期刊文献+
共找到155,044篇文章
< 1 2 250 >
每页显示 20 50 100
Causality-Driven Common and Label-Specific Features Learning
1
作者 Yuting Xu Deqing Zhang +1 位作者 Huaibei Guo Mengyue Wang 《Journal on Artificial Intelligence》 2024年第1期53-69,共17页
In multi-label learning,the label-specific features learning framework can effectively solve the dimensional catastrophe problem brought by high-dimensional data.The classification performance and robustness of the mo... In multi-label learning,the label-specific features learning framework can effectively solve the dimensional catastrophe problem brought by high-dimensional data.The classification performance and robustness of the model are effectively improved.Most existing label-specific features learning utilizes the cosine similarity method to measure label correlation.It is well known that the correlation between labels is asymmetric.However,existing label-specific features learning only considers the private features of labels in classification and does not take into account the common features of labels.Based on this,this paper proposes a Causality-driven Common and Label-specific Features Learning,named CCSF algorithm.Firstly,the causal learning algorithm GSBN is used to calculate the asymmetric correlation between labels.Then,in the optimization,both l_(2,1)-norm and l_(1)-norm are used to select the corresponding features,respectively.Finally,it is compared with six state-of-the-art algorithms on nine datasets.The experimental results prove the effectiveness of the algorithm in this paper. 展开更多
关键词 label-specific features learning causal learning asymmetric label correlation common features
在线阅读 下载PDF
A Multi-Label Classification Algorithm Based on Label-Specific Features 被引量:2
2
作者 QU Huaqiao ZHANG Shichao +1 位作者 LIU Huawen ZHAO Jianmin 《Wuhan University Journal of Natural Sciences》 CAS 2011年第6期520-524,共5页
Aiming at the problem of multi-label classification, a multi-label classification algorithm based on label-specific features is proposed in this paper. In this algorithm, we compute feature density on the positive and... Aiming at the problem of multi-label classification, a multi-label classification algorithm based on label-specific features is proposed in this paper. In this algorithm, we compute feature density on the positive and negative instances set of each class firstly and then select mk features of high density from the positive and negative instances set of each class, respectively; the intersec- tion is taken as the label-specific features of the corresponding class. Finally, multi-label data are classified on the basis of la- bel-specific features. The algorithm can show the label-specific features of each class. Experiments show that our proposed method, the MLSF algorithm, performs significantly better than the other state-of-the-art multi-label learning approaches. 展开更多
关键词 multi-label classification label-specific features feature's value DENSITY
原文传递
Stable Label-Specific Features Generation for Multi-Label Learning via Mixture-Based Clustering Ensemble 被引量:1
3
作者 Yi-Bo Wang Jun-Yi Hang Min-Ling Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第7期1248-1261,共14页
Multi-label learning deals with objects associated with multiple class labels,and aims to induce a predictive model which can assign a set of relevant class labels for an unseen instance.Since each class might possess... Multi-label learning deals with objects associated with multiple class labels,and aims to induce a predictive model which can assign a set of relevant class labels for an unseen instance.Since each class might possess its own characteristics,the strategy of extracting label-specific features has been widely employed to improve the discrimination process in multi-label learning,where the predictive model is induced based on tailored features specific to each class label instead of the identical instance representations.As a representative approach,LIFT generates label-specific features by conducting clustering analysis.However,its performance may be degraded due to the inherent instability of the single clustering algorithm.To improve this,a novel multi-label learning approach named SENCE(stable label-Specific features gENeration for multi-label learning via mixture-based Clustering Ensemble)is proposed,which stabilizes the generation process of label-specific features via clustering ensemble techniques.Specifically,more stable clustering results are obtained by firstly augmenting the original instance repre-sentation with cluster assignments from base clusters and then fitting a mixture model via the expectation-maximization(EM)algorithm.Extensive experiments on eighteen benchmark data sets show that SENCE performs better than LIFT and other well-established multi-label learning algorithms. 展开更多
