invariance,demonstrating identical optical performance upon exchanging the coordinates(r)of the QDs.Featuring bright singlet-triplet hybrid STEs and high transparency,the scintillator achieves high resolution X-ray imaging of 42-line pairs per millimeter(42 lp mm^(-1))at a meter scale.Moreover,demonstrations of 5000 cm^(2) X-ray imaging and real-time dynamic X-ray imaging are presented.The lowest detectable dose rate for X-ray detection is as low as 37.63±0.4 nGy s^(-1).This work presents a novel sizable and transparent scintillator with bright singlet-triplet hybrid STEs,showcasing their potential in high-resolution and sizable object X-ray imaging.展开更多
A key challenge when imaging whole biomedical specimens is how to quickly obtain massive cellular information over a large field of view(FOV).We report a subvoxel light-sheet microscopy(SLSM)method enabling high-throu...A key challenge when imaging whole biomedical specimens is how to quickly obtain massive cellular information over a large field of view(FOV).We report a subvoxel light-sheet microscopy(SLSM)method enabling high-throughput volumetric imaging of mesoscale specimens at cellular resolution.A nonaxial,continuous scanning strategy is developed to rapidly acquire a stack of large-FOV images with three-dimensional(3-D)nanoscale shifts encoded.Then,by adopting a subvoxel-resolving procedure,the SLSM method models these low-resolution,cross-correlated images in the spatial domain and can iteratively recover a 3-D image with improved resolution throughout the sample.This technique can surpass the optical limit of a conventional light-sheet microscope by more than three times,with high acquisition speeds of gigavoxels per minute.By fast reconstruction of 3-D cultured cells,intact organs,and live embryos,SLSM method presents a convenient way to circumvent the trade-off between mapping large-scale tissue(>100 mm3)and observing single cell(∼1-μm resolution).It also eliminates the need of complicated mechanical stitching or modulated illumination,using a simple light-sheet setup and fast graphics processing unit-based computation to achieve high-throughput,high-resolution 3-D microscopy,which could be tailored for a wide range of biomedical applications in pathology,histology,neuroscience,etc.展开更多
Photoacoustic (PA) microscopy comes with high potential for human skin imaging, since it allows noninvasively high-resolution imaging of the natural hemoglobin at depths of several millimeters. Here, we developed a ...Photoacoustic (PA) microscopy comes with high potential for human skin imaging, since it allows noninvasively high-resolution imaging of the natural hemoglobin at depths of several millimeters. Here, we developed a PA microscopy to achieve high-resolution, high-contrast, and large field of view imaging of skin. A three-dimensional (3D) depth-coding technology was used to encode the depth information in PA images, which is very intuitive for identifying the depth of blood vessels in a two-dimensional image, and the vascular structure can be analyzed at different depths. Imaging results demonstrate that the 3D depth-coded PA microscopy should be translated from the bench to the bedside.展开更多
基金This project was supported by National High Tech Foundation of 863 (2001AA115123)
文摘To realize content-hased retrieval of large image databases, it is required to develop an efficient index and retrieval scheme. This paper proposes an index algorithm of clustering called CMA, which supports fast retrieval of large image databases. CMA takes advantages of k-means and self-adaptive algorithms. It is simple and works without any user interactions. There are two main stages in this algorithm. In the first stage, it classifies images in a database into several clusters, and automatically gets the necessary parameters for the next stage-k-means iteration. The CMA algorithm is tested on a large database of more than ten thousand images and compare it with k-means algorithm. Experimental results show that this algorithm is effective in both precision and retrieval time.
文摘Sea topography information holds significant importance in oceanic research and the climate change detection.Radar imaging altimetry has emerged as the leading approach for global ocean observation,employing synthetic aperture radar(SAR)interferometry to enhance the spatial resolution of Sea topography.Nevertheless,current payload capacity and satellite hardware limitations prevent the extension of the interferometric baseline by enlarging the physical antenna size.This constraint hinders achieving centimeter-level accuracy in interferometric altimetry.To address this challenge,we conducted a numerical simulation to assess the viability of a large baseline interferometric imaging altimeter(LB-IIA).By controlling the baseline within the range of 600-1000 m through spiral orbit design in two satellites and mitigating baseline de-correlation with the carrier frequency shift(CFS)technique,we aimed to overcome the above limitations.Our findings demonstrate the efficacy of the CFS technique in compensating for baseline decoherence,elevating coherence from less than 0.1 to over 0.85.Concurrently.The height difference accuracy between neighboring sea surfaces reaches 1 cm within a 1 km resolution.This study is anticipated to serve as a foundational reference for future interferometric imaging altimeter development,catering to the demand for high-precision sea topography data in accurate global bathymetry inversion.
