期刊文献+
共找到344,179篇文章
< 1 2 250 >
每页显示 20 50 100
Structural Topology Design of Container Ship Based on Knowledge-Based Engineering and Level Set Method 被引量:5
1
作者 崔进举 王德禹 史琪琪 《China Ocean Engineering》 SCIE EI CSCD 2015年第4期551-564,共14页
Knowledge-Based Engineering (KBE) is introduced into the ship structural design in this paper. From the implementation of KBE, the design solutions for both Rules Design Method (RDM) and Interpolation Design Meth... Knowledge-Based Engineering (KBE) is introduced into the ship structural design in this paper. From the implementation of KBE, the design solutions for both Rules Design Method (RDM) and Interpolation Design Method (IDM) are generated. The corresponding Finite Element (FE) models are generated. Topological design of the longitudinal structures is studied where the Gaussian Process (GP) is employed to build the surrogate model for FE analysis. Multi-objective optimization methods inspired by Pareto Front are used to reduce the design tank weight and outer surface area simultaneously. Additionally, an enhanced Level Set Method (LSM) which employs implicit algorithm is applied to the topological design of typical bracket plate which is used extensively in ship structures. Two different sets of boundary conditions are considered. The proposed methods show satisfactory efficiency and accuracy. 展开更多
关键词 knowledge-based engineering (KBE) Level Set Method (LSM) Gaussian Process GP)
在线阅读 下载PDF
Containership Structural Design and Optimization Based on Knowledge-Based Engineering and Gaussian Process
2
作者 崔进举 王德禹 VLAHOPOULOS Nickolas 《Journal of Shanghai Jiaotong university(Science)》 EI 2014年第2期205-218,共14页
Knowledge-based engineering(KBE) has made success in automobile and molding design industry, and it is introduced into the ship structural design in this paper. From the implementation of KBE, the deterministic design... Knowledge-based engineering(KBE) has made success in automobile and molding design industry, and it is introduced into the ship structural design in this paper. From the implementation of KBE, the deterministic design solutions for both rules design method(RDM) and interpolation design method(IDM) are generated. The corresponding finite element model is generated. Gaussian process(GP) is then employed to build the surrogate model for finite element analysis, in order to increase efficiency and maintain accuracy at the same time, and the multi-modal adaptive importance sampling method is adopted to calculate the corresponding structural reliability.An example is given to validate the proposed method. Finally, the reliabilities of the structures' strength caused by uncertainty lying in water corrosion, static and wave moments are calculated, and the ship structures are optimized to resist the water corrosion by multi-island genetic algorithm. Deterministic design results from the RDM and IDM are compared with each separate robust design result. The proposed method shows great efficiency and accuracy. 展开更多
关键词 knowledge-based engineering(KBE) Gaussian process(GP) robust optimization rules design method(RDM) interpolation design method(IDM)
原文传递
Knowledge-based engineering approach for the support of ship structure design
3
作者 杨和振 Chen Jinfeng +1 位作者 Ma Ning Wang Deyu 《High Technology Letters》 EI CAS 2013年第3期240-245,共6页
The paper presents a knowledge-based engineering (KBE) approach for ship node components design. In the ship design process, many design tasks need design experiences to support. Howev- er, a ship design process is ... The paper presents a knowledge-based engineering (KBE) approach for ship node components design. In the ship design process, many design tasks need design experiences to support. Howev- er, a ship design process is a complicated process with many simultaneously repetitive and time-con- suming activities. In this research, the method combines KBE with Tribon system's built-in devel- opment language tools of Vitesse, captures and applies design knowledge for achieving standard com- ponents intelligent design modeling. A case study and industry implementation illustrate the feasibili- ty of the proposed methodology. The KBE technique can provide not only proper references, sug- gests and supports but also knowledge integrated in the ship structure design. Especially, these rules related to the design can avoid lots of design mistakes. During the ship design stage, getting more precise and better designs will not only reduce the time of rework and wasting resources but also shorten the construction time_ imnrov~ clilnl;hz ~nA nrnf;t 展开更多