关键词 Clustering ensemble expectation-maximization al-gorithm label-specific features multi-label learning
在线阅读 下载PDF
Learning label-specific features for decomposition-based multi-class classification
4
作者 Bin-Bin JIA Jun-Ying LIU +1 位作者 Jun-Yi HANG Min-Ling ZHANG 《Frontiers of Computer Science》 SCIE EI CSCD 2023年第6期101-110,共10页
Multi-class classification can be solved by decomposing it into a set of binary classification problems according to some encoding rules,e.g.,one-vs-one,one-vs-rest,error-correcting output codes.Existing works solve t... Multi-class classification can be solved by decomposing it into a set of binary classification problems according to some encoding rules,e.g.,one-vs-one,one-vs-rest,error-correcting output codes.Existing works solve these binary classification problems in the original feature space,while it might be suboptimal as different binary classification problems correspond to different positive and negative examples.In this paper,we propose to learn label-specific features for each decomposed binary classification problem to consider the specific characteristics containing in its positive and negative examples.Specifically,to generate the label-specific features,clustering analysis is respectively conducted on the positive and negative examples in each decomposed binary data set to discover their inherent information and then label-specific features for one example are obtained by measuring the similarity between it and all cluster centers.Experiments clearly validate the effectiveness of learning label-specific features for decomposition-based multi-class classification. 展开更多
关键词 machine learning multi-class classification error-correcting output codes label-specific features
原文传递
Correction:A Lightweight Approach for Skin Lesion Detection through Optimal Features Fusion
5
作者 Khadija Manzoor Fiaz Majeed +5 位作者 Ansar Siddique Talha Meraj Hafiz Tayyab Rauf Mohammed A.El-Meligy Mohamed Sharaf Abd Elatty E.Abd Elgawad 《Computers, Materials & Continua》 SCIE EI 2025年第1期1459-1459,共1页
In the article“A Lightweight Approach for Skin Lesion Detection through Optimal Features Fusion”by Khadija Manzoor,Fiaz Majeed,Ansar Siddique,Talha Meraj,Hafiz Tayyab Rauf,Mohammed A.El-Meligy,Mohamed Sharaf,Abd Ela... In the article“A Lightweight Approach for Skin Lesion Detection through Optimal Features Fusion”by Khadija Manzoor,Fiaz Majeed,Ansar Siddique,Talha Meraj,Hafiz Tayyab Rauf,Mohammed A.El-Meligy,Mohamed Sharaf,Abd Elatty E.Abd Elgawad Computers,Materials&Continua,2022,Vol.70,No.1,pp.1617–1630.DOI:10.32604/cmc.2022.018621,URL:https://www.techscience.com/cmc/v70n1/44361,there was an error regarding the affiliation for the author Hafiz Tayyab Rauf.Instead of“Centre for Smart Systems,AI and Cybersecurity,Staffordshire University,Stoke-on-Trent,UK”,the affiliation should be“Independent Researcher,Bradford,BD80HS,UK”. 展开更多
关键词 FUSION SKIN featurE
在线阅读 下载PDF
Retrospective analysis of pathological types and imaging features in pancreatic cancer: A comprehensive study
6
作者 Yang-Gang Luo Mei Wu Hong-Guang Chen 《World Journal of Gastrointestinal Oncology》 SCIE 2025年第1期121-129,共9页
BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features ... BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features is crucial for early detection and appropriate treatment planning.AIM To retrospectively analyze the relationship between different pathological types of pancreatic cancer and their corresponding imaging features.METHODS We retrospectively analyzed the data of 500 patients diagnosed with pancreatic cancer between January 2010 and December 2020 at our institution.Pathological types were determined by histopathological examination of the surgical spe-cimens or biopsy samples.The imaging features were assessed using computed tomography,magnetic resonance imaging,and endoscopic ultrasound.Statistical analyses were performed to identify significant associations between pathological types and specific imaging characteristics.RESULTS There were 320(64%)cases of pancreatic ductal adenocarcinoma,75(15%)of intraductal papillary mucinous neoplasms,50(10%)of neuroendocrine tumors,and 55(11%)of other rare types.Distinct imaging features were identified in each pathological type.Pancreatic ductal adenocarcinoma typically presents as a hypodense mass with poorly defined borders on computed tomography,whereas intraductal papillary mucinous neoplasms present as characteristic cystic lesions with mural nodules.Neuroendocrine tumors often appear as hypervascular lesions in contrast-enhanced imaging.Statistical analysis revealed significant correlations between specific imaging features and pathological types(P<0.001).CONCLUSION This study demonstrated a strong association between the pathological types of pancreatic cancer and imaging features.These findings can enhance the accuracy of noninvasive diagnosis and guide personalized treatment approaches. 展开更多