基金This research was supported by the Deanship of Scientific Research,Islamic University of Madinah,Madinah(KSA),under Tammayuz program Grant Number 1442/505.
文摘This paper presents a large gathering dataset of images extracted from publicly filmed videos by 24 cameras installed on the premises of Masjid Al-Nabvi,Madinah,Saudi Arabia.This dataset consists of raw and processed images reflecting a highly challenging and unconstraint environment.The methodology for building the dataset consists of four core phases;that include acquisition of videos,extraction of frames,localization of face regions,and cropping and resizing of detected face regions.The raw images in the dataset consist of a total of 4613 frames obtained fromvideo sequences.The processed images in the dataset consist of the face regions of 250 persons extracted from raw data images to ensure the authenticity of the presented data.The dataset further consists of 8 images corresponding to each of the 250 subjects(persons)for a total of 2000 images.It portrays a highly unconstrained and challenging environment with human faces of varying sizes and pixel quality(resolution).Since the face regions in video sequences are severely degraded due to various unavoidable factors,it can be used as a benchmark to test and evaluate face detection and recognition algorithms for research purposes.We have also gathered and displayed records of the presence of subjects who appear in presented frames;in a temporal context.This can also be used as a temporal benchmark for tracking,finding persons,activity monitoring,and crowd counting in large crowd scenarios.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11774095,11722431 and 11621404the Shanghai Basic Research Project under Grant No 18JC1412200+2 种基金the National Key R&D Program of China under Grant No2016YFB0400904the Program of Introducing Talents of Discipline to Universities under Grant No B12024the Shanghai International Cooperation Project under Grant No 16520710600
文摘Large field-of-view(FoV) three-dimensional(3 D) photon-counting imaging is demonstrated with a single-pixel single-photon detector based on a Geiger-mode Si-avalanche photodiode. By removing the collecting lens(CL)before the detector, the FoV is expanded to ±10°. Thanks to the high detection efficiency, the signal-to-noise ratio of the imaging system is as high as 7.8 dB even without the CL when the average output laser pulse energy is about 0.45 pJ/pulse for imaging the targets at a distance of 5 m. A 3 D image overlaid with the reflectivity data is obtained according to the photon-counting time-of-flight measurement and the return photon intensity.
基金supported by the Chinese Academy of Sciences Project for Young Scientists in Basic Research(YSBR067)the Natural Science Foundation of Jiangsu Province(BK20240024)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Y2023087)。
文摘Mesoscopy refers to imaging methodologies that provide a field of view(FOV)ranging from several millimeters to centimeters while achieving cellular or even subcellular resolution(Figure 1).This technological framework employs specially designed large-scale objective lenses to correct aberrations across extended FOVs,synchronized with light-field acquisition modalities through either scanning point detection or large-format array detection.Conventional microscopes,constrained by the limitations of objective lenses,exhibit a trade-off between the FOV and resolution.To achieve both high resolution and a large FOV,common approaches such as FOV stitching and Fourier ptychography were employed.However,these methods were extremely slow and imposed numerous constraints on samples.In 2016,a mesoscopic objective lens was introduced to address these challenges,achieving a 6 mm FOV and 0.7 mm resolution,thereby increasing the imaging throughput of conventional objective lenses by orders of magnitude.1 In the same year,this technology was recognized as one of the top ten physics breakthroughs worldwide by Physics World.Since then,mesoscopic imaging technology has gradually gained momentum and has been applied in various fields.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB4600400)the National Natural Science Foundation of China(Grant Nos.T2325014,62205174)the Natural Science Foundation of Jilin Province(Grant No.20230101350JC)。
文摘Compound eyes(CEs),renowned for their extraordinary visual capabilities,offer significant potential for advanced micro-optical systems.However,their applications in wide field-of-view(FOV)imaging and dynamic tracking,for instance,microscopic particle image velocimetry(μ-PIV)for microfluidics,remain constrained by limited spatial resolution.We present a compound eye-on-a-chip(CEoC)system integrating a seven-ommatidium CE with a microfluidic platform.When fabricated via femtosecond laser two-photon polymerization(TPP),the CE exhibits exceptional surface smoothness(<4 nm roughness)and achieves wide-FOV imaging(>120°)with submicrometer resolution.Through quantitative calibration using TPP-fabricated microstructures,we established precise 3D spatial positioning capabilities.Proof-of-conceptμ-PIV experiments using fluorescent microparticles successfully reconstructed high-speed trajectories(10 mm/s)from real-time CE-captured images.This integrated CEoC system has promising potential for advancing microfluidic analysis and optofluidic manipulation technologies.
