Sini Decoction(SNT)is a traditional formula recognized for its efficacy in warming the spleen and stomach and dispersing cold.However,elucidating the mechanism of action of SNT remains challenging due to its complex m...Sini Decoction(SNT)is a traditional formula recognized for its efficacy in warming the spleen and stomach and dispersing cold.However,elucidating the mechanism of action of SNT remains challenging due to its complex multiple components.This study utilized a synergistic approach combining two-dimensional fluorescence difference in gel electrophoresis(2D-DIGE)-based drug affinity responsive target stability(DARTS)with label-free quantitative proteomics techniques to identify the direct and indirect protein targets of SNT in myocardial infarction.The analysis identified 590 proteins,with 30 proteins showing significant upregulation and 51 proteins showing downregulation when comparing the SNT group with the model group.Through the integration of 2D-DIGE DARTS with proteomics data and pharmacological assessments,the findings indicate that protein disulfide-isomerase A3(PDIA3)may serve as a potential protein target through which SNT provides protective effects on myocardial cells during myocardial infarction.展开更多
The penetration behavior of topical substances in the skin not only relates to the transdermal delivery efficiency but also involves the safety and therapeutic effect of topical products,such as sunscreen and hair gro...The penetration behavior of topical substances in the skin not only relates to the transdermal delivery efficiency but also involves the safety and therapeutic effect of topical products,such as sunscreen and hair growth products.Researchers have tried to illustrate the transdermal process with diversified theories and technologies.Directly observing the distribution of topical substances on skin by characteristic imaging is the most convincing approach.Unfortunately,fluorescence labeling imaging,which is commonly used in biochemical research,is limited for transdermal research for most topical substances with a molecular mass less than 500 Da.Label-free imaging technologies possess the advantages of not requiring any macromolecular dyes,no tissue destruction and an extensive substance detection capability,which has enabled rapid development of such technologies in recent years and their introduction to biological tissue analysis,such as skin samples.Through the specific identification of topical substances and endogenous tissue components,label-free imaging technologies can provide abundant tissue distribution information,enrich theoretical and practical guidance for transdermal drug delivery systems.In this review,we expound the mechanisms and applications of the most popular label-free imaging technologies in transdermal research at present,compare their advantages and disadvantages,and forecast development prospects.展开更多
Respiratory syncytial virus(RSV) is a leading cause of acute lower respiratory tract infections. Qingfei oral liquid(QFOL), a traditional Chinese medicine, is widely used in clinical treatment for RSV-induced pneumoni...Respiratory syncytial virus(RSV) is a leading cause of acute lower respiratory tract infections. Qingfei oral liquid(QFOL), a traditional Chinese medicine, is widely used in clinical treatment for RSV-induced pneumonia. The present study was designed to reveal the potential targets and mechanism of action for QFOL by exploring its influence on the host cellular network following RSV infection. We investigated the serum proteomic changes and potential biomarkers in an RSV-infected mouse pneumonia model treated with QFOL. Eighteen BALB/c mice were randomly divided into three groups: RSV pneumonia model group(M), QFOL-treated group(Q) and the control group(C). Serum proteomes were analyzed and compared using a label-free quantitative LC-MS/MS approach. A total of 172 protein groups, 1009 proteins, and 1073 unique peptides were successfully identified. 51 differentially expressed proteins(DEPs) were identified(15 DEPs when M/C and 43 DEPs when Q/M; 7 DEPs in common). Classification and interaction network showed that these proteins participated in various biological processes including immune response, blood coagulation, complement activation, and so forth. Particularly, fibrinopeptide B(FpB) and heparin cofactor Ⅱ(HCII) were evaluated as important nodes in the interaction network, which was closely involved in coagulation and inflammation. Further, the Fp B level was increased in Group M but decreased in Group Q, while the HCII level exhibited the opposite trend. These findings not only indicated FpB and HCII as potential biomarkers and targets of QFOL in the treatment of RSV pneumonia, but also suggested a regulatory role of QFOL in the RSV-induced disturbance of coagulation and inflammation-coagulation interactions.展开更多