关键词 Pancreatic cancer Pathological types Imaging features Retrospective analysis Diagnostic accuracy
暂未订购
New Features and New Challenges of U.S.-Europe Relations Under Trump 2.0 被引量:1
7
作者 Zhao Huaipu 《Contemporary World》 2025年第3期47-52,共6页
During Donald Trump’s first term,the“Trump Shock”brought world politics into an era of uncertainties and pulled the transatlantic alliance down to its lowest point in history.The Trump 2.0 tsunami brewed by the 202... During Donald Trump’s first term,the“Trump Shock”brought world politics into an era of uncertainties and pulled the transatlantic alliance down to its lowest point in history.The Trump 2.0 tsunami brewed by the 2024 presidential election of the United States has plunged the U.S.-Europe relations into more gloomy waters,ushering in a more complex and turbulent period of adjustment. 展开更多
关键词 new features turbulent period Trump U S Europe relations presidential election new challenges UNCERTAINTIES transatlantic alliance
在线阅读 下载PDF
BDMFuse:Multi-scale network fusion for infrared and visible images based on base and detail features
8
作者 SI Hai-Ping ZHAO Wen-Rui +4 位作者 LI Ting-Ting LI Fei-Tao Fernando Bacao SUN Chang-Xia LI Yan-Ling 《红外与毫米波学报》 北大核心 2025年第2期289-298,共10页
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f... The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception. 展开更多
关键词 infrared image visible image image fusion encoder-decoder multi-scale features
在线阅读 下载PDF
Block-gram:Mining knowledgeable features for efficiently smart contract vulnerability detection
9
作者 Xueshuo Xie Haolong Wang +3 位作者 Zhaolong Jian Yaozheng Fang Zichun Wang Tao Li 《Digital Communications and Networks》 2025年第1期1-12,共12页
Smart contracts are widely used on the blockchain to implement complex transactions,such as decentralized applications on Ethereum.Effective vulnerability detection of large-scale smart contracts is critical,as attack... Smart contracts are widely used on the blockchain to implement complex transactions,such as decentralized applications on Ethereum.Effective vulnerability detection of large-scale smart contracts is critical,as attacks on smart contracts often cause huge economic losses.Since it is difficult to repair and update smart contracts,it is necessary to find the vulnerabilities before they are deployed.However,code analysis,which requires traversal paths,and learning methods,which require many features to be trained,are too time-consuming to detect large-scale on-chain contracts.Learning-based methods will obtain detection models from a feature space compared to code analysis methods such as symbol execution.But the existing features lack the interpretability of the detection results and training model,even worse,the large-scale feature space also affects the efficiency of detection.This paper focuses on improving the detection efficiency by reducing the dimension of the features,combined with expert knowledge.In this paper,a feature extraction model Block-gram is proposed to form low-dimensional knowledge-based features from bytecode.First,the metadata is separated and the runtime code is converted into a sequence of opcodes,which are divided into segments based on some instructions(jumps,etc.).Then,scalable Block-gram features,including 4-dimensional block features and 8-dimensional attribute features,are mined for the learning-based model training.Finally,feature contributions are calculated from SHAP values to measure the relationship between our features and the results of the detection model.In addition,six types of vulnerability labels are made on a dataset containing 33,885 contracts,and these knowledge-based features are evaluated using seven state-of-the-art learning algorithms,which show that the average detection latency speeds up 25×to 650×,compared with the features extracted by N-gram,and also can enhance the interpretability of the detection model. 展开更多
