Plasma electrolytic oxidation(PEO)coatings were prepared on Al−Mg laminated macro composites(LMCs)using both unipolar and bipolar waveforms in an appropriate electrolyte for both aluminum and magnesium alloys.The tech...Plasma electrolytic oxidation(PEO)coatings were prepared on Al−Mg laminated macro composites(LMCs)using both unipolar and bipolar waveforms in an appropriate electrolyte for both aluminum and magnesium alloys.The techniques of FESEM/EDS,grazing incident beam X-ray diffraction(GIXRD),and electrochemical methods of potentiodynamic polarization and electrochemical impedance spectroscopy(EIS)were used to characterize the coatings.The results revealed that the coatings produced using the bipolar waveform exhibited lower porosity and higher thickness than those produced using the unipolar one.The corrosion performance of the specimens’cut edge was investigated using EIS after 1,8,and 12 h of immersion in a 3.5 wt.%NaCl solution.It was observed that the coating produced using the bipolar waveform demonstrated the highest corrosion resistance after 12 h of immersion,with an estimated corrosion resistance of 5.64 kΩ·cm^(2),which was approximately 3 times higher than that of the unipolar coating.Notably,no signs of galvanic corrosion were observed in the LMCs,and only minor corrosion attacks were observed on the magnesium layer in some areas.展开更多
This study aims to investigate the propagation of harmonic waves in nonlocal magneto-electro-elastic(MEE)laminated composites with interface stress imperfections using an analytical approach.The pseudo-Stroh formulati...This study aims to investigate the propagation of harmonic waves in nonlocal magneto-electro-elastic(MEE)laminated composites with interface stress imperfections using an analytical approach.The pseudo-Stroh formulation and nonlocal theory proposed by Eringen were adopted to derive the propagator matrix for each layer.Both the propagator and interface matrices were formulated to determine the recursive fields.Subsequently,the dispersion equation was obtained by imposing traction-free and magneto-electric circuit open boundary conditions on the top and bottom surfaces of the plate.Dispersion curves,mode shapes,and natural frequencies were calculated for sandwich plates composed of BaTiO3 and CoFe2O4.Numerical simulations revealed that both interface stress and the nonlocal effect influenced the tuning of the dispersion curve and mode shape for the given layup.The nonlocal effect caused a significant decrease in the dispersion curves,particularly in the high-frequency regions.Additionally,compared to the nonlocal effect,the interface stress exerted a greater influence on the mode shapes.The generalized analytical framework developed in this study provides an effective tool for both the theoretical analysis and practical design of MEE composite laminates.展开更多
Three types of Al/Al−27%Si laminated composites,each containing 22%Si,were fabricated via hot pressing and hot rolling.The microstructures,mechanical properties and thermo-physical properties of these composites were ...Three types of Al/Al−27%Si laminated composites,each containing 22%Si,were fabricated via hot pressing and hot rolling.The microstructures,mechanical properties and thermo-physical properties of these composites were investigated.The results demonstrated that the three laminated composites exhibited similar microstructural features,characterized by well-bonded interfaces between the Al layer and the Al−27%Si alloy layer.The tensile and flexural strengths of the composites were significantly higher than those of both Al−22%Si and Al−27%Si alloys.These strengths increased gradually with decreasing the layer thickness,reaching peak values of 222.5 and 407.4 MPa,respectively.Crack deflection was observed in the cross-sections of the bending fracture surfaces,which contributed to the enhanced strength and toughness.In terms of thermo-physical properties,the thermal conductivity of the composites was lower than that of Al−22%Si and Al−27%Si alloys.The minimum reductions in thermal conductivity were 6.8%and 0.9%for the T3 laminated composite,respectively.Additionally,the coefficient of thermal expansion of the composites was improved,exhibiting varying temperature-dependent behaviors.展开更多
Heterogeneous laminated structure(HLS)design offers new opportunities to enhance the mechanical performance of high-entropy alloys(HEAs)through synergistic effects from heterogeneity.However,it remains challenging to ...Heterogeneous laminated structure(HLS)design offers new opportunities to enhance the mechanical performance of high-entropy alloys(HEAs)through synergistic effects from heterogeneity.However,it remains challenging to introduce the HLS into HEAs via severe plastic deformation due to their strong work-hardening capacity.In this study,a specially designed multi-level HLS,characterized by alterna-tively stacked micro-grained soft CoCrFeNi layers and nanostructured ultra-hard Al_(0.3)CoCrFeNi layers con-taining a three-phase microstructure(composed of nanograined face-centered cubic matrix,(Al,Ni)-rich B2 precipitates,and Cr-richσprecipitates),is controllably introduced into FCC HEAs via a conventional thermo-mechanical processing involving hot-pressing,cold-rolling,and annealing.Meanwhile,thermo-mechanical processing induces Al element diffusion across the layer interface,resulting in the formation of an interfacial transition layer and the establishment of a strong interface bonding between the neigh-boring CoCrFeNi and Al_(0.3)CoCrFeNi layers.As a result,the multi-level HLSed CoCrFeNi/Al_(0.3)CoCrFeNi com-posite exhibits a yield strength as high as 1127±25.4 MPa while maintaining a large fracture elongation(up to(26.3±2.4)%).Such an excellent strength-ductility synergy surpasses that of most previously reported high-performance monolithic bulk CoCrFeNi and Al_(0.3)CoCrFeNi HEAs prepared through care-ful chemical composition optimization and/or thermo-mechanical processing.Strong hetero-deformation induced strengthening benefited from the apparent microstructural/microhardness difference and the strong interface bonding between the neighbouring CoCrFeNi and Al03CoCrFeNi layers,together with si-multaneous activation of multiple strain hardening mechanisms containing mechanical twinning,stack-ing faults and precipitation strengthening,is responsible for the excellent strength-ductility combination.This multi-level HLS and its fabrication strategy provide an enlightening way to develop strong and duc-tile HEAs and can also be applied to high-performance designs of other metallic materials.展开更多
In Ti-Al laminated composites,cracks nucleate preferentially at the Al_(3)Ti layer,but the inhibitory effect of Al_(3)Ti on crack extension is ignored.Interestingly,by combining experiment and phase-field crystal simu...In Ti-Al laminated composites,cracks nucleate preferentially at the Al_(3)Ti layer,but the inhibitory effect of Al_(3)Ti on crack extension is ignored.Interestingly,by combining experiment and phase-field crystal simulation,we found that the micrometer Al_(3)Ti particles in the diffusion layer play the role of crack deflection and passivation,which is attributed to the lattice distortion induced by Al_(3)Ti consumes the energy of the crack in extension.In addition,it is found that the growth process of Al_(3)Ti is divided into two stages:nucleation stage and growth stage.Compared with the growth stage,the Al_(3)Ti grains in the nucleation stage are finer in the growth layer.Finer grains show better crack deflection and avoid stress concentration.展开更多