Objective:The present study aimed to evaluate the possibility of using coherent anti-Stokes Raman spectroscopy(CARS) microscopy to determine the specific molecular morphology of cholesteatoma by detecting the natura...Objective:The present study aimed to evaluate the possibility of using coherent anti-Stokes Raman spectroscopy(CARS) microscopy to determine the specific molecular morphology of cholesteatoma by detecting the natural vibrational contrast of the chemical bonds without any staining.Materials and methods:Specimens from the mastoid and tympanic membrane with and without cholesteatoma were analyzed using CARS microscopy,two-photon excited fluorescence(TPEF) microscopy,and the second harmonic generation(SHG) microscopy.Results:In cholesteatoma tissues from the mastoid,a strong resonant signal at 2845 cm;was observed by CARS,which indicated the detection of the CH;hydro-carbon lipid bonds that do not generate visible signals at 2940 cm;suggestive of CH;bonds in amino acids.A strong resonant signal at 2940 cm;appeared in an area of the same specimen,which also generated abundant signals by TPEF and SHG microscopy at 817 nm,which was suggestive of collagen.In the tympanic membrane specimen with cholesteatoma,a strong resonant signal with corrugated morphology was detected,which indicated the presence of lipids.A strong signal was detected in the tympanic membrane with chronic otitis media using TPEF/SHG at 817 nm,which indicated collagen enrichment.The CARS and TPEF/SHG images were in accordance with the histology results.Conclusion:These results suggest the need to develop a novel CARS microendoscope that can be used in combination with TPEF/SHG to distinguish cholesteatoma from inflammatory tissues.展开更多
A label-free and sensitive electrochemical biosensing strategy for a hepatocellular carcinoma biomarker of miRNA-122 has been proposed based on hybridization induced ion-barrier effect on the electroactive sensing int...A label-free and sensitive electrochemical biosensing strategy for a hepatocellular carcinoma biomarker of miRNA-122 has been proposed based on hybridization induced ion-barrier effect on the electroactive sensing interface.First,a bifunctional electroactive electrode with the nanocomposite of Prussian blue(PB)and gold nanoparticles(AuNPs)was prepared through a two-step electrodeposition process.The PB endows the electrode excellent K^(+)-dependent voltammetric signal and the AuNPs act as the matrix for the self-assembly immobilization of the thiolated probe DNA.Upon specific hybridization of probe DNA with the target miRNA-122,the formed double duplex induced the ion-barrier effect,which blocked the diffusion of the K^(+)from the bulk solution to the electrode surface.As a result,the voltammetric signal of the PB on the electrode was surpressed,and thus the target miRNA-122 was monitored.The sensing assay showed that the miRNA-122 could be analyzed in the concentration range from 0.1 fmol/L to 1.0 nmol/L,with a detection limit of 0.021 fmol/L.The practical applicability of the biosensor was also verified by the spiking serum assay.展开更多
AIM:To identify different metabolites,proteins and related pathways to elucidate the causes of proliferative diabetic retinopathy(PDR)and resistance to anti-vascular endothelial growth factor(VEGF)drugs,and to provide...AIM:To identify different metabolites,proteins and related pathways to elucidate the causes of proliferative diabetic retinopathy(PDR)and resistance to anti-vascular endothelial growth factor(VEGF)drugs,and to provide biomarkers for the diagnosis and treatment of PDR.METHODS:Vitreous specimens from patients with diabetic retinopathy were collected and analyzed by Liquid Chromatography-Mass Spectrometry(LC-MS/MS)analyses based on 4D label-free technology.Statistically differentially expressed proteins(DEPs),Gene Ontology(GO),Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway representation and protein interactions were analyzed.RESULTS:A total of 12 samples were analyzed.The proteomics results showed that a total of 58 proteins were identified as DEPs,of which 47 proteins were up-regulated and 11 proteins were down-regulated.We found that C1q and tumor necrosis factor related protein 5(C1QTNF5),Clusterin(CLU),tissue inhibitor of metal protease 1(TIMP1)and signal regulatory protein alpha(SIRPα)can all be specifically regulated after aflibercept treatment.GO functional analysis showed that some DEPs are related to changes in inflammatory regulatory pathways caused by PDR.In addition,protein-protein interaction(PPI)network evaluation revealed that TIMP1 plays a central role in neural regulation.In addition,CD47/SIRPαmay become a key target to resolve anti-VEGF drug resistance in PDR.CONCLUSION:Proteomic analysis is an approach of choice to explore the molecular mechanisms of PDR.Our data show that multiple proteins are differentially changed in PDR patients after intravitreal injection of aflibercept,among which C1QTNF5,CLU,TIMP1 and SIRPαmay become targets for future treatment of PDR and resolution of anti-VEGF resistance.展开更多