关键词 Smart contract Bytecode&opcode Knowledgeable features Vulnerability detection feature contribution
在线阅读 下载PDF
Hyperspectral Image Super-Resolution Based on Spatial-Spectral-Frequency Multidimensional Features
10
作者 Sifan Zheng Tao Zhang +3 位作者 Haibing Yin Hao Hu Jian Jiang Chenggang Yan 《Journal of Beijing Institute of Technology》 2025年第1期28-41,共14页
Due to the limitations of existing imaging hardware, obtaining high-resolution hyperspectral images is challenging. Hyperspectral image super-resolution(HSI SR) has been a very attractive research topic in computer vi... Due to the limitations of existing imaging hardware, obtaining high-resolution hyperspectral images is challenging. Hyperspectral image super-resolution(HSI SR) has been a very attractive research topic in computer vision, attracting the attention of many researchers. However, most HSI SR methods focus on the tradeoff between spatial resolution and spectral information, and cannot guarantee the efficient extraction of image information. In this paper, a multidimensional features network(MFNet) for HSI SR is proposed, which simultaneously learns and fuses the spatial,spectral, and frequency multidimensional features of HSI. Spatial features contain rich local details,spectral features contain the information and correlation between spectral bands, and frequency feature can reflect the global information of the image and can be used to obtain the global context of HSI. The fusion of the three features can better guide image super-resolution, to obtain higher-quality high-resolution hyperspectral images. In MFNet, we use the frequency feature extraction module(FFEM) to extract the frequency feature. On this basis, a multidimensional features extraction module(MFEM) is designed to learn and fuse multidimensional features. In addition, experimental results on two public datasets demonstrate that MFNet achieves state-of-the-art performance. 展开更多
关键词 deep neural network hyperspectral image spatial feature spectral information frequency feature
在线阅读 下载PDF
BAHGRF^(3):Human gait recognition in the indoor environment using deep learning features fusion assisted framework and posterior probability moth flame optimisation
11
作者 Muhammad Abrar Ahmad Khan Muhammad Attique Khan +5 位作者 Ateeq Ur Rehman Ahmed Ibrahim Alzahrani Nasser Alalwan Deepak Gupta Saima Ahmed Rahin Yudong Zhang 《CAAI Transactions on Intelligence Technology》 2025年第2期387-401,共15页
Biometric characteristics are playing a vital role in security for the last few years.Human gait classification in video sequences is an important biometrics attribute and is used for security purposes.A new framework... Biometric characteristics are playing a vital role in security for the last few years.Human gait classification in video sequences is an important biometrics attribute and is used for security purposes.A new framework for human gait classification in video sequences using deep learning(DL)fusion assisted and posterior probability-based moth flames optimization(MFO)is proposed.In the first step,the video frames are resized and finetuned by two pre-trained lightweight DL models,EfficientNetB0 and MobileNetV2.Both models are selected based on the top-5 accuracy and less number of parameters.Later,both models are trained through deep transfer learning and extracted deep features fused using a voting scheme.In the last step,the authors develop a posterior probabilitybased MFO feature selection algorithm to select the best features.The selected features are classified using several supervised learning methods.The CASIA-B publicly available dataset has been employed for the experimental process.On this dataset,the authors selected six angles such as 0°,18°,90°,108°,162°,and 180°and obtained an average accuracy of 96.9%,95.7%,86.8%,90.0%,95.1%,and 99.7%.Results demonstrate comparable improvement in accuracy and significantly minimize the computational time with recent state-of-the-art techniques. 展开更多
关键词 deep learning feature fusion feature optimization gait classification indoor environment machine learning
在线阅读 下载PDF
HybridLSTM:An Innovative Method for Road Scene Categorization Employing Hybrid Features
12
作者 Sanjay P.Pande Sarika Khandelwal +4 位作者 Ganesh K.Yenurkar Rakhi D.Wajgi Vincent O.Nyangaresi Pratik R.Hajare Poonam T.Agarkar 《Computers, Materials & Continua》 2025年第9期5937-5975,共39页