The remarkable mechanical properties exhibited by laminated structures have generated significant in-terest in the realm of additively manufactured laminated high-entropy alloys(HEAs).Despite this bur-geoning interest...The remarkable mechanical properties exhibited by laminated structures have generated significant in-terest in the realm of additively manufactured laminated high-entropy alloys(HEAs).Despite this bur-geoning interest,the nexus between process,structure,and properties within laminated HEAs remains largely uncharted.There is a vast space for investigating the effect of the typical heterogeneous interface on the macroscopic mechanical properties.This study focuses on the influence of the characteristic het-erogeneous interface on macroscopic mechanical properties of laminated HEAs,particularly anisotropy.Using the 3D-printed Fe_(50)Mn_(30)Co_(10)Cr_(10)-CoCrNi HEA as a model,we investigate the impact of interface geometry on mechanical characteristics.Tensile tests show that the reduced interface spacing increases yield strength.This laminated HEA displays significant anisotropy in strength and ductility,depending on the loading direction relative to the interface.Electron microscopic observations suggest that finer layer spacing enhances interface and dislocation strengthening,increasing yield strength.Anisotropic behaviors are confirmed to be mediated by interface orientation,explained in terms of deformation compatibility and crack development at the interface.This research offers fundamental insights into the relationship between heterogeneous interfaces and the mechanical properties in laminated HEAs.The knowledge is vital for designing,fabricating,and optimizing laminated HEAs through additive manufacturing,advancing their engineering applications.展开更多
Al/Cu laminate composite was fabricated based on hot press sintering using Cu sheet and Al powders as raw materials.The effects of sintering parameters on interfacial structure and mechanical properties were investiga...Al/Cu laminate composite was fabricated based on hot press sintering using Cu sheet and Al powders as raw materials.The effects of sintering parameters on interfacial structure and mechanical properties were investigated.The results revealed that a uniform Al/Cu interface with excellent bonding quality was achieved.The thickness of intermetallic compounds(IMCs)reached 33.88μm after sintering at 620℃for 2 h,whereas it was only 14.88μm when sintered at 600℃for 1 h.AlCu phase was developed through the reaction between Al4Cu9 and Al2Cu with prolonging sintering time,and an amorphous oxide strip formed at AlCu/Al4Cu9 interface.Both the grain morphology and interfacial structure affected the tensile strength of Al/Cu laminate,whereas the mode of tensile fracture strongly relied on the interfacial bonding strength.The highest tensile strength of 151.1 MPa and bonding strength of 93.7 MPa were achieved after sintering at 600℃for 1 h.展开更多
The Cu/1010 steel bimetal laminated composites(BLCs)were rolled to different thicknesses to investigate the effect of rolling direction and reduction on the microstructure evolution and mechanical properties.The diffe...The Cu/1010 steel bimetal laminated composites(BLCs)were rolled to different thicknesses to investigate the effect of rolling direction and reduction on the microstructure evolution and mechanical properties.The difference of mechanical properties between the Cu and 1010 steel causes different thickness reductions,percentage spread,and cladding ratios.The formation of strong texture induces larger strength of the rolled samples,and as the volume fraction of 1010 steel is larger in Route-A,its strength is consistently greater than that in Route-B.The obstruction of interface to crystal and dislocation slip results in the formation of interface distortion,inducing dislocation density gradient when the rolling reduction is low in Route-A.The slip planes of the Cu and 1010 steel are more prone to suffer the normal strain,while the shear strain of other crystal planes is obviously larger than the normal strain under rolling load near the interface.展开更多
Longitudinal seismic performance is a critical aspect to be considered during the tunnel design process,in addition to cross-sectional considerations.The present study proposed using a laminated shear energy dissipati...Longitudinal seismic performance is a critical aspect to be considered during the tunnel design process,in addition to cross-sectional considerations.The present study proposed using a laminated shear energy dissipation(LSED)structure to achieve effective longitudinal seismic design.The proposed structure consists of thin steel plates and alternately bonded layers of rubber,which can be installed around the periphery of the secondary lining.This configuration guarantees that the tunnels will exhibit optimal axial deformation capacity and robust rigid resistance to circumferential compression from the surrounding rock.To evaluate the impact of the LSED structure on the longitudinal seismic performance of the tunnel,a fine numerical model of the LSED structureetunnel liningesurrounding rock system was developed using finite element simulation.The evaluation criteria include maximum principal stress and strain energy.The seismic response of the tunnel with the LSED structure exhibited a notable reduction of over 40%in terms of seismic attenuation rate when subjected to the Trinidad seismic wave compared to the tunnel without the LSED structure.Furthermore,the aseismic mechanism of the proposed LSED structure is discussed,considering both internal factors such as the rubber shear modulus,steel plate dimensions,and number and location of structures,and external influencing factors such as seismic wave parameters and surrounding rock quality.Meanwhile,the effectiveness of the tunnel with the LSED structure has been quantitatively demonstrated in terms of seismic fragility curves.展开更多
The development of geological lamination in shale reservoirs influences fracture propagation during hydraulic stimulation,and the fracture generation mechanism as it propagates through the laminated interface is close...The development of geological lamination in shale reservoirs influences fracture propagation during hydraulic stimulation,and the fracture generation mechanism as it propagates through the laminated interface is closely related to fracturing effects.In this paper,the laminated shale was selected to conduct three-point bending experiments using digital image correlation(DIC)and acoustic emission(AE)techniques,which revealed that the propagation path of cross-layer fractures exhibits dislocation features.The cohesive fracture mechanism of cross-layer fractures is investigated from the viewpoint of the fracture process zone(FPZ),which displays the characteristics of intermittence and dislocation during fracture development.A computational criterion for predicting the dislocation of cross-layer fracture at the interface is proposed,which shows that the maximum dislocation range does not exceed 72%of the FPZ length.Considering the mechanical differences between adjacent layers of laminated shale,the cohesive zone model of cross-layer fracture is discussed,from which the constitutive relationship and fracture energy during FPZ development are characterized,and the discontinuous nature of the constitutive relationship is found.This study improves the understanding of the geometry and cohesive fracture mechanism of the cross-layer fracture and provides valuable insights for field fracturing in shale reservoirs.展开更多