In this assay, a label-free fluorescent sensing platform based on triple-helix molecular switch(THMS) and G-quadruplex was developed for the detection of tetracycline. We demonstrated this approach by using THMS, wh...In this assay, a label-free fluorescent sensing platform based on triple-helix molecular switch(THMS) and G-quadruplex was developed for the detection of tetracycline. We demonstrated this approach by using THMS, which consists of a central section with a shortened 8-mer aptamer sequence with high affinity to tetracycline and flanked by two arm segments. G-rich oligonucleotide can specifically bind to thioflavin T(Th T) as a signal transduction probe(STP). In the absence of tetracycline, THMS remains stable, the fluorescence of background is low. By the addition of target tetracycline, the aptamer-target binding results in the formation of a structured aptamer-target complex, which disassembles the THMS and releases the STP. The free STP self-assembles into G-quadruplex and specifically binds to Th T which generates a obvious fluorescence enhancement. Using the triple-helix molecular switch, the developed aptamer-based fluorescent sensing platform showed a linear relationship with the concentration of tetracycline ranging from 0.2 to 20.0 nmol/L. The detection limit of tetracycline was determined to be970.0 pmol/L. The assay avoids complicated modifications or chemical labeling, making it simple and cost-effective. So, it is expected that this aptamer-based fluorescent assay could be extensively applied in the field of food safety inspection.展开更多
Pheretima,also called“earthworms”,is a well-known animal-derived traditional Chinese medicine that is extensively used in over 50 Chinese patent medicines(CPMs)in Chinese Pharmacopoeia(2020 edition).However,its zool...Pheretima,also called“earthworms”,is a well-known animal-derived traditional Chinese medicine that is extensively used in over 50 Chinese patent medicines(CPMs)in Chinese Pharmacopoeia(2020 edition).However,its zoological origin is unclear,both in the herbal market and CPMs.In this study,a strategy for integrating in-house annotated protein databases constructed from close evolutionary relationship-sourced RNA sequencing data from public archival resources and various sequencing algorithms(restricted search,open search,and de novo)was developed to characterize the phenotype of natural peptides of three major commercial species of Pheretima,including Pheretima aspergillum(PA),Pheretima vulgaris(PV),and Metaphire magna(MM).We identified 10,477 natural peptides in the PA,7,451 in PV,and 5,896 in MM samples.Five specific signature peptides were screened and then validated using synthetic peptides;these demonstrated robust specificity for the authentication of PA,PV,and MM.Finally,all marker peptides were successfully applied to identify the zoological origins of Brain Heart capsules and Xiaohuoluo pills,revealing the inconsistent Pheretima species used in these CPMs.In conclusion,our integrated strategy could be used for the in-depth characterization of natural peptides of other animal-derived traditional Chinese medicines,especially non-model species with poorly annotated protein databases.展开更多
基金supported by the National Natural Science Foundation of China(Nos.82073814,82122066,and 82104328)the"Dawn"Program of the Shanghai Education Commission(No.22SG34)+1 种基金the National Key Research and Development Program of the Ministry of China(No.2022YFC2704603)Shanghai Sailing Program(No.20YF1458900).
文摘Sini Decoction(SNT)is a traditional formula recognized for its efficacy in warming the spleen and stomach and dispersing cold.However,elucidating the mechanism of action of SNT remains challenging due to its complex multiple components.This study utilized a synergistic approach combining two-dimensional fluorescence difference in gel electrophoresis(2D-DIGE)-based drug affinity responsive target stability(DARTS)with label-free quantitative proteomics techniques to identify the direct and indirect protein targets of SNT in myocardial infarction.The analysis identified 590 proteins,with 30 proteins showing significant upregulation and 51 proteins showing downregulation when comparing the SNT group with the model group.Through the integration of 2D-DIGE DARTS with proteomics data and pharmacological assessments,the findings indicate that protein disulfide-isomerase A3(PDIA3)may serve as a potential protein target through which SNT provides protective effects on myocardial cells during myocardial infarction.
文摘The penetration behavior of topical substances in the skin not only relates to the transdermal delivery efficiency but also involves the safety and therapeutic effect of topical products,such as sunscreen and hair growth products.Researchers have tried to illustrate the transdermal process with diversified theories and technologies.Directly observing the distribution of topical substances on skin by characteristic imaging is the most convincing approach.Unfortunately,fluorescence labeling imaging,which is commonly used in biochemical research,is limited for transdermal research for most topical substances with a molecular mass less than 500 Da.Label-free imaging technologies possess the advantages of not requiring any macromolecular dyes,no tissue destruction and an extensive substance detection capability,which has enabled rapid development of such technologies in recent years and their introduction to biological tissue analysis,such as skin samples.Through the specific identification of topical substances and endogenous tissue components,label-free imaging technologies can provide abundant tissue distribution information,enrich theoretical and practical guidance for transdermal drug delivery systems.In this review,we expound the mechanisms and applications of the most popular label-free imaging technologies in transdermal research at present,compare their advantages and disadvantages,and forecast development prospects.