Recognizing road scene context from a single image remains a critical challenge for intelligent autonomous driving systems,particularly in dynamic and unstructured environments.While recent advancements in deep learni... Recognizing road scene context from a single image remains a critical challenge for intelligent autonomous driving systems,particularly in dynamic and unstructured environments.While recent advancements in deep learning have significantly enhanced road scene classification,simultaneously achieving high accuracy,computational efficiency,and adaptability across diverse conditions continues to be difficult.To address these challenges,this study proposes HybridLSTM,a novel and efficient framework that integrates deep learning-based,object-based,and handcrafted feature extraction methods within a unified architecture.HybridLSTM is designed to classify four distinct road scene categories—crosswalk(CW),highway(HW),overpass/tunnel(OP/T),and parking(P)—by leveraging multiple publicly available datasets,including Places-365,BDD100K,LabelMe,and KITTI,thereby promoting domain generalization.The framework fuses object-level features extracted using YOLOv5 and VGG19,scene-level global representations obtained from a modified VGG19,and fine-grained texture features captured through eight handcrafted descriptors.This hybrid feature fusion enables the model to capture both semantic context and low-level visual cues,which are critical for robust scene understanding.To model spatial arrangements and latent sequential dependencies present even in static imagery,the combined features are processed through a Long Short-Term Memory(LSTM)network,allowing the extraction of discriminative patterns across heterogeneous feature spaces.Extensive experiments conducted on 2725 annotated road scene images,with an 80:20 training-to-testing split,validate the effectiveness of the proposed model.HybridLSTM achieves a classification accuracy of 96.3%,a precision of 95.8%,a recall of 96.1%,and an F1-score of 96.0%,outperforming several existing state-of-the-art methods.These results demonstrate the robustness,scalability,and generalization capability of HybridLSTM across varying environments and scene complexities.Moreover,the framework is optimized to balance classification performance with computational efficiency,making it highly suitable for real-time deployment in embedded autonomous driving systems.Future work will focus on extending the model to multi-class detection within a single frame and optimizing it further for edge-device deployments to reduce computational overhead in practical applications. 展开更多
关键词 HybridLSTM autonomous vehicles road scene classification critical requirement global features handcrafted features
在线阅读 下载PDF
Unraveling Single-Cell Metabolic Features in Breast Cancer Drug Resistance Using Mass Spectrometry
13
作者 LIU Chun-yan CHEN Hao-ran +3 位作者 WANG Yan WU Xian-zhe FANG Dan-jun CHEN Yun 《质谱学报》 北大核心 2025年第6期826-837,I0005,共13页
Drug resistance remains a major challenge in breast cancer chemotherapy,yet the metabolic alterations underlying this phenomenon are not fully understood.There is much evidence indicating the cellular heterogeneity am... Drug resistance remains a major challenge in breast cancer chemotherapy,yet the metabolic alterations underlying this phenomenon are not fully understood.There is much evidence indicating the cellular heterogeneity among cancer cells,which exhibit varying degrees of metabolic reprogramming and thus may result in differential contributions to drug resistance.A home-built single-cell quantitative mass spectrometry(MS)platform,which integrates micromanipulation and electro-osmotic sampling,was developed to quantitatively profile the tricarboxylic acid(TCA)cycle metabolites at the single-cell level.Using this platform,the metabolic profiles of drug-sensitive MCF-7 breast cancer cells and their drug-resistant derivative MCF-7/ADR cells were compared.This results revealed a selective upregulation of downstream TCA cycle metabolites includingα-ketoglutarate,succinate,fumarate,and malate in drug-resistant cancer cells,while early TCA metabolites remained largely unchanged.Furthermore,notable variations in the abundance of the metabolites were observed in individual cells.The comparative analysis also revealed that not all MCF-7/ADR cells exhibit the same degree of metabolic deviation from the parental line in the metabolites during resistance acquisition.The observed metabolic profiles indicate enhanced glutaminolysis,altered mitochondrial electron transport chain activity,and increased metabolic flexibility in drug-resistant cancer cells that support their survival under chemotherapeutic stress.The findings further suggest the potential for incorporating cellular metabolic heterogeneity into future drug resistance studies. 展开更多