1060/7050 Al/Al laminated metal composites(LMCs)with heterogeneous lamellar structures were prepared by accumulative roll bonding(ARB),cold rolling and subsequent annealing treatment.The strengthening mechanism was in...1060/7050 Al/Al laminated metal composites(LMCs)with heterogeneous lamellar structures were prepared by accumulative roll bonding(ARB),cold rolling and subsequent annealing treatment.The strengthening mechanism was investigated by microstructural characterization,mechanical property tests and in-situ fracture morphology observations.The results show that microstructural differences between the constituent layers are present in the Al/Al LMCs after various numbers of ARB cycles.Compared with rolled 2560-layered Al/Al LMCs with 37.5%and 50.0%rolling reductions,those with 62.5%rolling reductions allow for more effective improvements in the mechanical properties after annealing treatment due to their relatively high mechanical incompatibility across the interface.During tensile deformation,with the increased magnitude of incompatibility in the 2560-layered Al/Al LMC with a heterogeneous lamellar structure,the densities of the geometrically necessary dislocations(GNDs)increase to accommodate the relatively large strain gradient,resulting in considerable back stress strengthening and improved mechanical properties.展开更多
Regarding laminated structures,an electromechanically coupled Finite Element(FE)model based on Layerwise Third-Order Shear Deformation(LW-TOSD)theory is proposed for sta-tic and dynamic analysis.LW-TOSD ensures the co...Regarding laminated structures,an electromechanically coupled Finite Element(FE)model based on Layerwise Third-Order Shear Deformation(LW-TOSD)theory is proposed for sta-tic and dynamic analysis.LW-TOSD ensures the continuity of in-plane displacements and trans-verse shear stresses.The current LW-TOSD can be applied to arbitrary multi-layer laminated structures with only seven Degrees of Freedom(DOFs)for each element node and eliminates the use of the shear correction factors.Moreover,a shear penalty stiffness matrix is constructed to sat-isfy artificial constraints to optimize the structural shear strain.A dynamic finite element model is obtained based on LW-TOSD using the Hamilton's principle.First,the accuracy of the current model is validated by comparing with literature and ABAQUS results.Then,this study carries out numerical investigations of piezolaminated structures for different width-to-thickness ratios,length-to-width ratios,penalty stiffness matrix,boundary conditions,electric fields and dynamics.展开更多
High spatiotemporal resolution brain electrical signals are critical for basic neuroscience research and high-precision focus diagnostic localization,as the spatial scale of some pathologic signals is at the submillim...High spatiotemporal resolution brain electrical signals are critical for basic neuroscience research and high-precision focus diagnostic localization,as the spatial scale of some pathologic signals is at the submillimeter or micrometer level.This entails connecting hundreds or thousands of electrode wires on a limited surface.This study reported a class of flexible,ultrathin,highdensity electrocorticogram(ECoG)electrode arrays.The challenge of a large number of wiring arrangements was overcome by a laminated structure design and processing technology improvement.The flexible,ultrathin,high-density ECoG electrode array was conformably attached to the cortex for reliable,high spatial resolution electrophysiologic recordings.The minimum spacing between electrodes was 15μm,comparable to the diameter of a single neuron.Eight hundred electrodes were prepared with an electrode density of 4444 mm^(-2).In focal epilepsy surgery,the flexible,high-density,laminated ECoG electrode array with 36 electrodes was applied to collect epileptic spike waves inrabbits,improving the positioning accuracy of epilepsy lesions from the centimeter to the submillimeter level.The flexible,high-density,laminated ECoG electrode array has potential clinical applications in intractable epilepsy and other neurologic diseases requiring high-precision electroencephalogram acquisition.展开更多
The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches....The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell.展开更多
The continental shale reservoirs of Jurassic Lianggaoshan Formation in Sichuan Basin contain thin lamina,which is characterized by strong plasticity and developed longitudinal shell limestone interlayer.To improve the...The continental shale reservoirs of Jurassic Lianggaoshan Formation in Sichuan Basin contain thin lamina,which is characterized by strong plasticity and developed longitudinal shell limestone interlayer.To improve the production efficiency of reservoirs by multi-cluster fracturing,it is necessary to consider the unbalanced propagation of hydraulic fractures and the penetration effect of fractures.This paper constructed a numerical model of multi-fracture propagation and penetration based on the finite element coupling cohesive zone method;considering the construction cluster spacing,pump rate,lamina strength and other parameters studied the influencing factors of multi-cluster fracture interaction propagation;combined with AE energy data and fracture mode reconstruction method,quantitatively characterized the comprehensive impact of the strength of thin interlayer rock interfaces on the initiation and propagation of fractures that penetrate layers,and accurately predicted the propagation pattern of hydraulic fractures through laminated shale oil reservoirs.Simulation results revealed that in the process of multi-cluster fracturing,the proportion of shear damage is low,and mainly occurs in bedding fractures activated by outer fractures.Reducing the cluster spacing enhances the fracture system's penetration ability,though it lowers the activation efficiency of lamina.The high plasticity of the limestone interlayer may impact the vertical propagation distance of the main fracture.Improving the interface strength is beneficial to the reconstruction of the fracture height,but the interface communication effect is limited.Reasonable selection of layers with moderate lamina strength for fracturing stimulation,increasing the pump rate during fracturing and setting the cluster spacing reasonably are beneficial to improve the effect of reservoir stimulation.展开更多
Poly(p-phenylene-2,6-benzobisoxazole)(PBO)fiber and polytetrafluoroethylene(PTFE)resin have been widely acknowledged as excellent wave-transparent materials for future high-frequency applications due to their exceptio...Poly(p-phenylene-2,6-benzobisoxazole)(PBO)fiber and polytetrafluoroethylene(PTFE)resin have been widely acknowledged as excellent wave-transparent materials for future high-frequency applications due to their exceptional dielectric properties.However,the weak interfacial bonding between these two materials hampers their full potential.In this study,we successfully addressed this limitation by enhancing the surface roughness of PBO fibers and introducing active sites through the insitu grafting of silica nanowires.The added silica acted as an interfacial anchor on the PBO fiber surface,significantly improving the bonding force between PBO and PTFE.PBO/PTFE wave-transparent laminated composites were fabricated using hot compression molding.The results demonstrate that the PBO(treated with insitu grown silica)/PTFE laminated composites exhibit superior interlaminar shear strength(ILSS),flexural strength,flexural modulus,and tensile modulus compared to the pristine PBO/PTFE laminated composites.Specifically,these properties are found to be 58.6%,32.9%,138.1%,and 25.35%higher,respectively.Additionally,these composites demonstrate low dielectric constant and dielectric loss.Most notably,they achieve a wave transmittance of 91.45%at 10 GHz,indicating significant potential for wide-range applications in next-generation advanced military weapons,such as“lightweight/high-strength/wavetransparent”electromagnetic window materials,as well as civilian communication base stations.展开更多
