期刊文献+
共找到354篇文章
< 1 2 18 >
每页显示 20 50 100
Reinforcement learning-enabled swarm intelligence method for computation task offloading in Internet-of-Things blockchain
1
作者 Zhuo Chen Jiahuan Yi +1 位作者 Yang Zhou Wei Luo 《Digital Communications and Networks》 2025年第3期912-924,共13页
Blockchain technology,based on decentralized data storage and distributed consensus design,has become a promising solution to address data security risks and provide privacy protection in the Internet-of-Things(IoT)du... Blockchain technology,based on decentralized data storage and distributed consensus design,has become a promising solution to address data security risks and provide privacy protection in the Internet-of-Things(IoT)due to its tamper-proof and non-repudiation features.Although blockchain typically does not require the endorsement of third-party trust organizations,it mostly needs to perform necessary mathematical calculations to prevent malicious attacks,which results in stricter requirements for computation resources on the participating devices.By offloading the computation tasks required to support blockchain consensus to edge service nodes or the cloud,while providing data privacy protection for IoT applications,it can effectively address the limitations of computation and energy resources in IoT devices.However,how to make reasonable offloading decisions for IoT devices remains an open issue.Due to the excellent self-learning ability of Reinforcement Learning(RL),this paper proposes a RL enabled Swarm Intelligence Optimization Algorithm(RLSIOA)that aims to improve the quality of initial solutions and achieve efficient optimization of computation task offloading decisions.The algorithm considers various factors that may affect the revenue obtained by IoT devices executing consensus algorithms(e.g.,Proof-of-Work),it optimizes the proportion of sub-tasks to be offloaded and the scale of computing resources to be rented from the edge and cloud to maximize the revenue of devices.Experimental results show that RLSIOA can obtain higher-quality offloading decision-making schemes at lower latency costs compared to representative benchmark algorithms. 展开更多
关键词 Blockchain task offloading Swarm intelligence reinforcement learning
在线阅读 下载PDF
A pipelining task offloading strategy via delay-aware multi-agent reinforcement learning in Cybertwin-enabled 6G network
2
作者 Haiwen Niu Luhan Wang +3 位作者 Keliang Du Zhaoming Lu Xiangming Wen Yu Liu 《Digital Communications and Networks》 2025年第1期92-105,共14页
Cybertwin-enabled 6th Generation(6G)network is envisioned to support artificial intelligence-native management to meet changing demands of 6G applications.Multi-Agent Deep Reinforcement Learning(MADRL)technologies dri... Cybertwin-enabled 6th Generation(6G)network is envisioned to support artificial intelligence-native management to meet changing demands of 6G applications.Multi-Agent Deep Reinforcement Learning(MADRL)technologies driven by Cybertwins have been proposed for adaptive task offloading strategies.However,the existence of random transmission delay between Cybertwin-driven agents and underlying networks is not considered in related works,which destroys the standard Markov property and increases the decision reaction time to reduce the task offloading strategy performance.In order to address this problem,we propose a pipelining task offloading method to lower the decision reaction time and model it as a delay-aware Markov Decision Process(MDP).Then,we design a delay-aware MADRL algorithm to minimize the weighted sum of task execution latency and energy consumption.Firstly,the state space is augmented using the lastly-received state and historical actions to rebuild the Markov property.Secondly,Gate Transformer-XL is introduced to capture historical actions'importance and maintain the consistent input dimension dynamically changed due to random transmission delays.Thirdly,a sampling method and a new loss function with the difference between the current and target state value and the difference between real state-action value and augmented state-action value are designed to obtain state transition trajectories close to the real ones.Numerical results demonstrate that the proposed methods are effective in reducing reaction time and improving the task offloading performance in the random-delay Cybertwin-enabled 6G networks. 展开更多
关键词 Cybertwin Multi-Agent Deep reinforcement learning(MADRL) task offloading PIPELINING Delay-aware
在线阅读 下载PDF
Multi-station multi-robot task assignment method based on deep reinforcement learning
3