关键词 knowledge-based engineering KBE) ship design components library Tribon system
在线阅读 下载PDF
Knowledge-Based Engineering System and Its Application in Missile Seeker Design
4
作者 ZHAO Hui XI Ping 《Computer Aided Drafting,Design and Manufacturing》 2006年第1期38-43,共6页
Development and application of a prototype KBE system is presented, details of the development tools and platforms, system flow chart, hybrid knowledge representation, and integrated system framework are illustrated. ... Development and application of a prototype KBE system is presented, details of the development tools and platforms, system flow chart, hybrid knowledge representation, and integrated system framework are illustrated. All design tasks of a missile seeker are integrated into a single computer-aided environment with a clear guidance to design processes from the user interface. 展开更多
关键词 knowledge-base engineering (KBE) knowledge representation systemintegration missile seeker
在线阅读 下载PDF
Geographical Engineering and Its Role in Promoting Integrated Geography Research 被引量:1
5
作者 LIU Yansui SU Sixin LI Xuhong 《Chinese Geographical Science》 2025年第1期1-23,共23页
Throughout the contemporary Chinese history of geography,geographical engineering has consistently played a pivotal role as a fundamental scientific activity.It possesses its distinct ontological basis and value orien... Throughout the contemporary Chinese history of geography,geographical engineering has consistently played a pivotal role as a fundamental scientific activity.It possesses its distinct ontological basis and value orientation,rendering it inseparable from being merely a derivative of geographical science or technology.This paper defines geographical engineering and introduces its development history through the lens of Chinese geographical engineering praxises.Furthermore,it is highlighted the logical and functional consistency between the theory of human-earth system and the praxis of geographical engineering.Six modern cases of geographical engineering projects are presented in detail to demonstrate the points and characteristics of different types of modern geographical engineering.Geographical engineering serves as an engine for promoting integrated geography research,and in response to the challenge posed by fragmented geographies,this paper advocates for an urgent revitalization of geographical engineering.The feasibility of revitalizing geographical engineering is guaranteed because it aligns with China’s national strategies. 展开更多
关键词 geographical engineering geographical science and engineering integrated geography research human-earth system Chinese geography
在线阅读 下载PDF
Artificial Intelligence-Enhanced Digital Twin Systems Engineering Towards the Industrial Metaverse in the Era of Industry 5.0 被引量:3
6
作者 He Zhang Yilin Li +2 位作者 Shuai Zhang Lukai Song Fei Tao 《Chinese Journal of Mechanical Engineering》 2025年第2期98-119,共22页
With the continuous advancement and maturation of technologies such as big data,artificial intelligence,virtual reality,robotics,human-machine collaboration,and augmented reality,many enterprises are finding new avenu... With the continuous advancement and maturation of technologies such as big data,artificial intelligence,virtual reality,robotics,human-machine collaboration,and augmented reality,many enterprises are finding new avenues for digital transformation and intelligent upgrading.Industry 5.0,a further extension and development of Industry 4.0,has become an important development trend in industry with more emphasis on human-centered sustainability and flexibility.Accordingly,both the industrial metaverse and digital twins have attracted much attention in this new era.However,the relationship between them is not clear enough.In this paper,a comparison between digital twins and the metaverse in industry is made firstly.Then,we propose the concept and framework of Digital Twin Systems Engineering(DTSE)to demonstrate how digital twins support the industrial metaverse in the era of Industry 5.0 by integrating systems engineering principles.Furthermore,we discuss the key technologies and challenges of DTSE,in particular how artificial intelligence enhances the application of DTSE.Finally,a specific application scenario in the aviation field is presented to illustrate the application prospects of DTSE. 展开更多
关键词 Digital twins Systems engineering Industrial metaverse Artificial intelligence Industry 5.0 Smart manufacturing