Piezoelectric devices exhibit unique properties that vary with different vibration modes,closely influenced by their polarization direction.This paper presents an analysis on the free vibration of laminated piezoelect...Piezoelectric devices exhibit unique properties that vary with different vibration modes,closely influenced by their polarization direction.This paper presents an analysis on the free vibration of laminated piezoelectric beams with varying polarization directions,using a state-space-based differential quadrature method.First,based on the electro-elasticity theory,the state-space method is extended to anisotropic piezoelectric materials,establishing state-space equations for arbitrary polarized piezoelectric beams.A semi-analytical solution for the natural frequency is then obtained via the differential quadrature method.The study commences by examining the impact of a uniform polarization direction,and then proceeds to analyze six polarization schemes relevant to the current research and applications.Additionally,the effects of geometric dimensions and gradient index on the natural frequencies are explored.The numerical results demonstrate that varying the polarization direction can significantly influence the natural frequencies,offering distinct advantages for piezoelectric elements with different polarizations.This research provides both theoretical insights and numerical methods for the structural design of piezoelectric devices.展开更多
The dynamic model of a bistable laminated composite shell simply supported by four corners is further developed to investigate the resonance responses and chaotic behaviors.The existence of the 1:1 resonance relations...The dynamic model of a bistable laminated composite shell simply supported by four corners is further developed to investigate the resonance responses and chaotic behaviors.The existence of the 1:1 resonance relationship between two order vibration modes of the system is verified.The resonance response of this class of bistable structures in the dynamic snap-through mode is investigated,and the four-dimensional(4D)nonlinear modulation equations are derived based on the 1:1 internal resonance relationship by means of the multiple scales method.The Hopf bifurcation and instability interval of the amplitude frequency and force amplitude curves are analyzed.The discussion focuses on investigating the effects of key parameters,e.g.,excitation amplitude,damping coefficient,and detuning parameters,on the resonance responses.The numerical simulations show that the foundation excitation and the degree of coupling between the vibration modes exert a substantial effect on the chaotic dynamics of the system.Furthermore,the significant motions under particular excitation conditions are visualized by bifurcation diagrams,time histories,phase portraits,three-dimensional(3D)phase portraits,and Poincare maps.Finally,the vibration experiment is carried out to study the amplitude frequency responses and bifurcation characteristics for the bistable laminated composite shell,yielding results that are qualitatively consistent with the theoretical results.展开更多
The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and ...The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and primary resonance.The transverse foundation excitation is applied to the fixed end of the structure,and the other end is in a free state.The first-order approximate multiple scales method is employed to perform the perturbation analysis on the dimensionless two-degree-of-freedom ordinary differential motion control equation.The four-dimensional averaged equations are derived in both polar and rectangular coordinate forms.Deriving from the obtained frequency-amplitude and force-amplitude response curves,a detailed analysis is conducted to examine the impacts of excitation amplitude,damping coefficient,and tuning parameter on the nonlinear internal resonance characteristics of the system.The nonlinear softening characteristic is exhibited in the upper stable-state,while the lower stable-state demonstrates the softening and linearity characteristics.Numerical simulation is carried out using the fourth-order Runge-Kutta method,and a series of nonlinear response curves are plotted.Increasing the excitation amplitude further elucidates the global bifurcation and chaotic dynamic snap-through characteristics of the bistable cantilever shell.展开更多
A new,innovative vibration cast-rolling technology of “electromagnetic stirring+dendrite breaking+asynchronous rolling” was proposed with the adoption of sinusoidal vibration of crystallization roller to prepare Ti/...A new,innovative vibration cast-rolling technology of “electromagnetic stirring+dendrite breaking+asynchronous rolling” was proposed with the adoption of sinusoidal vibration of crystallization roller to prepare Ti/Al laminated composites,and the effect of sinusoidal vibration of crystallization roller on composite microstructure was investigated in detail.The results show that the metallurgical bonding of titanium and aluminum is realized by mesh interweaving and mosaic meshing,instead of transition bonding by forming metal compound layer.The meshing depth between titanium and aluminum layers (6.6μm) of cast-rolling materials with strong vibration of crystallization roller (amplitude 0.87 mm,vibration frequency 25 Hz) is doubled compared with that of traditional cast-rolling materials (3.1μm),and the composite interfacial strength(27.0 N/mm) is twice as high as that of traditional cast-rolling materials (14.9 N/mm).This is because with the action of high-speed superposition of strong tension along the rolling direction,strong pressure along the width direction and rolling force,the composite linearity evolves from "straight line" with traditional casting-rolling to "curved line",and the depth and number of cracks in the interface increases greatly compared with those with traditional cast-rolling,which leads to the deep expansion of the meshing area between interfacial layers and promotes the stable enhancement of composite quality.展开更多
文摘Plasma electrolytic oxidation(PEO)coatings were prepared on Al−Mg laminated macro composites(LMCs)using both unipolar and bipolar waveforms in an appropriate electrolyte for both aluminum and magnesium alloys.The techniques of FESEM/EDS,grazing incident beam X-ray diffraction(GIXRD),and electrochemical methods of potentiodynamic polarization and electrochemical impedance spectroscopy(EIS)were used to characterize the coatings.The results revealed that the coatings produced using the bipolar waveform exhibited lower porosity and higher thickness than those produced using the unipolar one.The corrosion performance of the specimens’cut edge was investigated using EIS after 1,8,and 12 h of immersion in a 3.5 wt.%NaCl solution.It was observed that the coating produced using the bipolar waveform demonstrated the highest corrosion resistance after 12 h of immersion,with an estimated corrosion resistance of 5.64 kΩ·cm^(2),which was approximately 3 times higher than that of the unipolar coating.Notably,no signs of galvanic corrosion were observed in the LMCs,and only minor corrosion attacks were observed on the magnesium layer in some areas.