作者 Junnan Zhang Ke Wang Chaoxu Mu 《CAAI Transactions on Intelligence Technology》 2025年第1期134-146,共13页
This paper focuses on the problem of multi-station multi-robot spot welding task assignment,and proposes a deep reinforcement learning(DRL)framework,which is made up of a public graph attention network and independent... This paper focuses on the problem of multi-station multi-robot spot welding task assignment,and proposes a deep reinforcement learning(DRL)framework,which is made up of a public graph attention network and independent policy networks.The graph of welding spots distribution is encoded using the graph attention network.Independent policy networks with attention mechanism as a decoder can handle the encoded graph and decide to assign robots to different tasks.The policy network is used to convert the large scale welding spots allocation problem to multiple small scale singlerobot welding path planning problems,and the path planning problem is quickly solved through existing methods.Then,the model is trained through reinforcement learning.In addition,the task balancing method is used to allocate tasks to multiple stations.The proposed algorithm is compared with classical algorithms,and the results show that the algorithm based on DRL can produce higher quality solutions. 展开更多
关键词 attention mechanism deep reinforcement learning graph neural network industrial robot task allocation
在线阅读 下载PDF
Terminal Multitask Parallel Offloading Algorithm Based on Deep Reinforcement Learning
4
作者 Zhang Lincong Li Yang +2 位作者 Zhao Weinan Liu Xiangyu Guo Lei 《China Communications》 2025年第7期30-43,共14页
The advent of the internet-of-everything era has led to the increased use of mobile edge computing.The rise of artificial intelligence has provided many possibilities for the low-latency task-offloading demands of use... The advent of the internet-of-everything era has led to the increased use of mobile edge computing.The rise of artificial intelligence has provided many possibilities for the low-latency task-offloading demands of users,but existing technologies rigidly assume that there is only one task to be offloaded in each time slot at the terminal.In practical scenarios,there are often numerous computing tasks to be executed at the terminal,leading to a cumulative delay for subsequent task offloading.Therefore,the efficient processing of multiple computing tasks on the terminal has become highly challenging.To address the lowlatency offloading requirements for multiple computational tasks on terminal devices,we propose a terminal multitask parallel offloading algorithm based on deep reinforcement learning.Specifically,we first establish a mobile edge computing system model consisting of a single edge server and multiple terminal users.We then model the task offloading decision problem as a Markov decision process,and solve this problem using the Dueling Deep-Q Network algorithm to obtain the optimal offloading strategy.Experimental results demonstrate that,under the same constraints,our proposed algorithm reduces the average system latency. 展开更多
关键词 deep reinforcement learning mobile edge computing multitask parallel offloading task offloading
在线阅读 下载PDF
Pathfinder:Deep Reinforcement Learning-Based Scheduling for Multi-Robot Systems in Smart Factories with Mass Customization
5
作者 Chenxi Lyu Chen Dong +3 位作者 Qiancheng Xiong Yuzhong Chen Qian Weng Zhenyi Chen 《Computers, Materials & Continua》 2025年第8期3371-3391,共21页
The rapid advancement of Industry 4.0 has revolutionized manufacturing,shifting production from centralized control to decentralized,intelligent systems.Smart factories are now expected to achieve high adaptability an... The rapid advancement of Industry 4.0 has revolutionized manufacturing,shifting production from centralized control to decentralized,intelligent systems.Smart factories are now expected to achieve high adaptability and resource efficiency,particularly in mass customization scenarios where production schedules must accommodate dynamic and personalized demands.To address the challenges of dynamic task allocation,uncertainty,and realtime decision-making,this paper proposes Pathfinder,a deep reinforcement learning-based scheduling framework.Pathfinder models scheduling data through three key matrices:execution time(the time required for a job to complete),completion time(the actual time at which a job is finished),and efficiency(the performance of executing a single job).By leveraging neural networks,Pathfinder extracts essential features from these matrices,enabling intelligent decision-making in dynamic production environments.Unlike traditional approaches with fixed