关键词 mass spectrometry single-cell metabolic features breast cancer drug resistance tricarboxylic acid(TCA)cycle
在线阅读 下载PDF
Cue-Tracker:Integrating Deep Appearance Features and Spatial Cues for Multi-Object Tracking
14
作者 Sheeba Razzaq Majid Iqbal Khan 《Computers, Materials & Continua》 2025年第12期5377-5398,共22页
Multi-Object Tracking(MOT)represents a fundamental but computationally demanding task in computer vision,with particular challenges arising in occluded and densely populated environments.While contemporary tracking sy... Multi-Object Tracking(MOT)represents a fundamental but computationally demanding task in computer vision,with particular challenges arising in occluded and densely populated environments.While contemporary tracking systems have demonstrated considerable progress,persistent limitations—notably frequent occlusion-induced identity switches and tracking inaccuracies—continue to impede reliable real-world deployment.This work introduces an advanced tracking framework that enhances association robustness through a two-stage matching paradigm combining spatial and appearance features.Proposed framework employs:(1)a Height Modulated and Scale Adaptive Spatial Intersection-over-Union(HMSIoU)metric for improved spatial correspondence estimation across variable object scales and partial occlusions;(2)a feature extraction module generating discriminative appearance descriptors for identity maintenance;and(3)a recovery association mechanism for refining matches between unassociated tracks and detections.Comprehensive evaluation on standard MOT17 and MOT20 benchmarks demonstrates significant improvements in tracking consistency,with state-of-the-art performance across key metrics including HOTA(64),MOTA(80.7),IDF1(79.8),and IDs(1379).These results substantiate the efficacy of our Cue-Tracker framework in complex real-world scenarios characterized by occlusions and crowd interactions. 展开更多
关键词 Tracking by detection weak cues occlusion handling MOT challenge spatial features appearance features re-identification ID switches FUSION
在线阅读 下载PDF
Efficient Reconstruction of Spatial Features for Remote Sensing Image-Text Retrieval
15
作者 ZHANG Weihang CHEN Jialiang +3 位作者 ZHANG Wenkai LI Xinming GAO Xin SUN Xian 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第1期101-111,共11页
Remote sensing cross-modal image-text retrieval(RSCIR)can flexibly and subjectively retrieve remote sensing images utilizing query text,which has received more researchers’attention recently.However,with the increasi... Remote sensing cross-modal image-text retrieval(RSCIR)can flexibly and subjectively retrieve remote sensing images utilizing query text,which has received more researchers’attention recently.However,with the increasing volume of visual-language pre-training model parameters,direct transfer learning consumes a substantial amount of computational and storage resources.Moreover,recently proposed parameter-efficient transfer learning methods mainly focus on the reconstruction of channel features,ignoring the spatial features which are vital for modeling key entity relationships.To address these issues,we design an efficient transfer learning framework for RSCIR,which is based on spatial feature efficient reconstruction(SPER).A concise and efficient spatial adapter is introduced to enhance the extraction of spatial relationships.The spatial adapter is able to spatially reconstruct the features in the backbone with few parameters while incorporating the prior information from the channel dimension.We conduct quantitative and qualitative experiments on two different commonly used RSCIR datasets.Compared with traditional methods,our approach achieves an improvement of 3%-11% in sumR metric.Compared with methods finetuning all parameters,our proposed method only trains less than 1% of the parameters,while maintaining an overall performance of about 96%. 展开更多
关键词 remote sensing cross-modal image-text retrieval(RSCIR) spatial features channel features contrastive learning parameter effective transfer learning
在线阅读 下载PDF
Epidemiological and clinical features of severe imported Plasmodium falciparum malaria among travelers upon hospital admission
16
作者 Emerole Karl Tokmalaev Anatoly +1 位作者 Chentsov Vladimir Mvuania Vellynance 《Asian Pacific Journal of Tropical Medicine》 2025年第10期475-476,共2页