基金Project supported by the National Natural Science Foundation of China(Grant No.51536008)the National Key R&D Program of China(Grant No.2018 YFB0606101).
文摘The non-physiologic turbulent flows in centrifugal rotary blood pumps (RBPs) may result in complications such as the hemolysis and the platelet activation. Recent researches suggest that the turbulent viscous dissipation in the smallest eddies is the main factor of the blood trauma caused by the turbulent flow. The turbulent viscous shear stress (TVSS) was taken as the realistic physical force acting on the cells. However, limited by the temporal and spatial resolutions of the instrumentation currently available, very limited studies are available for the TVSS in the RBPs. In this paper, the large eddy particle image velocimetry (PIV) method is used to estimate the turbulent dissipation rate in the sub-grid scale, to investigate the effect of the TVSS on the blood trauma. Detailed flow characteristics, such as the relative velocity vectors, the estimated TVSS levels and the Kolmogorov length scales, are analyzed in three impeller phases at three constant flow rates (3 L/min, 5 L/min and 7 L/min). Over the measures range in this study, the maximum TVSS in the investigated RBP is lower than the reported critical value of stress. This study demonstrates that the large eddy PIV method is effective to evaluate the flow-dependent force on the cells. On the other hand, it is found that the TVSS is highly dependent on the flow behavior. Under severe off-design conditions, the complex flow characteristics, such as the flow separation and the vortical structures, will increase the TVSS. Thus, in order to reduce the hemolysis in the RBPs, the flow disturbance, induced by the departure of the incidence angle, should be avoided during the design of the RBPs.
基金financially supported by the National Instrumentation Program (No. 2011YQ17006702)the National Natural Science Foundation of China (No. 21027013 and No. 81102413)Fundamental Research Program of Shenzhen (No. JC201005280634A)
文摘The imaging mass spectrometry(IMS) technology has experienced a rapid development in recent years.A new IMS technology which is based on air flow assisted ionization(AFAI) was reported.It allows for the convenient pretreatment of the samples and can image a large area of sample in a single measurement with high sensitivity.The AFAI in DESI mode was used as the ion source in this paper.The new IMS method is named AFADESI-IMS.The adoption of assisted air flow makes the sample pretreatment easy and convenient.An optimization of the distance between the ion transport tube and MS orifice increases the sensitivity of the system.For data processing,a program based on MATLAB with the function of numerical analysis was developed.A theoretical imaging resolution of a few hundred microns can be achieved.The composite AFAI-IMS images of different target analytes were imaged with high sensitivity.A typical AFAI-IMS image of the whole-body section of a rat was obtained in a single analytical measurement.The ability to image a large area for relevant samples in a single measurement with high sensitivity and repeatability is a significant advantage.The method has enormous potentials in the MS imaging of large and complicated samples.
基金supported in part by the US National Science Foundation (Nos. IIS-1017935 and CNS- 1229297)
文摘For many information visualization applications, showing the transition when interacting with the data is critically important as it can help users better perceive the changes and understand the underlying data. In this paper, we investigate the effectiveness of animated transition in a tiled image layout where the spiral arrangement of the images is based on their similarity. Three aspects of animated transition are considered, including animation steps, animation actions, and flying paths. Exploring and weighting the advantages and disadvantages of different methods for each aspect and in conjunction with the characteristics of the spiral image layout, we present an integrated solution, called AniMap, for animating the transition from an old layout to a new layout when a different image is selected as the query image. We show the effectiveness of our animated transition solution by demonstrating experimental results and conducting a comparative user study.
