The age-hardening response,mechanical,and corrosion-resistant properties of AA7085 alloys with and without the addition of 0.3 wt.%scandium(Sc)were compared.Using advanced techniques such as aberration-corrected trans...The age-hardening response,mechanical,and corrosion-resistant properties of AA7085 alloys with and without the addition of 0.3 wt.%scandium(Sc)were compared.Using advanced techniques such as aberration-corrected transmission electron microscopy and first-principles calculations,the underlying micromechanisms of Sc microalloying were revealed.Results show that the increase in strength of the AA7085-Sc alloy is mainly attributed to the decreased Al grain size and increased number density of both Al_(3)Sc@Al_(3)(Sc,Zr)core−shell nanoparticles and Sc-containingη_(p) and GP−η_(p) nanoprecipitates.Strong strain fields and evident electron transfer from Zr to the neighboring matrix Al atoms exist at the Al_(3)Sc@Al_(3)(Sc,Zr)/Al interface.The Sc doping in GP−η_(p) andη_(p) suppresses the GP−η_(p)→η_(p) transformation.Modified corrosion resistance of the AA7085-Sc alloy compared with AA7085 alloy is associated with the fine grain boundary precipitates ofη_(p)hases and narrow precipitation free zone.The reasons of property changes of AA7085 alloy after Sc microalloying are explored based on the multiscale microstructural characterization.展开更多
A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5w...A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5wt%Er-1wt%TiB_(2)/Al-Mn-Mg-Sc-Zr nanocomposite were prepared using vacuum homogenization technique,and the density of samples prepared through the LPBF process reached 99.8%.The strengthening and toughening mechanisms of Er-TiB_(2)were investigated.The results show that Al_(3)Er diffraction peaks are detected by X-ray diffraction analysis,and texture strength decreases according to electron backscatter diffraction results.The added Er and TiB_(2)nano-reinforcing phases act as heterogeneous nucleation sites during the LPBF forming process,hindering grain growth and effectively refining the grains.After incorporating the Er-TiB_(2)dual-phase nano-reinforcing phases,the tensile strength and elongation at break of the LPBF-deposited samples reach 550 MPa and 18.7%,which are 13.4%and 26.4%higher than those of the matrix material,respectively.展开更多
[目的]明确36%烯肟·氟环唑SC对玉米小斑病的防治效果。[方法]以17%唑醚·氟环唑SC和30%肟菌·戊唑醇SC为对照药剂,在山东省潍坊市寒亭区高里街道河南村玉米田进行田间小区试验。[结果]36%烯肟·氟环唑SC81、108 g a.i....[目的]明确36%烯肟·氟环唑SC对玉米小斑病的防治效果。[方法]以17%唑醚·氟环唑SC和30%肟菌·戊唑醇SC为对照药剂,在山东省潍坊市寒亭区高里街道河南村玉米田进行田间小区试验。[结果]36%烯肟·氟环唑SC81、108 g a.i./hm^(2)处理对玉米小斑病效果优于对照药剂17%唑醚·氟环唑SC和30%肟菌·戊唑醇SC,54 g a.i./hm^(2)的36%烯肟·氟环唑SC处理对玉米小斑病效果与对照药剂无显著性差异。[结论]使用36%烯肟·氟环唑SC54~108 g a.i./hm^(2)在玉米小斑病发病前或发病初期茎叶均匀喷雾,间隔7~10 d再施用1次,可有效防治玉米小斑病。展开更多
Excessive use of pesticides poses increased risks to non target species including humans. In the developing countries, lack of proper awareness about the toxic potential of pesticides makes the farmer more vulnerable ...Excessive use of pesticides poses increased risks to non target species including humans. In the developing countries, lack of proper awareness about the toxic potential of pesticides makes the farmer more vulnerable to pesticide linked toxicities, which could lead to diverse pathological conditions. The toxic potential of a pesticide could be determined by their ability to induce genetic mutations and cytotoxicity. Hence, determination of genetic mutation and cytotoxicity of each pesticide is unavoidable to legislate health and safety appraisal about pesticides. The objective of current investigation was to determine the genotoxic and cytotoxic potential of Endosulfan(EN) and Lambda-cyhalothrin(LC); individually and in combination. 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide(MTT) assay was utilized to determine cytotoxicity, while two mutant histidine dependent Salmonella strains(TA98, TA100) were used to determine the mutagenicity of EN and LC.Moreover, mutagenicity assay was conducted with and without S9 to evaluate the effects of metabolic activation on mutagenicity. Even though a dose dependent increase in the number of revertant colonies was detected with EN against both bacterial strains, a highly significant(p 〈 0.05) increase in the mutagenicity was detected in TA98 with S9. In comparison, data obtained from LC revealed less mutagenic potential than EN. Surprisingly,the non-mutagenic individual-concentrations of EN and LC showed dose dependent mutagenicity when combined. Combination of EN and LC synergistically induced mutagenicity both in TA98 and TA100. MTT assay spotlighted comparable dose dependent cytotoxicity effects of both pesticides. Interestingly, the combination of EN and LC produced increased reversion and cytotoxicity at lower doses as compared to each pesticide, concluding that pesticide exposure even at sub-lethal doses can produce cytotoxicity and genetic mutations, which could lead to carcinogenicity.展开更多