在线阅读 下载PDF
New Orientation of Interdisciplinarity in Medicine:Engineering Medicine 被引量:1
7
作者 Jinhui Wu Ning Gu 《Engineering》 2025年第2期252-261,共10页
The trajectory of human history is characterized by a persistent battle against disease.Over time,the field of medicine has transitioned from enigmatic witch doctors and herbal remedies to a sophisticated realm of con... The trajectory of human history is characterized by a persistent battle against disease.Over time,the field of medicine has transitioned from enigmatic witch doctors and herbal remedies to a sophisticated realm of contemporary medicine that includes fundamental medical and health sciences,clinical medicine,and public health.Nevertheless,the present phase of medical advancement encounters significant challenges,particularly in effectively translating basic research findings into practical applications in clinical and public health settings.Scientists increasingly collaborate with clinical experts to overcome these obstacles and address specific clinical issues by delving deeper into fundamental mechanisms.This collaborative effort has created a new interdisciplinary field:engineering medicine(EngMed),which focuses on addressing clinical and public health needs by integrating various scientific disciplines.This article discusses the definition,key tasks,significance,educational implications,and future trends in EngMed. 展开更多
关键词 engineering medicine Life sciences Interdisciplinary medicine Medical theranostics
暂未订购
Optimizing electronic structure through point defect engineering for enhanced electrocatalytic energy conversion
8
作者 Wei Ma Jiahao Yao +6 位作者 Fang Xie Xinqi Wang Hao Wan Xiangjian Shen Lili Zhang Menggai Jiao Zhen Zhou 《Green Energy & Environment》 SCIE EI CAS 2025年第1期109-131,共23页
Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the e... Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the electronic structure of active sites.This optimization influences the adsorption energy of intermediates,thereby mitigating reaction energy barriers,altering paths,enhancing selectivity,and ultimately improving the catalytic efficiency of electrocatalysts.To elucidate the impact of defects on the electrocatalytic process,we comprehensively outline the roles of various point defects,their synthetic methodologies,and characterization techniques.Importantly,we consolidate insights into the relationship between point defects and catalytic activity for hydrogen/oxygen evolution and CO_(2)/O_(2)/N_(2) reduction reactions by integrating mechanisms from diverse reactions.This underscores the pivotal role of point defects in enhancing catalytic performance.At last,the principal challenges and prospects associated with point defects in current electrocatalysts are proposed,emphasizing their role in advancing the efficiency of electrochemical energy storage and conversion materials. 展开更多
关键词 Point defect engineering DOPING VACANCY ELECTROCATALYSIS Electronic structure
在线阅读 下载PDF
Integrating Main-Chain and Side-Chain Engineering in Polymers for Enhanced Photocatalytic Hydrogen Production
9
作者 TIAN Changhao LIU Xueyan +4 位作者 YU Miaojie WU Yongzhen CHE Yu ZHANG Weiwei ZHU Weihong 《功能高分子学报》 北大核心 2025年第3期216-227,共12页
Traditional polymeric photocatalysts are typically constructed using aromatic building blocks to enhanceπ-conjugation.However,their inherent hydrophobicity and rigid structure lead to poor dispersibility in aqueous s... Traditional polymeric photocatalysts are typically constructed using aromatic building blocks to enhanceπ-conjugation.However,their inherent hydrophobicity and rigid structure lead to poor dispersibility in aqueous solutions,resulting in significant optical losses and exciton recombination.In this study,two series of six novel polymer photocatalysts(FLUSO,FLUSO-PEG10,FLUSO-PEG30;CPDTSO,CPDTSO-PEG10,CPDTSO-PEG30)are designed and synthesized by incorporating the hydrophilic,non-conjugated polyethylene glycol(PEG)chain,into both the main and side chains of polymers.By precisely optimizing the ratio of hydrophilic PEG segments,the water dispersibility is significantly improved while the light absorption capability of the polymer photocatalysts is well maintained.The experimental results confirm that the optimized FLUSO-PEG10 exhibits excellent photocatalytic hydrogen evolution rate,reaching up to 33.9 mmol/(g·h),which is nearly three times higher than that of fullyπ-conjugated counterparts.Water contact angles and particle size analyses reveal that incorporating non-conjugated segments into the main chains enhances the capacitance of the polymer/water interface and reduces particle aggregation,leading to improved photocatalyst dispersion and enhanced charge generation. 展开更多