基金supported by the National Natural Science Foundation of China(Grant Nos.62075198,11974317,61804136)the Outstanding Youth Foundation of Henan(Grant nos.222300420087)S.-Y.S.acknowledges the support from the National Postdoctoral Program for Innovative Talents(Grant No.BX20240337).
文摘Size-scalable X-ray scintillators with high transparency and robust photon yield allow for imaging large objects with greater precision and detail.Solution-processable scintillators,typically crafted from quantum dots(QDs),are promising candidates for highly efficient scintillation applications.However,the restricted size and low transparency in QD-based scintillators lead to less efficient X-ray imaging for large objects requiring high resolution.Herein,we demonstrate a meter-scale ZnO QD scintillator with a visible range transmittance exceeding 96%,featuring bright singlet-triplet hybrid self-trapping excitons(STEs).The quantum yields(QYs)of singlet excitons and triplet excitons are 44.7%and 26.3%.Benefiting from a large Stokes shift and bright triplet excitons,the scintillator has a negligible self-absorption and elevated photon yields.Additionally,the scintillator exhibits exchange invariance,demonstrating identical optical performance upon exchanging the coordinates(r)of the QDs.Featuring bright singlet-triplet hybrid STEs and high transparency,the scintillator achieves high resolution X-ray imaging of 42-line pairs per millimeter(42 lp mm^(-1))at a meter scale.Moreover,demonstrations of 5000 cm^(2) X-ray imaging and real-time dynamic X-ray imaging are presented.The lowest detectable dose rate for X-ray detection is as low as 37.63±0.4 nGy s^(-1).This work presents a novel sizable and transparent scintillator with bright singlet-triplet hybrid STEs,showcasing their potential in high-resolution and sizable object X-ray imaging.
基金This research has received funding support from the 1000 Youth Talents Plan of China(P.F.)the Fundamental Research Program of Shenzhen(P.F.,JCYJ20160429182424047)+2 种基金and the National Heart Lung and Blood Institute[R01HL111437(T.K.H.)R01HL083015(T.K.H.),R01HL118650(T.K.H.)and EB U54 EB0220002(T.K.H.)].
文摘A key challenge when imaging whole biomedical specimens is how to quickly obtain massive cellular information over a large field of view(FOV).We report a subvoxel light-sheet microscopy(SLSM)method enabling high-throughput volumetric imaging of mesoscale specimens at cellular resolution.A nonaxial,continuous scanning strategy is developed to rapidly acquire a stack of large-FOV images with three-dimensional(3-D)nanoscale shifts encoded.Then,by adopting a subvoxel-resolving procedure,the SLSM method models these low-resolution,cross-correlated images in the spatial domain and can iteratively recover a 3-D image with improved resolution throughout the sample.This technique can surpass the optical limit of a conventional light-sheet microscope by more than three times,with high acquisition speeds of gigavoxels per minute.By fast reconstruction of 3-D cultured cells,intact organs,and live embryos,SLSM method presents a convenient way to circumvent the trade-off between mapping large-scale tissue(>100 mm3)and observing single cell(∼1-μm resolution).It also eliminates the need of complicated mechanical stitching or modulated illumination,using a simple light-sheet setup and fast graphics processing unit-based computation to achieve high-throughput,high-resolution 3-D microscopy,which could be tailored for a wide range of biomedical applications in pathology,histology,neuroscience,etc.
基金supported by the National Natural Science Foundation of China(Nos.11774101,61627827,81630046,and 91539127)the Science and Technology Planning Project of Guangdong Province,China(No.2015B020233016)+1 种基金the Distinguished Young Teacher Project in Higher Education of Guangdong,China(No.YQ2015049)the Science and Technology Youth Talent for Special Program of Guangdong,China(No.2015TQ01X882)
文摘Photoacoustic (PA) microscopy comes with high potential for human skin imaging, since it allows noninvasively high-resolution imaging of the natural hemoglobin at depths of several millimeters. Here, we developed a PA microscopy to achieve high-resolution, high-contrast, and large field of view imaging of skin. A three-dimensional (3D) depth-coding technology was used to encode the depth information in PA images, which is very intuitive for identifying the depth of blood vessels in a two-dimensional image, and the vascular structure can be analyzed at different depths. Imaging results demonstrate that the 3D depth-coded PA microscopy should be translated from the bench to the bedside.