scheduling rules,Pathfinder dynamically selects from ten diverse scheduling rules,optimizing decisions based on real-time environmental conditions.To further enhance scheduling efficiency,a specialized reward function is designed to support dynamic task allocation and real-time adjustments.This function helps Pathfinder continuously refine its scheduling strategy,improving machine utilization and minimizing job completion times.Through reinforcement learning,Pathfinder adapts to evolving production demands,ensuring robust performance in real-world applications.Experimental results demonstrate that Pathfinder outperforms traditional scheduling approaches,offering improved coordination and efficiency in smart factories.By integrating deep reinforcement learning,adaptable scheduling strategies,and an innovative reward function,Pathfinder provides an effective solution to the growing challenges of multi-robot job scheduling in mass customization environments. 展开更多
关键词 Smart factory CUSTOMIZATION deep reinforcement learning production scheduling multi-robot system task allocation
在线阅读 下载PDF
Coactive design of explainable agent-based task planning and deep reinforcement learning for human-UAVs teamwork 被引量:17
6
作者 Chang WANG Lizhen WU +3 位作者 Chao YAN Zhichao WANG Han LONG Chao YU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第11期2930-2945,共16页
Unmanned Aerial Vehicles(UAVs)are useful in dangerous and dynamic tasks such as search-and-rescue,forest surveillance,and anti-terrorist operations.These tasks can be solved better through the collaboration of multipl... Unmanned Aerial Vehicles(UAVs)are useful in dangerous and dynamic tasks such as search-and-rescue,forest surveillance,and anti-terrorist operations.These tasks can be solved better through the collaboration of multiple UAVs under human supervision.However,it is still difficult for human to monitor,understand,predict and control the behaviors of the UAVs due to the task complexity as well as the black-box machine learning and planning algorithms being used.In this paper,the coactive design method is adopted to analyze the cognitive capabilities required for the tasks and design the interdependencies among the heterogeneous teammates of UAVs or human for coherent collaboration.Then,an agent-based task planner is proposed to automatically decompose a complex task into a sequence of explainable subtasks under constrains of resources,execution time,social rules and costs.Besides,a deep reinforcement learning approach is designed for the UAVs to learn optimal policies of a flocking behavior and a path planner that are easy for the human operator to understand and control.Finally,a mixed-initiative action selection mechanism is used to evaluate the learned policies as well as the human’s decisions.Experimental results demonstrate the effectiveness of the proposed methods. 展开更多
关键词 Coactive design Deep reinforcement learning Human-robot teamwork Mixed-initiative Multi-agent system task planning UAV
原文传递
Task offloading mechanism based on federated reinforcement learning in mobile edge computing 被引量:4
7
作者 Jie Li Zhiping Yang +2 位作者 Xingwei Wang Yichao Xia Shijian Ni 《Digital Communications and Networks》 SCIE CSCD 2023年第2期492-504,共13页
With the arrival of 5G,latency-sensitive applications are becoming increasingly diverse.Mobile Edge Computing(MEC)technology has the characteristics of high bandwidth,low latency and low energy consumption,and has att... With the arrival of 5G,latency-sensitive applications are becoming increasingly diverse.Mobile Edge Computing(MEC)technology has the characteristics of high bandwidth,low latency and low energy consumption,and has attracted much attention among researchers.To improve the Quality of Service(QoS),this study focuses on computation offloading in MEC.We consider the QoS from the perspective of computational cost,dimensional disaster,user privacy and catastrophic forgetting of new users.The QoS model is established based on the delay and energy consumption and is based on DDQN and a Federated Learning(FL)adaptive task offloading algorithm in MEC.The proposed algorithm combines the QoS model and deep reinforcement learning algorithm to obtain an optimal offloading policy according to the local link and node state information in the channel coherence time to address the problem of time-varying transmission channels and reduce the computing energy consumption and task processing delay.To solve the problems of privacy and catastrophic forgetting,we use FL to make distributed use of multiple users’data to obtain the decision model,protect data privacy and improve the model universality.In the process of FL iteration,the communication delay of individual devices is too large,which affects the overall delay cost.Therefore,we adopt a communication delay optimization algorithm based on the unary outlier detection mechanism to reduce the communication delay of FL.The simulation results indicate that compared with existing schemes,the proposed method significantly reduces the computation cost on a device and improves the QoS when handling complex tasks. 展开更多