为解析分泌型免疫球蛋白A(sIgA)中特有成分SC蛋白的结构和功能,通过PCR扩增猪SC基因的跨膜区,克隆到原核表达载体pET-28a(+)中,经测序验证后,诱导表达重组SC蛋白,用镍柱亲和层析纯化的重组SC蛋白免疫BALB/c小鼠,通过细胞融合技术筛选出...为解析分泌型免疫球蛋白A(sIgA)中特有成分SC蛋白的结构和功能,通过PCR扩增猪SC基因的跨膜区,克隆到原核表达载体pET-28a(+)中,经测序验证后,诱导表达重组SC蛋白,用镍柱亲和层析纯化的重组SC蛋白免疫BALB/c小鼠,通过细胞融合技术筛选出能够稳定分泌抗SC蛋白的细胞株,采用免疫荧光试验和Western-blot验证单抗特异性。结果表明,成功获得分子质量约72 k Da的重组SC蛋白;筛选出2株效价高达1∶32000的单抗细胞株(3F7A9和6F10E11)。结论:成功表达了SC蛋白,并制备出了抗SC蛋白的单克隆抗体,为研究SC蛋白的结构特性、功能作用以及构建高效、快速的sIgA抗体检测方法奠定了实验基础。展开更多
基金the support from the National Natural Science Foundation of China (Nos. U20A20274, 52061003)the Natural Science Foundation of Yunnan Province, China (No. 202301AT070209)the Science and Technology Major Project of Yunnan Province, China (No. 202102AG050017)。
文摘The age-hardening response,mechanical,and corrosion-resistant properties of AA7085 alloys with and without the addition of 0.3 wt.%scandium(Sc)were compared.Using advanced techniques such as aberration-corrected transmission electron microscopy and first-principles calculations,the underlying micromechanisms of Sc microalloying were revealed.Results show that the increase in strength of the AA7085-Sc alloy is mainly attributed to the decreased Al grain size and increased number density of both Al_(3)Sc@Al_(3)(Sc,Zr)core−shell nanoparticles and Sc-containingη_(p) and GP−η_(p) nanoprecipitates.Strong strain fields and evident electron transfer from Zr to the neighboring matrix Al atoms exist at the Al_(3)Sc@Al_(3)(Sc,Zr)/Al interface.The Sc doping in GP−η_(p) andη_(p) suppresses the GP−η_(p)→η_(p) transformation.Modified corrosion resistance of the AA7085-Sc alloy compared with AA7085 alloy is associated with the fine grain boundary precipitates ofη_(p)hases and narrow precipitation free zone.The reasons of property changes of AA7085 alloy after Sc microalloying are explored based on the multiscale microstructural characterization.
基金Shaanxi Province Qin Chuangyuan“Scientist+Engineer”Team Construction Project(2022KXJ-071)2022 Qin Chuangyuan Achievement Transformation Incubation Capacity Improvement Project(2022JH-ZHFHTS-0012)+8 种基金Shaanxi Province Key Research and Development Plan-“Two Chains”Integration Key Project-Qin Chuangyuan General Window Industrial Cluster Project(2023QCY-LL-02)Xixian New Area Science and Technology Plan(2022-YXYJ-003,2022-XXCY-010)2024 Scientific Research Project of Shaanxi National Defense Industry Vocational and Technical College(Gfy24-07)Shaanxi Vocational and Technical Education Association 2024 Vocational Education Teaching Reform Research Topic(2024SZX354)National Natural Science Foundation of China(U24A20115)2024 Shaanxi Provincial Education Department Service Local Special Scientific Research Program Project-Industrialization Cultivation Project(24JC005,24JC063)Shaanxi Province“14th Five-Year Plan”Education Science Plan,2024 Project(SGH24Y3181)National Key Research and Development Program of China(2023YFB4606400)Longmen Laboratory Frontier Exploration Topics Project(LMQYTSKT003)。
文摘A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5wt%Er-1wt%TiB_(2)/Al-Mn-Mg-Sc-Zr nanocomposite were prepared using vacuum homogenization technique,and the density of samples prepared through the LPBF process reached 99.8%.The strengthening and toughening mechanisms of Er-TiB_(2)were investigated.The results show that Al_(3)Er diffraction peaks are detected by X-ray diffraction analysis,and texture strength decreases according to electron backscatter diffraction results.The added Er and TiB_(2)nano-reinforcing phases act as heterogeneous nucleation sites during the LPBF forming process,hindering grain growth and effectively refining the grains.After incorporating the Er-TiB_(2)dual-phase nano-reinforcing phases,the tensile strength and elongation at break of the LPBF-deposited samples reach 550 MPa and 18.7%,which are 13.4%and 26.4%higher than those of the matrix material,respectively.