关键词 organic semiconductor polymer photocatalyst main-chain engineering side-chain engineering photocatalytic hydrogen evolution
在线阅读 下载PDF
Morphology engineering of ZnO micro/nanostructures under mild conditions for optoelectronic application
10
作者 Liang Chu Haoyu Shen +3 位作者 Hudie Wei Hongyu Chen Guoqiang Ma Wensheng Yan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期498-503,共6页
Zinc oxide(ZnO)serves as a crucial functional semiconductor with a wide direct bandgap of approximately 3.37 eV.Solvothermal reaction is commonly used in the synthesis of ZnO micro/nanostructures,given its low cost,si... Zinc oxide(ZnO)serves as a crucial functional semiconductor with a wide direct bandgap of approximately 3.37 eV.Solvothermal reaction is commonly used in the synthesis of ZnO micro/nanostructures,given its low cost,simplicity,and easy implementation.Moreover,ZnO morphology engineering has become desirable through the alteration of minor conditions in the reaction process,particularly at room temperature.In this work,ZnO micro/nanostructures were synthesized in a solution by varying the amounts of the ammonia added at low temperatures(including room temperature).The formation of Zn^(2+)complexes by ammonia in the precursor regulated the reaction rate of the morphology engineering of ZnO,which resulted in various structures,such as nanoparticles,nanosheets,microflowers,and single crystals.Finally,the obtained ZnO was used in the optoelectronic application of ultraviolet detectors. 展开更多
关键词 morphology engineering low temperature ZnO nanosheets microflowers ultraviolet detector
在线阅读 下载PDF
Defect Engineering with Rational Dopants Modulation for High‑Temperature Energy Harvesting in Lead‑Free Piezoceramics
11
作者 Kaibiao Xi Jianzhe Guo +2 位作者 Mupeng Zheng Mankang Zhu Yudong Hou 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期87-101,共15页
High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,inclu... High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,including high figure of merit(FOM),insulation resistivity(ρ)and depolarization temperature(Td)are indispensable but hard to achieve in lead-free piezoceramics,especially operating at 250°C has not been reported before.Herein,well-balanced performances are achieved in BiFeO3–BaTiO3 ceramics via innovative defect engineering with respect to delicate manganese doping.Due to the synergistic effect of enhancing electrostrictive coefficient by polarization configuration optimization,regulating iron ion oxidation state by high valence manganese ion and stabilizing domain orientation by defect dipole,comprehensive excellent electrical performances(Td=340°C,ρ250°C>10^(7)Ωcm and FOM_(250°C)=4905×10^(–15)m^(2)N^(−1))are realized at the solid solubility limit of manganese ions.The HT-PEHs assembled using the rationally designed piezoceramic can allow for fast charging of commercial electrolytic capacitor at 250°C with high energy conversion efficiency(η=11.43%).These characteristics demonstrate that defect engineering tailored BF-BT can satisfy high-end HT-PEHs requirements,paving a new way in developing selfpowered wireless sensors working in HT environments. 展开更多
关键词 Lead-free piezoceramic Defect engineering Dopants modulation High-temperature Piezoelectric energy harvester
在线阅读 下载PDF
Research progress of intelligent testing technology and evaluation methods for subgrade engineering 被引量:1
12
作者 Guojun Cai Hongliang Tian +2 位作者 Lulu Liu Xiaoyan Liu Songyu Liu 《Journal of Road Engineering》 2025年第2期164-183,共20页
Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the su... Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the substantial pressures exerted by vehicles,trains,and other forms of transportation,but also efficiently transfer these loads to the underlying foundation,ensuring the stability and longevity of the roadway.In recent years,advancements in subgrade engineering technology have propelled the industry towards smarter,greener,and more sustainable practices,particularly in the areas of intelligent monitoring,disaster management,and innovative construction methods.This paper reviews the application and methodologies of intelligent testing equipment,including cone penetration testing(CPT)devices,soil resistivity testers,and intelligent rebound testers,in subgrade engineering.It examines the