关键词 Mobile edge computing task offloading QoS Deep reinforcement learning Federated learning
在线阅读 下载PDF
Multi-Robot Task Allocation Using Multimodal Multi-Objective Evolutionary Algorithm Based on Deep Reinforcement Learning 被引量:5
8
作者 苗镇华 黄文焘 +1 位作者 张依恋 范勤勤 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第3期377-387,共11页
The overall performance of multi-robot collaborative systems is significantly affected by the multi-robot task allocation.To improve the effectiveness,robustness,and safety of multi-robot collaborative systems,a multi... The overall performance of multi-robot collaborative systems is significantly affected by the multi-robot task allocation.To improve the effectiveness,robustness,and safety of multi-robot collaborative systems,a multimodal multi-objective evolutionary algorithm based on deep reinforcement learning is proposed in this paper.The improved multimodal multi-objective evolutionary algorithm is used to solve multi-robot task allo-cation problems.Moreover,a deep reinforcement learning strategy is used in the last generation to provide a high-quality path for each assigned robot via an end-to-end manner.Comparisons with three popular multimodal multi-objective evolutionary algorithms on three different scenarios of multi-robot task allocation problems are carried out to verify the performance of the proposed algorithm.The experimental test results show that the proposed algorithm can generate sufficient equivalent schemes to improve the availability and robustness of multi-robot collaborative systems in uncertain environments,and also produce the best scheme to improve the overall task execution efficiency of multi-robot collaborative systems. 展开更多
关键词 multi-robot task allocation multi-robot cooperation path planning multimodal multi-objective evo-lutionary algorithm deep reinforcement learning
原文传递
Task assignment in ground-to-air confrontation based on multiagent deep reinforcement learning 被引量:4
9
作者 Jia-yi Liu Gang Wang +2 位作者 Qiang Fu Shao-hua Yue Si-yuan Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第1期210-219,共10页
The scale of ground-to-air confrontation task assignments is large and needs to deal with many concurrent task assignments and random events.Aiming at the problems where existing task assignment methods are applied to... The scale of ground-to-air confrontation task assignments is large and needs to deal with many concurrent task assignments and random events.Aiming at the problems where existing task assignment methods are applied to ground-to-air confrontation,there is low efficiency in dealing with complex tasks,and there are interactive conflicts in multiagent systems.This study proposes a multiagent architecture based on a one-general agent with multiple narrow agents(OGMN)to reduce task assignment conflicts.Considering the slow speed of traditional dynamic task assignment algorithms,this paper proposes the proximal policy optimization for task assignment of general and narrow agents(PPOTAGNA)algorithm.The algorithm based on the idea of the optimal assignment strategy algorithm and combined with the training framework of deep reinforcement learning(DRL)adds a multihead attention mechanism and a stage reward mechanism to the bilateral band clipping PPO algorithm to solve the problem of low training efficiency.Finally,simulation experiments are carried out in the digital battlefield.The multiagent architecture based on OGMN combined with the PPO-TAGNA algorithm can obtain higher rewards faster and has a higher win ratio.By analyzing agent behavior,the efficiency,superiority and rationality of resource utilization of this method are verified. 展开更多
关键词 Ground-to-air confrontation task assignment General and narrow agents Deep reinforcement learning Proximal policy optimization(PPO)
在线阅读 下载PDF
Multi-task Coalition Parallel Formation Strategy Based on Reinforcement Learning 被引量:6
10
作者 JIANG Jian-Guo SU Zhao-Pin +1 位作者 QI Mei-Bin ZHANG Guo-Fu 《自动化学报》 EI CSCD 北大核心 2008年第3期349-352,共4页