基金supported by the Ministry of Science and Technology Taiwan under Grant No.MOST 109-2628-E-009-002-MY3.
文摘This study aims to investigate the propagation of harmonic waves in nonlocal magneto-electro-elastic(MEE)laminated composites with interface stress imperfections using an analytical approach.The pseudo-Stroh formulation and nonlocal theory proposed by Eringen were adopted to derive the propagator matrix for each layer.Both the propagator and interface matrices were formulated to determine the recursive fields.Subsequently,the dispersion equation was obtained by imposing traction-free and magneto-electric circuit open boundary conditions on the top and bottom surfaces of the plate.Dispersion curves,mode shapes,and natural frequencies were calculated for sandwich plates composed of BaTiO3 and CoFe2O4.Numerical simulations revealed that both interface stress and the nonlocal effect influenced the tuning of the dispersion curve and mode shape for the given layup.The nonlocal effect caused a significant decrease in the dispersion curves,particularly in the high-frequency regions.Additionally,compared to the nonlocal effect,the interface stress exerted a greater influence on the mode shapes.The generalized analytical framework developed in this study provides an effective tool for both the theoretical analysis and practical design of MEE composite laminates.
基金supported by the National Natural Science Foundation of China(No.52274369)the National Key Laboratory of Science and Technology on High-strength Structural Materials,China(No.623020034).
文摘Three types of Al/Al−27%Si laminated composites,each containing 22%Si,were fabricated via hot pressing and hot rolling.The microstructures,mechanical properties and thermo-physical properties of these composites were investigated.The results demonstrated that the three laminated composites exhibited similar microstructural features,characterized by well-bonded interfaces between the Al layer and the Al−27%Si alloy layer.The tensile and flexural strengths of the composites were significantly higher than those of both Al−22%Si and Al−27%Si alloys.These strengths increased gradually with decreasing the layer thickness,reaching peak values of 222.5 and 407.4 MPa,respectively.Crack deflection was observed in the cross-sections of the bending fracture surfaces,which contributed to the enhanced strength and toughness.In terms of thermo-physical properties,the thermal conductivity of the composites was lower than that of Al−22%Si and Al−27%Si alloys.The minimum reductions in thermal conductivity were 6.8%and 0.9%for the T3 laminated composite,respectively.Additionally,the coefficient of thermal expansion of the composites was improved,exhibiting varying temperature-dependent behaviors.
基金supported by the National Natural Science Foundation of China(No.52361021)the Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province(No.20232BCJ23001)+1 种基金the Jiangxi Provincial Natural Science Foundation(No.20232ACB214003)the Jiangxi Province Major Science&Technology Research&Development Project(No.20223AAG01009).
文摘Heterogeneous laminated structure(HLS)design offers new opportunities to enhance the mechanical performance of high-entropy alloys(HEAs)through synergistic effects from heterogeneity.However,it remains challenging to introduce the HLS into HEAs via severe plastic deformation due to their strong work-hardening capacity.In this study,a specially designed multi-level HLS,characterized by alterna-tively stacked micro-grained soft CoCrFeNi layers and nanostructured ultra-hard Al_(0.3)CoCrFeNi layers con-taining a three-phase microstructure(composed of nanograined face-centered cubic matrix,(Al,Ni)-rich B2 precipitates,and Cr-richσprecipitates),is controllably introduced into FCC HEAs via a conventional thermo-mechanical processing involving hot-pressing,cold-rolling,and annealing.Meanwhile,thermo-mechanical processing induces Al element diffusion across the layer interface,resulting in the formation of an interfacial transition layer and the establishment of a strong interface bonding between the neigh-boring CoCrFeNi and Al_(0.3)CoCrFeNi layers.As a result,the multi-level HLSed CoCrFeNi/Al_(0.3)CoCrFeNi com-posite exhibits a yield strength as high as 1127±25.4 MPa while maintaining a large fracture elongation(up to(26.3±2.4)%).Such an excellent strength-ductility synergy surpasses that of most previously reported high-performance monolithic bulk CoCrFeNi and Al_(0.3)CoCrFeNi HEAs prepared through care-ful chemical composition optimization and/or thermo-mechanical processing.Strong hetero-deformation induced strengthening benefited from the apparent microstructural/microhardness difference and the strong interface bonding between the neighbouring CoCrFeNi and Al03CoCrFeNi layers,together with si-multaneous activation of multiple strain hardening mechanisms containing mechanical twinning,stack-ing faults and precipitation strengthening,is responsible for the excellent strength-ductility combination.This multi-level HLS and its fabrication strategy provide an enlightening way to develop strong and duc-tile HEAs and can also be applied to high-performance designs of other metallic materials.
基金supported by the National Natural Science Foundation of China(Nos.52375394,52074246,52275390,52205429,52201146)the National Defense Basic Scientific Research Program of China(JCKY2020408B002)the Key Research and Development Program of Shanxi Province(202102050201011,202202050201014).