基金supported by the National Natural Science Foundation of China(No.81574025)the Open Project Program of Jiangsu Key Laboratory of Pediatric Respiratory Disease,Nanjing University of Chinese Medicine(No.JKLPRD201410)
文摘Respiratory syncytial virus(RSV) is a leading cause of acute lower respiratory tract infections. Qingfei oral liquid(QFOL), a traditional Chinese medicine, is widely used in clinical treatment for RSV-induced pneumonia. The present study was designed to reveal the potential targets and mechanism of action for QFOL by exploring its influence on the host cellular network following RSV infection. We investigated the serum proteomic changes and potential biomarkers in an RSV-infected mouse pneumonia model treated with QFOL. Eighteen BALB/c mice were randomly divided into three groups: RSV pneumonia model group(M), QFOL-treated group(Q) and the control group(C). Serum proteomes were analyzed and compared using a label-free quantitative LC-MS/MS approach. A total of 172 protein groups, 1009 proteins, and 1073 unique peptides were successfully identified. 51 differentially expressed proteins(DEPs) were identified(15 DEPs when M/C and 43 DEPs when Q/M; 7 DEPs in common). Classification and interaction network showed that these proteins participated in various biological processes including immune response, blood coagulation, complement activation, and so forth. Particularly, fibrinopeptide B(FpB) and heparin cofactor Ⅱ(HCII) were evaluated as important nodes in the interaction network, which was closely involved in coagulation and inflammation. Further, the Fp B level was increased in Group M but decreased in Group Q, while the HCII level exhibited the opposite trend. These findings not only indicated FpB and HCII as potential biomarkers and targets of QFOL in the treatment of RSV pneumonia, but also suggested a regulatory role of QFOL in the RSV-induced disturbance of coagulation and inflammation-coagulation interactions.
基金supported by grants from Ministry of Science and Technology of China,China-EU collaborative project(Grant No.0S2014GR0137)
文摘Objective:The present study aimed to evaluate the possibility of using coherent anti-Stokes Raman spectroscopy(CARS) microscopy to determine the specific molecular morphology of cholesteatoma by detecting the natural vibrational contrast of the chemical bonds without any staining.Materials and methods:Specimens from the mastoid and tympanic membrane with and without cholesteatoma were analyzed using CARS microscopy,two-photon excited fluorescence(TPEF) microscopy,and the second harmonic generation(SHG) microscopy.Results:In cholesteatoma tissues from the mastoid,a strong resonant signal at 2845 cm;was observed by CARS,which indicated the detection of the CH;hydro-carbon lipid bonds that do not generate visible signals at 2940 cm;suggestive of CH;bonds in amino acids.A strong resonant signal at 2940 cm;appeared in an area of the same specimen,which also generated abundant signals by TPEF and SHG microscopy at 817 nm,which was suggestive of collagen.In the tympanic membrane specimen with cholesteatoma,a strong resonant signal with corrugated morphology was detected,which indicated the presence of lipids.A strong signal was detected in the tympanic membrane with chronic otitis media using TPEF/SHG at 817 nm,which indicated collagen enrichment.The CARS and TPEF/SHG images were in accordance with the histology results.Conclusion:These results suggest the need to develop a novel CARS microendoscope that can be used in combination with TPEF/SHG to distinguish cholesteatoma from inflammatory tissues.
基金supported by the National Natural Science Foundation of China(Nos.21802064,81873978)Natural Science Foundation of Fujian Province(Nos.2018J01435,2019J05108)。
文摘A label-free and sensitive electrochemical biosensing strategy for a hepatocellular carcinoma biomarker of miRNA-122 has been proposed based on hybridization induced ion-barrier effect on the electroactive sensing interface.First,a bifunctional electroactive electrode with the nanocomposite of Prussian blue(PB)and gold nanoparticles(AuNPs)was prepared through a two-step electrodeposition process.The PB endows the electrode excellent K^(+)-dependent voltammetric signal and the AuNPs act as the matrix for the self-assembly immobilization of the thiolated probe DNA.Upon specific hybridization of probe DNA with the target miRNA-122,the formed double duplex induced the ion-barrier effect,which blocked the diffusion of the K^(+)from the bulk solution to the electrode surface.As a result,the voltammetric signal of the PB on the electrode was surpressed,and thus the target miRNA-122 was monitored.The sensing assay showed that the miRNA-122 could be analyzed in the concentration range from 0.1 fmol/L to 1.0 nmol/L,with a detection limit of 0.021 fmol/L.The practical applicability of the biosensor was also verified by the spiking serum assay.
基金Supported by Tianjin Key Medical Discipline Specialty Construction Project(No.TJYXZDXK-016A)Henan Provincial Department of Science and Technology(No.LHGJ20200802).