代理人联盟是代理人协作和合作的一种重要方式。形成一个联盟,代理人能提高他们的能力解决问题并且获得更多的实用程序。在这份报纸,新奇多工联盟平行形成策略被介绍,并且多工联盟形成的过程是一个 Markov 决定过程的结论理论上被证... 代理人联盟是代理人协作和合作的一种重要方式。形成一个联盟,代理人能提高他们的能力解决问题并且获得更多的实用程序。在这份报纸,新奇多工联盟平行形成策略被介绍,并且多工联盟形成的过程是一个 Markov 决定过程的结论理论上被证明。而且,学习的加强被用来解决多工联盟平行的代理人行为策略,和这个过程形成被描述。在多工面向的领域,策略罐头有效地并且平行形式多工联盟。 展开更多
关键词 强化学习 多任务合并 平行排列 马尔可夫决策过程
在线阅读 下载PDF
Policy Network-Based Dual-Agent Deep Reinforcement Learning for Multi-Resource Task Offloading in Multi-Access Edge Cloud Networks 被引量:1
11
作者 Feng Chuan Zhang Xu +2 位作者 Han Pengchao Ma Tianchun Gong Xiaoxue 《China Communications》 SCIE CSCD 2024年第4期53-73,共21页
The Multi-access Edge Cloud(MEC) networks extend cloud computing services and capabilities to the edge of the networks. By bringing computation and storage capabilities closer to end-users and connected devices, MEC n... The Multi-access Edge Cloud(MEC) networks extend cloud computing services and capabilities to the edge of the networks. By bringing computation and storage capabilities closer to end-users and connected devices, MEC networks can support a wide range of applications. MEC networks can also leverage various types of resources, including computation resources, network resources, radio resources,and location-based resources, to provide multidimensional resources for intelligent applications in 5/6G.However, tasks generated by users often consist of multiple subtasks that require different types of resources. It is a challenging problem to offload multiresource task requests to the edge cloud aiming at maximizing benefits due to the heterogeneity of resources provided by devices. To address this issue,we mathematically model the task requests with multiple subtasks. Then, the problem of task offloading of multi-resource task requests is proved to be NP-hard. Furthermore, we propose a novel Dual-Agent Deep Reinforcement Learning algorithm with Node First and Link features(NF_L_DA_DRL) based on the policy network, to optimize the benefits generated by offloading multi-resource task requests in MEC networks. Finally, simulation results show that the proposed algorithm can effectively improve the benefit of task offloading with higher resource utilization compared with baseline algorithms. 展开更多
关键词 benefit maximization deep reinforcement learning multi-access edge cloud task offloading
在线阅读 下载PDF
Deep reinforcement learning-based optimization of lightweight task offloading for multi-user mobile edge computing 被引量:1
12
作者 ZHANG Wenxian DU Yongwen 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第4期489-500,共12页
To improve the quality of computation experience for mobile devices,mobile edge computing(MEC)is a promising paradigm by providing computing capabilities in close proximity within a sliced radio access network,which s... To improve the quality of computation experience for mobile devices,mobile edge computing(MEC)is a promising paradigm by providing computing capabilities in close proximity within a sliced radio access network,which supports both traditional communication and MEC services.However,this kind of intensive computing problem is a high dimensional NP hard problem,and some machine learning methods do not have a good effect on solving this problem.In this paper,the Markov decision process model is established to find the excellent task offloading scheme,which maximizes the long-term utility performance,so as to make the best offloading decision according to the queue state,energy queue state and channel quality between mobile users and BS.In order to explore the curse of high dimension in state space,a candidate network is proposed based on edge computing optimize offloading(ECOO)algorithm with the application of deep deterministic policy gradient algorithm.Through simulation experiments,it is proved that the ECOO algorithm is superior to some deep reinforcement learning algorithms in terms of energy consumption and time delay.So the ECOO is good at dealing with high dimensional problems. 展开更多
关键词 multi-user mobile edge computing task offloading deep reinforcement learning
在线阅读 下载PDF
Task Offloading and Resource Allocation in NOMA-VEC:A Multi-Agent Deep Graph Reinforcement Learning Algorithm
13
作者 Hu Yonghui Jin Zuodong +1 位作者 Qi Peng Tao Dan 《China Communications》 SCIE CSCD 2024年第8期79-88,共10页