文摘In Ti-Al laminated composites,cracks nucleate preferentially at the Al_(3)Ti layer,but the inhibitory effect of Al_(3)Ti on crack extension is ignored.Interestingly,by combining experiment and phase-field crystal simulation,we found that the micrometer Al_(3)Ti particles in the diffusion layer play the role of crack deflection and passivation,which is attributed to the lattice distortion induced by Al_(3)Ti consumes the energy of the crack in extension.In addition,it is found that the growth process of Al_(3)Ti is divided into two stages:nucleation stage and growth stage.Compared with the growth stage,the Al_(3)Ti grains in the nucleation stage are finer in the growth layer.Finer grains show better crack deflection and avoid stress concentration.
基金supported by the National Natural Science Foundation of China(No.12272392 and 11790292)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB22040303)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2022020).
文摘The remarkable mechanical properties exhibited by laminated structures have generated significant in-terest in the realm of additively manufactured laminated high-entropy alloys(HEAs).Despite this bur-geoning interest,the nexus between process,structure,and properties within laminated HEAs remains largely uncharted.There is a vast space for investigating the effect of the typical heterogeneous interface on the macroscopic mechanical properties.This study focuses on the influence of the characteristic het-erogeneous interface on macroscopic mechanical properties of laminated HEAs,particularly anisotropy.Using the 3D-printed Fe_(50)Mn_(30)Co_(10)Cr_(10)-CoCrNi HEA as a model,we investigate the impact of interface geometry on mechanical characteristics.Tensile tests show that the reduced interface spacing increases yield strength.This laminated HEA displays significant anisotropy in strength and ductility,depending on the loading direction relative to the interface.Electron microscopic observations suggest that finer layer spacing enhances interface and dislocation strengthening,increasing yield strength.Anisotropic behaviors are confirmed to be mediated by interface orientation,explained in terms of deformation compatibility and crack development at the interface.This research offers fundamental insights into the relationship between heterogeneous interfaces and the mechanical properties in laminated HEAs.The knowledge is vital for designing,fabricating,and optimizing laminated HEAs through additive manufacturing,advancing their engineering applications.
基金the financial support from the National Natural Science Foundation of China(Nos.51875317,52222510)Key Research and Development Program of Shandong Province,China(No.2021ZLGX01)。
文摘Al/Cu laminate composite was fabricated based on hot press sintering using Cu sheet and Al powders as raw materials.The effects of sintering parameters on interfacial structure and mechanical properties were investigated.The results revealed that a uniform Al/Cu interface with excellent bonding quality was achieved.The thickness of intermetallic compounds(IMCs)reached 33.88μm after sintering at 620℃for 2 h,whereas it was only 14.88μm when sintered at 600℃for 1 h.AlCu phase was developed through the reaction between Al4Cu9 and Al2Cu with prolonging sintering time,and an amorphous oxide strip formed at AlCu/Al4Cu9 interface.Both the grain morphology and interfacial structure affected the tensile strength of Al/Cu laminate,whereas the mode of tensile fracture strongly relied on the interfacial bonding strength.The highest tensile strength of 151.1 MPa and bonding strength of 93.7 MPa were achieved after sintering at 600℃for 1 h.
基金the National Key Research and Development Program of China(No.2018YFE0306103)the National Natural Science Foundation of China(No.52071050)+1 种基金the Science and Technology Innovation Project of Ningbo,China(No.2021Z032)the Program of China Scholarships Council(No.202106060148).
文摘The Cu/1010 steel bimetal laminated composites(BLCs)were rolled to different thicknesses to investigate the effect of rolling direction and reduction on the microstructure evolution and mechanical properties.The difference of mechanical properties between the Cu and 1010 steel causes different thickness reductions,percentage spread,and cladding ratios.The formation of strong texture induces larger strength of the rolled samples,and as the volume fraction of 1010 steel is larger in Route-A,its strength is consistently greater than that in Route-B.The obstruction of interface to crystal and dislocation slip results in the formation of interface distortion,inducing dislocation density gradient when the rolling reduction is low in Route-A.The slip planes of the Cu and 1010 steel are more prone to suffer the normal strain,while the shear strain of other crystal planes is obviously larger than the normal strain under rolling load near the interface.
基金supported by the National Natural Science Foundation of China(Grant No.52109132)the Shandong Provincial Natural Science Foundation(Grant No.ZR2020QE270).
文摘Longitudinal seismic performance is a critical aspect to be considered during the tunnel design process,in addition to cross-sectional considerations.The present study proposed using a laminated shear energy dissipation(LSED)structure to achieve effective longitudinal seismic design.The proposed structure consists of thin steel plates and alternately bonded layers of rubber,which can be installed around the periphery of the secondary lining.This configuration guarantees that the tunnels will exhibit optimal axial deformation capacity and robust rigid resistance to circumferential compression from the surrounding rock.To evaluate the impact of the LSED structure on the longitudinal seismic performance of the tunnel,a fine numerical model of the LSED structureetunnel liningesurrounding rock system was developed using finite element simulation.The evaluation criteria include maximum principal stress and strain energy.The seismic response of the tunnel with the LSED structure exhibited a notable reduction of over 40%in terms of seismic attenuation rate when subjected to the Trinidad seismic wave compared to the tunnel without the LSED structure.Furthermore,the aseismic mechanism of the proposed LSED structure is discussed,considering both internal factors such as the rubber shear modulus,steel plate dimensions,and number and location of structures,and external influencing factors such as seismic wave parameters and surrounding rock quality.Meanwhile,the effectiveness of the tunnel with the LSED structure has been quantitatively demonstrated in terms of seismic fragility curves.
基金financiallysupported by the Excellent Young Fund of Sinopec Petroleum Exploration and Production Research Institute(Grant No.YK2024009)the National Natural Science Foundation of China(Grant Nos.U23B6004 and 51925405).
文摘The development of geological lamination in shale reservoirs influences fracture propagation during hydraulic stimulation,and the fracture generation mechanism as it propagates through the laminated interface is closely related to fracturing effects.In this paper,the laminated shale was selected to conduct three-point bending experiments using digital image correlation(DIC)and acoustic emission(AE)techniques,which revealed that the propagation path of cross-layer fractures exhibits dislocation features.The cohesive fracture mechanism of cross-layer fractures is investigated from the viewpoint of the fracture process zone(FPZ),which displays the characteristics of intermittence and dislocation during fracture development.A computational criterion for predicting the dislocation of cross-layer fracture at the interface is proposed,which shows that the maximum dislocation range does not exceed 72%of the FPZ length.Considering the mechanical differences between adjacent layers of laminated shale,the cohesive zone model of cross-layer fracture is discussed,from which the constitutive relationship and fracture energy during FPZ development are characterized,and the discontinuous nature of the constitutive relationship is found.This study improves the understanding of the geometry and cohesive fracture mechanism of the cross-layer fracture and provides valuable insights for field fracturing in shale reservoirs.