Malaria is considered one of the major causes of travel-related morbidity and mortality,especially among non-immune travelers from non-endemic countries to the endemic regions.According to a multicenter study from the... Malaria is considered one of the major causes of travel-related morbidity and mortality,especially among non-immune travelers from non-endemic countries to the endemic regions.According to a multicenter study from the GeoSentinel surveillance network,malaria was the most frequent cause of fever in 21%of returning travelers,followed by dengue,typhoid fever,chikungunya and rickettsiosis[1].Individuals traveling from regions without malaria transmission to areas where it is endemic face a heightened risk of contracting the disease due to their lack of immunity.Despite the official malaria-free status of the Russian Federation since 2010,annual cases of severe Plasmodium(P.)falciparum malaria continue to be reported[2].This underscores the necessity for heightened clinical vigilance and improved preventive strategies especially in non-endemic settings. 展开更多
关键词 epidemiological features geosentinel surveillance networkmalaria denguetyphoid feverchikungunya multicenter study severe imported plasmodium falciparum malaria clinical features non immune travelers endemic regions
暂未订购
Detection and analysis of Spartina alterniflora in Chongming East Beach using Sentinel-2 imagery and image texture features
17
作者 Xinyu Mei Zhongbiao Chen +1 位作者 Runxia Sun Yijun He 《Acta Oceanologica Sinica》 2025年第2期80-90,共11页
Spartina alterniflora is now listed among the world’s 100 most dangerous invasive species,severely affecting the ecological balance of coastal wetlands.Remote sensing technologies based on deep learning enable large-... Spartina alterniflora is now listed among the world’s 100 most dangerous invasive species,severely affecting the ecological balance of coastal wetlands.Remote sensing technologies based on deep learning enable large-scale monitoring of Spartina alterniflora,but they require large datasets and have poor interpretability.A new method is proposed to detect Spartina alterniflora from Sentinel-2 imagery.Firstly,to get the high canopy cover and dense community characteristics of Spartina alterniflora,multi-dimensional shallow features are extracted from the imagery.Secondly,to detect different objects from satellite imagery,index features are extracted,and the statistical features of the Gray-Level Co-occurrence Matrix(GLCM)are derived using principal component analysis.Then,ensemble learning methods,including random forest,extreme gradient boosting,and light gradient boosting machine models,are employed for image classification.Meanwhile,Recursive Feature Elimination with Cross-Validation(RFECV)is used to select the best feature subset.Finally,to enhance the interpretability of the models,the best features are utilized to classify multi-temporal images and SHapley Additive exPlanations(SHAP)is combined with these classifications to explain the model prediction process.The method is validated by using Sentinel-2 imageries and previous observations of Spartina alterniflora in Chongming Island,it is found that the model combining image texture features such as GLCM covariance can significantly improve the detection accuracy of Spartina alterniflora by about 8%compared with the model without image texture features.Through multiple model comparisons and feature selection via RFECV,the selected model and eight features demonstrated good classification accuracy when applied to data from different time periods,proving that feature reduction can effectively enhance model generalization.Additionally,visualizing model decisions using SHAP revealed that the image texture feature component_1_GLCMVariance is particularly important for identifying each land cover type. 展开更多
关键词 texture features Recursive feature Elimination with Cross-Validation(RFECV) SHapley Additive exPlanations(SHAP) Sentinel-2 time-series imagery multi-model comparison
在线阅读 下载PDF
Environmental Features of Heavy Precipitation under Favorable Synoptic Patterns:A Lesson from the 2021 Henan Extreme Precipitation Event
18
作者 Nan LV Zhongxi LIN +2 位作者 Ji NIE Zhiyong MENG Ping LU 《Advances in Atmospheric Sciences》 2025年第9期1863-1875,共13页