Vehicular edge computing(VEC)is emerging as a promising solution paradigm to meet the requirements of compute-intensive applications in internet of vehicle(IoV).Non-orthogonal multiple access(NOMA)has advantages in im... Vehicular edge computing(VEC)is emerging as a promising solution paradigm to meet the requirements of compute-intensive applications in internet of vehicle(IoV).Non-orthogonal multiple access(NOMA)has advantages in improving spectrum efficiency and dealing with bandwidth scarcity and cost.It is an encouraging progress combining VEC and NOMA.In this paper,we jointly optimize task offloading decision and resource allocation to maximize the service utility of the NOMA-VEC system.To solve the optimization problem,we propose a multiagent deep graph reinforcement learning algorithm.The algorithm extracts the topological features and relationship information between agents from the system state as observations,outputs task offloading decision and resource allocation simultaneously with local policy network,which is updated by a local learner.Simulation results demonstrate that the proposed method achieves a 1.52%∼5.80%improvement compared with the benchmark algorithms in system service utility. 展开更多
关键词 edge computing graph convolutional network reinforcement learning task offloading
在线阅读 下载PDF
Deep reinforcement learning for UAV swarm rendezvous behavior 被引量:2
14
作者 ZHANG Yaozhong LI Yike +1 位作者 WU Zhuoran XU Jialin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第2期360-373,共14页
The unmanned aerial vehicle(UAV)swarm technology is one of the research hotspots in recent years.With the continuous improvement of autonomous intelligence of UAV,the swarm technology of UAV will become one of the mai... The unmanned aerial vehicle(UAV)swarm technology is one of the research hotspots in recent years.With the continuous improvement of autonomous intelligence of UAV,the swarm technology of UAV will become one of the main trends of UAV development in the future.This paper studies the behavior decision-making process of UAV swarm rendezvous task based on the double deep Q network(DDQN)algorithm.We design a guided reward function to effectively solve the problem of algorithm convergence caused by the sparse return problem in deep reinforcement learning(DRL)for the long period task.We also propose the concept of temporary storage area,optimizing the memory playback unit of the traditional DDQN algorithm,improving the convergence speed of the algorithm,and speeding up the training process of the algorithm.Different from traditional task environment,this paper establishes a continuous state-space task environment model to improve the authentication process of UAV task environment.Based on the DDQN algorithm,the collaborative tasks of UAV swarm in different task scenarios are trained.The experimental results validate that the DDQN algorithm is efficient in terms of training UAV swarm to complete the given collaborative tasks while meeting the requirements of UAV swarm for centralization and autonomy,and improving the intelligence of UAV swarm collaborative task execution.The simulation results show that after training,the proposed UAV swarm can carry out the rendezvous task well,and the success rate of the mission reaches 90%. 展开更多
关键词 double deep Q network(DDQN)algorithms unmanned aerial vehicle(UAV)swarm task decision deep reinforcement learning(DRL) sparse returns
在线阅读 下载PDF
Remote Sensing Data Processing Process Scheduling Based on Reinforcement Learning in Cloud Environment 被引量:1
15
作者 Ying Du Shuo Zhang +2 位作者 Pu Cheng Rita Yi Man Li Xiao-Guang Yue 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期1965-1979,共15页
Task scheduling plays a crucial role in cloud computing and is a key factor determining cloud computing performance.To solve the task scheduling problem for remote sensing data processing in cloud computing,this paper... Task scheduling plays a crucial role in cloud computing and is a key factor determining cloud computing performance.To solve the task scheduling problem for remote sensing data processing in cloud computing,this paper proposes a workflow task scheduling algorithm—Workflow Task Scheduling Algorithm based on Deep Reinforcement Learning(WDRL).The remote sensing data process modeling is transformed into a directed acyclic graph scheduling problem.Then,the algorithm is designed by establishing a Markov decision model and adopting a fitness calculation method.Finally,combine the advantages of reinforcement learning and deep neural networks to minimize make-time for remote sensing data processes from experience.The experiment is based on the development of CloudSim and Python and compares the change of completion time in the process of remote sensing data.The results showthat compared with several traditionalmeta-heuristic scheduling algorithms,WDRL can effectively achieve the goal of optimizing task scheduling efficiency. 展开更多
关键词 Cloud computing reinforcement learning remote sensing task scheduling
在线阅读 下载PDF
Distributed Graph Database Load Balancing Method Based on Deep Reinforcement Learning