文摘AIM:To identify different metabolites,proteins and related pathways to elucidate the causes of proliferative diabetic retinopathy(PDR)and resistance to anti-vascular endothelial growth factor(VEGF)drugs,and to provide biomarkers for the diagnosis and treatment of PDR.METHODS:Vitreous specimens from patients with diabetic retinopathy were collected and analyzed by Liquid Chromatography-Mass Spectrometry(LC-MS/MS)analyses based on 4D label-free technology.Statistically differentially expressed proteins(DEPs),Gene Ontology(GO),Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway representation and protein interactions were analyzed.RESULTS:A total of 12 samples were analyzed.The proteomics results showed that a total of 58 proteins were identified as DEPs,of which 47 proteins were up-regulated and 11 proteins were down-regulated.We found that C1q and tumor necrosis factor related protein 5(C1QTNF5),Clusterin(CLU),tissue inhibitor of metal protease 1(TIMP1)and signal regulatory protein alpha(SIRPα)can all be specifically regulated after aflibercept treatment.GO functional analysis showed that some DEPs are related to changes in inflammatory regulatory pathways caused by PDR.In addition,protein-protein interaction(PPI)network evaluation revealed that TIMP1 plays a central role in neural regulation.In addition,CD47/SIRPαmay become a key target to resolve anti-VEGF drug resistance in PDR.CONCLUSION:Proteomic analysis is an approach of choice to explore the molecular mechanisms of PDR.Our data show that multiple proteins are differentially changed in PDR patients after intravitreal injection of aflibercept,among which C1QTNF5,CLU,TIMP1 and SIRPαmay become targets for future treatment of PDR and resolution of anti-VEGF resistance.
基金supported by National Natural Science Foundation of China (Nos. 21205142, 31370104)The Research Innovation Program for Graduates of Central South University (No. 2016zzts580)
文摘In this assay, a label-free fluorescent sensing platform based on triple-helix molecular switch(THMS) and G-quadruplex was developed for the detection of tetracycline. We demonstrated this approach by using THMS, which consists of a central section with a shortened 8-mer aptamer sequence with high affinity to tetracycline and flanked by two arm segments. G-rich oligonucleotide can specifically bind to thioflavin T(Th T) as a signal transduction probe(STP). In the absence of tetracycline, THMS remains stable, the fluorescence of background is low. By the addition of target tetracycline, the aptamer-target binding results in the formation of a structured aptamer-target complex, which disassembles the THMS and releases the STP. The free STP self-assembles into G-quadruplex and specifically binds to Th T which generates a obvious fluorescence enhancement. Using the triple-helix molecular switch, the developed aptamer-based fluorescent sensing platform showed a linear relationship with the concentration of tetracycline ranging from 0.2 to 20.0 nmol/L. The detection limit of tetracycline was determined to be970.0 pmol/L. The assay avoids complicated modifications or chemical labeling, making it simple and cost-effective. So, it is expected that this aptamer-based fluorescent assay could be extensively applied in the field of food safety inspection.
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.:82130111)the National Natural Science Foundation of China(Grant No.:81803716)+1 种基金the Qi-Huang Chief Scientist Project of the National Administration of Traditional Chinese Medicine,China(2020)the SIMM-SHUTCM Traditional Chinese Medicine Innovation Joint Research Program,China(Grant No.:E2G809H).
文摘Pheretima,also called“earthworms”,is a well-known animal-derived traditional Chinese medicine that is extensively used in over 50 Chinese patent medicines(CPMs)in Chinese Pharmacopoeia(2020 edition).However,its zoological origin is unclear,both in the herbal market and CPMs.In this study,a strategy for integrating in-house annotated protein databases constructed from close evolutionary relationship-sourced RNA sequencing data from public archival resources and various sequencing algorithms(restricted search,open search,and de novo)was developed to characterize the phenotype of natural peptides of three major commercial species of Pheretima,including Pheretima aspergillum(PA),Pheretima vulgaris(PV),and Metaphire magna(MM).We identified 10,477 natural peptides in the PA,7,451 in PV,and 5,896 in MM samples.Five specific signature peptides were screened and then validated using synthetic peptides;these demonstrated robust specificity for the authentication of PA,PV,and MM.Finally,all marker peptides were successfully applied to identify the zoological origins of Brain Heart capsules and Xiaohuoluo pills,revealing the inconsistent Pheretima species used in these CPMs.In conclusion,our integrated strategy could be used for the in-depth characterization of natural peptides of other animal-derived traditional Chinese medicines,especially non-model species with poorly annotated protein databases.