文摘[目的]明确36%烯肟·氟环唑SC对玉米小斑病的防治效果。[方法]以17%唑醚·氟环唑SC和30%肟菌·戊唑醇SC为对照药剂,在山东省潍坊市寒亭区高里街道河南村玉米田进行田间小区试验。[结果]36%烯肟·氟环唑SC81、108 g a.i./hm^(2)处理对玉米小斑病效果优于对照药剂17%唑醚·氟环唑SC和30%肟菌·戊唑醇SC,54 g a.i./hm^(2)的36%烯肟·氟环唑SC处理对玉米小斑病效果与对照药剂无显著性差异。[结论]使用36%烯肟·氟环唑SC54~108 g a.i./hm^(2)在玉米小斑病发病前或发病初期茎叶均匀喷雾,间隔7~10 d再施用1次,可有效防治玉米小斑病。
基金financially supported by the Department of Pharmacology and Toxicology (Evening program), University of Veterinary and Animal Sciences, Lahore
文摘Excessive use of pesticides poses increased risks to non target species including humans. In the developing countries, lack of proper awareness about the toxic potential of pesticides makes the farmer more vulnerable to pesticide linked toxicities, which could lead to diverse pathological conditions. The toxic potential of a pesticide could be determined by their ability to induce genetic mutations and cytotoxicity. Hence, determination of genetic mutation and cytotoxicity of each pesticide is unavoidable to legislate health and safety appraisal about pesticides. The objective of current investigation was to determine the genotoxic and cytotoxic potential of Endosulfan(EN) and Lambda-cyhalothrin(LC); individually and in combination. 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide(MTT) assay was utilized to determine cytotoxicity, while two mutant histidine dependent Salmonella strains(TA98, TA100) were used to determine the mutagenicity of EN and LC.Moreover, mutagenicity assay was conducted with and without S9 to evaluate the effects of metabolic activation on mutagenicity. Even though a dose dependent increase in the number of revertant colonies was detected with EN against both bacterial strains, a highly significant(p 〈 0.05) increase in the mutagenicity was detected in TA98 with S9. In comparison, data obtained from LC revealed less mutagenic potential than EN. Surprisingly,the non-mutagenic individual-concentrations of EN and LC showed dose dependent mutagenicity when combined. Combination of EN and LC synergistically induced mutagenicity both in TA98 and TA100. MTT assay spotlighted comparable dose dependent cytotoxicity effects of both pesticides. Interestingly, the combination of EN and LC produced increased reversion and cytotoxicity at lower doses as compared to each pesticide, concluding that pesticide exposure even at sub-lethal doses can produce cytotoxicity and genetic mutations, which could lead to carcinogenicity.
文摘为解析分泌型免疫球蛋白A(sIgA)中特有成分SC蛋白的结构和功能,通过PCR扩增猪SC基因的跨膜区,克隆到原核表达载体pET-28a(+)中,经测序验证后,诱导表达重组SC蛋白,用镍柱亲和层析纯化的重组SC蛋白免疫BALB/c小鼠,通过细胞融合技术筛选出能够稳定分泌抗SC蛋白的细胞株,采用免疫荧光试验和Western-blot验证单抗特异性。结果表明,成功获得分子质量约72 k Da的重组SC蛋白;筛选出2株效价高达1∶32000的单抗细胞株(3F7A9和6F10E11)。结论:成功表达了SC蛋白,并制备出了抗SC蛋白的单克隆抗体,为研究SC蛋白的结构特性、功能作用以及构建高效、快速的sIgA抗体检测方法奠定了实验基础。