16
作者 Shuming Sha Naiwang Guo +1 位作者 Wang Luo Yong Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第6期5105-5124,共20页
This paper focuses on the scheduling problem of workflow tasks that exhibit interdependencies.Unlike indepen-dent batch tasks,workflows typically consist of multiple subtasks with intrinsic correlations and dependenci... This paper focuses on the scheduling problem of workflow tasks that exhibit interdependencies.Unlike indepen-dent batch tasks,workflows typically consist of multiple subtasks with intrinsic correlations and dependencies.It necessitates the distribution of various computational tasks to appropriate computing node resources in accor-dance with task dependencies to ensure the smooth completion of the entire workflow.Workflow scheduling must consider an array of factors,including task dependencies,availability of computational resources,and the schedulability of tasks.Therefore,this paper delves into the distributed graph database workflow task scheduling problem and proposes a workflow scheduling methodology based on deep reinforcement learning(DRL).The method optimizes the maximum completion time(makespan)and response time of workflow tasks,aiming to enhance the responsiveness of workflow tasks while ensuring the minimization of the makespan.The experimental results indicate that the Q-learning Deep Reinforcement Learning(Q-DRL)algorithm markedly diminishes the makespan and refines the average response time within distributed graph database environments.In quantifying makespan,Q-DRL achieves mean reductions of 12.4%and 11.9%over established First-fit and Random scheduling strategies,respectively.Additionally,Q-DRL surpasses the performance of both DRL-Cloud and Improved Deep Q-learning Network(IDQN)algorithms,with improvements standing at 4.4%and 2.6%,respectively.With reference to average response time,the Q-DRL approach exhibits a significantly enhanced performance in the scheduling of workflow tasks,decreasing the average by 2.27%and 4.71%when compared to IDQN and DRL-Cloud,respectively.The Q-DRL algorithm also demonstrates a notable increase in the efficiency of system resource utilization,reducing the average idle rate by 5.02%and 9.30%in comparison to IDQN and DRL-Cloud,respectively.These findings support the assertion that Q-DRL not only upholds a lower average idle rate but also effectively curtails the average response time,thereby substantially improving processing efficiency and optimizing resource utilization within distributed graph database systems. 展开更多
关键词 reinforcement learning WORKFLOW task scheduling load balancing
在线阅读 下载PDF
基于MDP和Q-learning的绿色移动边缘计算任务卸载策略
17
作者 赵宏伟 吕盛凱 +2 位作者 庞芷茜 马子涵 李雨 《河南理工大学学报(自然科学版)》 北大核心 2025年第5期9-16,共8页
目的为了在汽车、空调等制造类工业互联网企业中实现碳中和,利用边缘计算任务卸载技术处理生产设备的任务卸载问题,以减少服务器的中心负载,减少数据中心的能源消耗和碳排放。方法提出一种基于马尔可夫决策过程(Markov decision process... 目的为了在汽车、空调等制造类工业互联网企业中实现碳中和,利用边缘计算任务卸载技术处理生产设备的任务卸载问题,以减少服务器的中心负载,减少数据中心的能源消耗和碳排放。方法提出一种基于马尔可夫决策过程(Markov decision process,MDP)和Q-learning的绿色边缘计算任务卸载策略,该策略考虑了计算频率、传输功率、碳排放等约束,基于云边端协同计算模型,将碳排放优化问题转化为混合整数线性规划模型,通过MDP和Q-learning求解模型,并对比随机分配算法、Q-learning算法、SARSA(state action reward state action)算法的收敛性能、碳排放与总时延。结果与已有的计算卸载策略相比,新策略对应的任务调度算法收敛比SARSA算法、Q-learning算法分别提高了5%,2%,收敛性更好;系统碳排放成本比Q-learning算法、SARSA算法分别减少了8%,22%;考虑终端数量多少,新策略比Q-learning算法、SARSA算法终端数量分别减少了6%,7%;系统总计算时延上,新策略明显低于其他算法,比随机分配算法、Q-learning算法、SARSA算法分别减少了27%,14%,22%。结论该策略能够合理优化卸载计算任务和资源分配,权衡时延、能耗,减少系统碳排放量。 展开更多
关键词 碳排放 边缘计算 强化学习 马尔可夫决策过程 任务卸载
在线阅读 下载PDF
A Distributed Cooperative Dynamic Task Planning Algorithm for Multiple Satellites Based on Multi-agent Hybrid Learning 被引量:16
18
作者 WANG Chong LI Jun JING Ning WANG Jun CHEN Hao 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2011年第4期493-505,共13页
Traditionally, heuristic re-planning algorithms are used to tackle the problem of dynamic task planning for multiple satellites. However, the traditional heuristic strategies depend on the concrete tasks, which often ... Traditionally, heuristic re-planning algorithms are used to tackle the problem of dynamic task planning for multiple satellites. However, the traditional heuristic strategies depend on the concrete tasks, which often affect the result’s optimality. Noticing that the historical information of cooperative task planning will impact the latter planning results, we propose a hybrid learning algorithm for dynamic multi-satellite task planning, which is based on the multi-agent reinforcement learning of policy iteration and the transfer learning. The reinforcement learning strategy of each satellite is described with neural networks. The policy neural network individuals with the best topological structure and weights are found by applying co-evolutionary search iteratively. To avoid the failure of the historical learning caused by the randomly occurring observation requests, a novel approach is proposed to balance the quality and efficiency of the task planning, which converts the historical learning strategy to the current initial learning strategy by applying the transfer learning algorithm. The simulations and analysis show the feasibility and adaptability of the proposed approach especially for the situation with randomly occurring observation requests. 展开更多