基金financial support from the Special Fund for Special Posts of Guizhou University,China(No.[2022]06)the Guizhou Provincial Basic Research Program(Natural Science),China(No.ZK[2023]78)+1 种基金the National Natural Science Foundation of China(No.52365020)the Open Fund Project of Key Laboratory of Advanced Manufacturing Technology,China(No.GZUAMT2022KF[04]).
文摘1060/7050 Al/Al laminated metal composites(LMCs)with heterogeneous lamellar structures were prepared by accumulative roll bonding(ARB),cold rolling and subsequent annealing treatment.The strengthening mechanism was investigated by microstructural characterization,mechanical property tests and in-situ fracture morphology observations.The results show that microstructural differences between the constituent layers are present in the Al/Al LMCs after various numbers of ARB cycles.Compared with rolled 2560-layered Al/Al LMCs with 37.5%and 50.0%rolling reductions,those with 62.5%rolling reductions allow for more effective improvements in the mechanical properties after annealing treatment due to their relatively high mechanical incompatibility across the interface.During tensile deformation,with the increased magnitude of incompatibility in the 2560-layered Al/Al LMC with a heterogeneous lamellar structure,the densities of the geometrically necessary dislocations(GNDs)increase to accommodate the relatively large strain gradient,resulting in considerable back stress strengthening and improved mechanical properties.
基金support from the National Natural Science Foundation of China (No.11972020)the Natural Science Foundation of Shanghai,China (No.21ZR1424100).
文摘Regarding laminated structures,an electromechanically coupled Finite Element(FE)model based on Layerwise Third-Order Shear Deformation(LW-TOSD)theory is proposed for sta-tic and dynamic analysis.LW-TOSD ensures the continuity of in-plane displacements and trans-verse shear stresses.The current LW-TOSD can be applied to arbitrary multi-layer laminated structures with only seven Degrees of Freedom(DOFs)for each element node and eliminates the use of the shear correction factors.Moreover,a shear penalty stiffness matrix is constructed to sat-isfy artificial constraints to optimize the structural shear strain.A dynamic finite element model is obtained based on LW-TOSD using the Hamilton's principle.First,the accuracy of the current model is validated by comparing with literature and ABAQUS results.Then,this study carries out numerical investigations of piezolaminated structures for different width-to-thickness ratios,length-to-width ratios,penalty stiffness matrix,boundary conditions,electric fields and dynamics.
基金support of the National Natural Science Foundation of China(Nos.U20A6001,12002190,11972207,and 11921002)the Fundamental Research Funds for the Central Universities,China(No.SWUKQ22029)the Chongqing Natural Science Foundation of China(No.CSTB2022NSCQ-MSX1635).
文摘High spatiotemporal resolution brain electrical signals are critical for basic neuroscience research and high-precision focus diagnostic localization,as the spatial scale of some pathologic signals is at the submillimeter or micrometer level.This entails connecting hundreds or thousands of electrode wires on a limited surface.This study reported a class of flexible,ultrathin,highdensity electrocorticogram(ECoG)electrode arrays.The challenge of a large number of wiring arrangements was overcome by a laminated structure design and processing technology improvement.The flexible,ultrathin,high-density ECoG electrode array was conformably attached to the cortex for reliable,high spatial resolution electrophysiologic recordings.The minimum spacing between electrodes was 15μm,comparable to the diameter of a single neuron.Eight hundred electrodes were prepared with an electrode density of 4444 mm^(-2).In focal epilepsy surgery,the flexible,high-density,laminated ECoG electrode array with 36 electrodes was applied to collect epileptic spike waves inrabbits,improving the positioning accuracy of epilepsy lesions from the centimeter to the submillimeter level.The flexible,high-density,laminated ECoG electrode array has potential clinical applications in intractable epilepsy and other neurologic diseases requiring high-precision electroencephalogram acquisition.
基金Project supported by the National Natural Science Foundation of China(Nos.11832002 and 12072201)。
文摘The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell.
基金financial support by the National Key Research and Development Program of China (No.2022YFE0129800)the National Natural Science Foundation of China (No.52074311)。
文摘The continental shale reservoirs of Jurassic Lianggaoshan Formation in Sichuan Basin contain thin lamina,which is characterized by strong plasticity and developed longitudinal shell limestone interlayer.To improve the production efficiency of reservoirs by multi-cluster fracturing,it is necessary to consider the unbalanced propagation of hydraulic fractures and the penetration effect of fractures.This paper constructed a numerical model of multi-fracture propagation and penetration based on the finite element coupling cohesive zone method;considering the construction cluster spacing,pump rate,lamina strength and other parameters studied the influencing factors of multi-cluster fracture interaction propagation;combined with AE energy data and fracture mode reconstruction method,quantitatively characterized the comprehensive impact of the strength of thin interlayer rock interfaces on the initiation and propagation of fractures that penetrate layers,and accurately predicted the propagation pattern of hydraulic fractures through laminated shale oil reservoirs.Simulation results revealed that in the process of multi-cluster fracturing,the proportion of shear damage is low,and mainly occurs in bedding fractures activated by outer fractures.Reducing the cluster spacing enhances the fracture system's penetration ability,though it lowers the activation efficiency of lamina.The high plasticity of the limestone interlayer may impact the vertical propagation distance of the main fracture.Improving the interface strength is beneficial to the reconstruction of the fracture height,but the interface communication effect is limited.Reasonable selection of layers with moderate lamina strength for fracturing stimulation,increasing the pump rate during fracturing and setting the cluster spacing reasonably are beneficial to improve the effect of reservoir stimulation.
