期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于相干性框架的部分支集已知的信号重建
1
作者 武思琪 宋儒瑛 关晋瑞 《西华师范大学学报(自然科学版)》 2024年第4期367-374,共8页
文章使用l_(2)-αl_(2)(0<α≤1)最小化模型利用信号自身的先验支撑信息来重建高维稀疏信号。这是首篇基于相干性框架的部分支集已知的信号重建,重点讨论3种噪声(l_(2)有界噪声、Dantzig Selector噪声和脉冲噪声)情形下信号鲁棒恢复... 文章使用l_(2)-αl_(2)(0<α≤1)最小化模型利用信号自身的先验支撑信息来重建高维稀疏信号。这是首篇基于相干性框架的部分支集已知的信号重建,重点讨论3种噪声(l_(2)有界噪声、Dantzig Selector噪声和脉冲噪声)情形下信号鲁棒恢复的充分条件和误差估计。 展开更多
关键词 压缩感知 部分支集已知 l_(1)-αl_(2)最小化 相干性 误差估计
在线阅读 下载PDF
基于l_(1)-l_(2)最小化的部分支集已知的信号重建 被引量:2
2
作者 宋儒瑛 武思琪 关晋瑞 《湖北民族大学学报(自然科学版)》 CAS 2022年第1期81-85,共5页
压缩感知是近几年应用数学范畴较为热门的前沿课题,是一种新型的采样理论,主要是考虑从较少的线性测量中利用信号自身的各种先验信息来恢复高维稀疏信号.文章通过l_(1)-l_(2)最小化方法对部分支集已知的信号提出了重建的一个新的充分条... 压缩感知是近几年应用数学范畴较为热门的前沿课题,是一种新型的采样理论,主要是考虑从较少的线性测量中利用信号自身的各种先验信息来恢复高维稀疏信号.文章通过l_(1)-l_(2)最小化方法对部分支集已知的信号提出了重建的一个新的充分条件,并得到信号恢复稳定和鲁棒的误差估计. 展开更多
关键词 压缩感知 部分支集已知 l_(1)-l_(2)最小化 限制等距性 误差估计
在线阅读 下载PDF
Recovery of correlated row sparse signals using smoothed L_0-norm algorithm
3
作者 LIU Yu MA Cong +1 位作者 ZHU Xu-qi ZHANG Lin 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2012年第6期123-128,共6页
Distributed compressed sensing (DCS) is an emerging research field which exploits both intra-signal and inter-signal correlations. This paper focuses on the recovery of the sparse signals which can be modeled as joi... Distributed compressed sensing (DCS) is an emerging research field which exploits both intra-signal and inter-signal correlations. This paper focuses on the recovery of the sparse signals which can be modeled as joint sparsity model (JSM) 2 with different nonzero coefficients in the same location set. Smoothed L0 norm algorithm is utilized to convert a non-convex and intractable mixed L2,0 norm optimization problem into a solvable one. Compared with a series of single-measurement-vector problems, the proposed approach can obtain a better reconstruction performance by exploiting the inter-signal correlations. Simulation results show that our algorithm outperforms L1,1 norm optimization for both noiseless and noisy cases and is more robust against thermal noise compared with LI,2 recovery. Besides, with the help of the core concept of modified compressed sensing (CS) that utilizes partial known support as side information, we also extend this algorithm to decode correlated row sparse signals generated following JSM 1. 展开更多
关键词 DCS JSM row sparse signal smoothed L0-norm partially known support
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部