关键词 multiple satellites dynamic task planning problem multi-agent systems reinforcement learning neuroevolution of augmenting topologies transfer learning
原文传递
Optimizing Risk-Aware Task Migration Algorithm Among Multiplex UAV Groups Through Hybrid Attention Multi-Agent Reinforcement Learning
19
作者 Yuanshuang Jiang Kai Di +5 位作者 Ruiyi Qian Xingyu Wu Fulin Chen Pan Li Xiping Fu Yichuan Jiang 《Tsinghua Science and Technology》 2025年第1期318-330,共13页
Recently,with the increasing complexity of multiplex Unmanned Aerial Vehicles(multi-UAVs)collaboration in dynamic task environments,multi-UAVs systems have shown new characteristics of inter-coupling among multiplex g... Recently,with the increasing complexity of multiplex Unmanned Aerial Vehicles(multi-UAVs)collaboration in dynamic task environments,multi-UAVs systems have shown new characteristics of inter-coupling among multiplex groups and intra-correlation within groups.However,previous studies often overlooked the structural impact of dynamic risks on agents among multiplex UAV groups,which is a critical issue for modern multi-UAVs communication to address.To address this problem,we integrate the influence of dynamic risks on agents among multiplex UAV group structures into a multi-UAVs task migration problem and formulate it as a partially observable Markov game.We then propose a Hybrid Attention Multi-agent Reinforcement Learning(HAMRL)algorithm,which uses attention structures to learn the dynamic characteristics of the task environment,and it integrates hybrid attention mechanisms to establish efficient intra-and inter-group communication aggregation for information extraction and group collaboration.Experimental results show that in this comprehensive and challenging model,our algorithm significantly outperforms state-of-the-art algorithms in terms of convergence speed and algorithm performance due to the rational design of communication mechanisms. 展开更多
关键词 Unmanned Aerial Vehicle(UAV) multiplex UAV group structures task migration multi-agent reinforcement learning
原文传递
Deep reinforcement learning based resource provisioning for federated edge learning
20
作者 Xingyun Chen Junjie Pang Tonghui Sun 《High-Confidence Computing》 2025年第2期11-18,共8页
With the rapid development of mobile internet technology and increasing concerns over data privacy,Federated Learning(FL)has emerged as a significant framework for training machine learning models.Given the advancemen... With the rapid development of mobile internet technology and increasing concerns over data privacy,Federated Learning(FL)has emerged as a significant framework for training machine learning models.Given the advancements in technology,User Equipment(UE)can now process multiple computing tasks simultaneously,and since UEs can have multiple data sources that are suitable for various FL tasks,multiple tasks FL could be a promising way to respond to different application requests at the same time.However,running multiple FL tasks simultaneously could lead to a strain on the device’s computation resource and excessive energy consumption,especially the issue of energy consumption challenge.Due to factors such as limited battery capacity and device heterogeneity,UE may fail to efficiently complete the local training task,and some of them may become stragglers with high-quality data.Aiming at alleviating the energy consumption challenge in a multi-task FL environment,we design an automatic Multi-Task FL Deployment(MFLD)algorithm to reach the local balancing and energy consumption goals.The MFLD algorithm leverages Deep Reinforcement Learning(DRL)techniques to automatically select UEs and allocate the computation resources according to the task requirement.Extensive experiments validate our proposed approach and showed significant improvements in task deployment success rate and energy consumption cost. 展开更多
关键词 task deployment Federated learning Deep reinforcement learning
在线阅读 下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部