In July 2021,a catastrophic extreme precipitation(EP)event occurred in Henan Province,China,resulting in considerable human and economic losses.The synoptic pattern during this event is distinctive,characterized by th... In July 2021,a catastrophic extreme precipitation(EP)event occurred in Henan Province,China,resulting in considerable human and economic losses.The synoptic pattern during this event is distinctive,characterized by the presence of two typhoons and substantial water transport into Henan.However,a favorable synoptic pattern only does not guarantee the occurrence of heavy precipitation in Henan.This study investigates the key environmental features critical for EP under similar synoptic patterns to the 2021 Henan extreme event.It is found that cold clouds are better aggregated on EP days,accompanied by beneficial environment features like enhanced moisture conditions,stronger updrafts,and greater atmospheric instability.The temporal evolution of these environmental features shows a leading signal by one to three days.These results suggest the importance of combining the synoptic pattern and environmental features in the forecasting of heavy precipitation events. 展开更多
关键词 extreme precipitation synoptic pattern environmental features
在线阅读 下载PDF
A Novelty Framework in Image-Captioning with Visual Attention-Based Refined Visual Features
19
作者 Alaa Thobhani Beiji Zou +4 位作者 Xiaoyan Kui Amr Abdussalam Muhammad Asim Mohammed ELAffendi Sajid Shah 《Computers, Materials & Continua》 2025年第3期3943-3964,共22页
Image captioning,the task of generating descriptive sentences for images,has advanced significantly with the integration of semantic information.However,traditional models still rely on static visual features that do ... Image captioning,the task of generating descriptive sentences for images,has advanced significantly with the integration of semantic information.However,traditional models still rely on static visual features that do not evolve with the changing linguistic context,which can hinder the ability to form meaningful connections between the image and the generated captions.This limitation often leads to captions that are less accurate or descriptive.In this paper,we propose a novel approach to enhance image captioning by introducing dynamic interactions where visual features continuously adapt to the evolving linguistic context.Our model strengthens the alignment between visual and linguistic elements,resulting in more coherent and contextually appropriate captions.Specifically,we introduce two innovative modules:the Visual Weighting Module(VWM)and the Enhanced Features Attention Module(EFAM).The VWM adjusts visual features using partial attention,enabling dynamic reweighting of the visual inputs,while the EFAM further refines these features to improve their relevance to the generated caption.By continuously adjusting visual features in response to the linguistic context,our model bridges the gap between static visual features and dynamic language generation.We demonstrate the effectiveness of our approach through experiments on the MS-COCO dataset,where our method outperforms state-of-the-art techniques in terms of caption quality and contextual relevance.Our results show that dynamic visual-linguistic alignment significantly enhances image captioning performance. 展开更多
关键词 Image-captioning visual attention deep learning visual features
在线阅读 下载PDF
Correlation of pathological types and imaging features in pancreatic cancer
20
作者 Qiu-Long Wang Xiao-Jun Yang 《World Journal of Gastrointestinal Oncology》 2025年第8期420-424,共5页
The study by Luo et al published in the World Journal of Gastrointestinal Oncology presents a thorough and scientific methodology.Pancreatic cancer is the most challenging malignancy in the digestive system,exhibiting... The study by Luo et al published in the World Journal of Gastrointestinal Oncology presents a thorough and scientific methodology.Pancreatic cancer is the most challenging malignancy in the digestive system,exhibiting one of the highest mortality rates associated with cancer globally.The delayed onset of symptoms and diagnosis often results in metastasis or local progression of the cancer,thereby constraining treatment options and outcomes.For these patients,prompt tumour identification and treatment strategising are crucial.The present objective of pancreatic cancer research is to examine the correlation between various pathological types and imaging data to facilitate therapeutic decision-making.This study aims to clarify the correlation between diverse pathological markers and imaging in pancreatic cancer patients,with prospective longitudinal studies potentially providing novel insights into the diagnosis and treatment of pancreatic cancer. 展开更多
关键词 Pancreatic cancer Pathological types Imaging features ASSOCIATION Noninvasive tests
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部