基金supported by the National Natural Science Foundation of China(No.U21A2094)CASHIPS Director’s Fund(Nos.YZJJZX202015,YZJJ202304-CX,YZJJ2023QN36)+1 种基金Anhui Province Postdoctoral Researcher Research Project(No.E24F0D27)Central Government Guiding Local Government Science and Technology Development Special Fund Project(No.2022ZB09002).
文摘Poly(p-phenylene-2,6-benzobisoxazole)(PBO)fiber and polytetrafluoroethylene(PTFE)resin have been widely acknowledged as excellent wave-transparent materials for future high-frequency applications due to their exceptional dielectric properties.However,the weak interfacial bonding between these two materials hampers their full potential.In this study,we successfully addressed this limitation by enhancing the surface roughness of PBO fibers and introducing active sites through the insitu grafting of silica nanowires.The added silica acted as an interfacial anchor on the PBO fiber surface,significantly improving the bonding force between PBO and PTFE.PBO/PTFE wave-transparent laminated composites were fabricated using hot compression molding.The results demonstrate that the PBO(treated with insitu grown silica)/PTFE laminated composites exhibit superior interlaminar shear strength(ILSS),flexural strength,flexural modulus,and tensile modulus compared to the pristine PBO/PTFE laminated composites.Specifically,these properties are found to be 58.6%,32.9%,138.1%,and 25.35%higher,respectively.Additionally,these composites demonstrate low dielectric constant and dielectric loss.Most notably,they achieve a wave transmittance of 91.45%at 10 GHz,indicating significant potential for wide-range applications in next-generation advanced military weapons,such as“lightweight/high-strength/wavetransparent”electromagnetic window materials,as well as civilian communication base stations.
基金Project supported by the National Natural Science Foundation of China(Nos.12272353 and 12002316)the Key Scientific and Technological Research Projects in Henan Province of China(No.232102211075)。
文摘Piezoelectric devices exhibit unique properties that vary with different vibration modes,closely influenced by their polarization direction.This paper presents an analysis on the free vibration of laminated piezoelectric beams with varying polarization directions,using a state-space-based differential quadrature method.First,based on the electro-elasticity theory,the state-space method is extended to anisotropic piezoelectric materials,establishing state-space equations for arbitrary polarized piezoelectric beams.A semi-analytical solution for the natural frequency is then obtained via the differential quadrature method.The study commences by examining the impact of a uniform polarization direction,and then proceeds to analyze six polarization schemes relevant to the current research and applications.Additionally,the effects of geometric dimensions and gradient index on the natural frequencies are explored.The numerical results demonstrate that varying the polarization direction can significantly influence the natural frequencies,offering distinct advantages for piezoelectric elements with different polarizations.This research provides both theoretical insights and numerical methods for the structural design of piezoelectric devices.
基金Project supported by the National Natural Science Foundation of China(Nos.12293000,12293001,11988102,12172006,and 12202011)。
文摘The dynamic model of a bistable laminated composite shell simply supported by four corners is further developed to investigate the resonance responses and chaotic behaviors.The existence of the 1:1 resonance relationship between two order vibration modes of the system is verified.The resonance response of this class of bistable structures in the dynamic snap-through mode is investigated,and the four-dimensional(4D)nonlinear modulation equations are derived based on the 1:1 internal resonance relationship by means of the multiple scales method.The Hopf bifurcation and instability interval of the amplitude frequency and force amplitude curves are analyzed.The discussion focuses on investigating the effects of key parameters,e.g.,excitation amplitude,damping coefficient,and detuning parameters,on the resonance responses.The numerical simulations show that the foundation excitation and the degree of coupling between the vibration modes exert a substantial effect on the chaotic dynamics of the system.Furthermore,the significant motions under particular excitation conditions are visualized by bifurcation diagrams,time histories,phase portraits,three-dimensional(3D)phase portraits,and Poincare maps.Finally,the vibration experiment is carried out to study the amplitude frequency responses and bifurcation characteristics for the bistable laminated composite shell,yielding results that are qualitatively consistent with the theoretical results.
基金Project supported by the National Natural Science Foundation of China(Nos.11832002 and 12072201)。
文摘The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and primary resonance.The transverse foundation excitation is applied to the fixed end of the structure,and the other end is in a free state.The first-order approximate multiple scales method is employed to perform the perturbation analysis on the dimensionless two-degree-of-freedom ordinary differential motion control equation.The four-dimensional averaged equations are derived in both polar and rectangular coordinate forms.Deriving from the obtained frequency-amplitude and force-amplitude response curves,a detailed analysis is conducted to examine the impacts of excitation amplitude,damping coefficient,and tuning parameter on the nonlinear internal resonance characteristics of the system.The nonlinear softening characteristic is exhibited in the upper stable-state,while the lower stable-state demonstrates the softening and linearity characteristics.Numerical simulation is carried out using the fourth-order Runge-Kutta method,and a series of nonlinear response curves are plotted.Increasing the excitation amplitude further elucidates the global bifurcation and chaotic dynamic snap-through characteristics of the bistable cantilever shell.
基金Funded by the Hebei Province Natural Science Foundation (No.E2017203043)National Natural Science Foundation of China(No.U1604251)。
文摘A new,innovative vibration cast-rolling technology of “electromagnetic stirring+dendrite breaking+asynchronous rolling” was proposed with the adoption of sinusoidal vibration of crystallization roller to prepare Ti/Al laminated composites,and the effect of sinusoidal vibration of crystallization roller on composite microstructure was investigated in detail.The results show that the metallurgical bonding of titanium and aluminum is realized by mesh interweaving and mosaic meshing,instead of transition bonding by forming metal compound layer.The meshing depth between titanium and aluminum layers (6.6μm) of cast-rolling materials with strong vibration of crystallization roller (amplitude 0.87 mm,vibration frequency 25 Hz) is doubled compared with that of traditional cast-rolling materials (3.1μm),and the composite interfacial strength(27.0 N/mm) is twice as high as that of traditional cast-rolling materials (14.9 N/mm).This is because with the action of high-speed superposition of strong tension along the rolling direction,strong pressure along the width direction and rolling force,the composite linearity evolves from "straight line" with traditional casting-rolling to "curved line",and the depth and number of cracks in the interface increases greatly compared with those with traditional cast-rolling,which leads to the deep expansion of the meshing area between interfacial layers and promotes the stable enhancement of composite quality.