operating principles,advantages,limitations,and application ranges of these tools in subgrade testing.Additionally,the paper evaluates the practical use of advanced equipment from both domestic and international perspectives,addressing the challenges encountered by various instruments in realworld applications.These devices enable precise,comprehensive testing and evaluation of subgrade conditions at different stages,providing real-time data analysis and intelligent early warnings.This supports effective subgrade health management and maintenance.As intelligent technologies continue to evolve and integrate,these tools will increasingly enhance the accuracy,efficiency,and sustainability of subgrade monitoring. 展开更多
关键词 Subgrade engineering Intelligent testing technology Technology evaluation Health management and maintenance
在线阅读 下载PDF
Smart Techniques Promoting Sustainability in Construction Engineering and Management 被引量:1
13
作者 Song-Shun Lin Shui-Long Shen +1 位作者 Annan Zhou Xiang-Sheng Chen 《Engineering》 2025年第2期262-282,共21页
Construction engineering and management(CEM)has become increasingly complicated with the increasing size of engineering projects under different construction environments,motivating the digital transformation of CEM.T... Construction engineering and management(CEM)has become increasingly complicated with the increasing size of engineering projects under different construction environments,motivating the digital transformation of CEM.To contribute to a better understanding of the state of the art of smart techniques for engineering projects,this paper provides a comprehensive review of multi-criteria decision-making(MCDM)techniques,intelligent techniques,and their applications in CEM.First,a comprehensive framework detailing smart technologies for construction projects is developed.Next,the characteristics of CEM are summarized.A bibliometric review is then conducted to investigate the keywords,journals,and clusters related to the application of smart techniques in CEM during 2000-2022.Recent advancements in intelligent techniques are also discussed under the following six topics:①big data technology;②computer vision;③speech recognition;④natural language processing;⑤machine learning;and⑥knowledge representation,understanding,and reasoning.The applications of smart techniques are then illustrated via underground space exploitation.Finally,future research directions for the sustainable development of smart construction are highlighted. 展开更多
关键词 Construction engineering and management Multi-criteria decision-making techniques Intelligent techniques Digital transformation SUSTAINABILITY
在线阅读 下载PDF
Recent advances in interfacial engineering for high-efficiency perovskite photovoltaics 被引量:1
14
作者 Zhijie Wang Cheng Gong +4 位作者 Cong Zhang Chenxu Zhao Tzu-Sen Su Haiyun Li Hong Zhang 《DeCarbon》 2025年第2期10-23,共14页
Through strategies such as process optimization,solvent selection,and component tuning,the crystallization of perovskite materials has been effectively controlled,enabling perovskite solar cells(PSCs)to achieve over 2... Through strategies such as process optimization,solvent selection,and component tuning,the crystallization of perovskite materials has been effectively controlled,enabling perovskite solar cells(PSCs)to achieve over 25%power conversion efficiency(PCE).However,as PCE continues to improve,interfacial issues within the devices have emerged as critical bottlenecks,hindering further performance enhancements.Recently,interfacial engineering has driven transformative progress,pushing PCEs to nearly 27%.Building upon these developments,this review first summarizes the pivotal role of interfacial modifications in elevating device performance and then,as a starting point,provides a comprehensive overview of recent advancements in normal,inverted,and tandem structure devices.Finally,based on the current progress of PSCs,preliminary perspectives on future directions are presented. 展开更多
关键词 Perovskite solar cells Interfacial engineering Defect passivation Energy level alignment Ion migration Device stability
在线阅读 下载PDF
Defect Engineering:Can it Mitigate Strong Coulomb Effect of Mg^(2+)in Cathode Materials for Rechargeable Magnesium Batteries?
15
作者 Zhengqing Fan Ruimin Li +3 位作者 Xin Zhang Wanyu Zhao Zhenghui Pan Xiaowei Yang 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期135-159,共25页
Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,th... Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described. 展开更多
关键词 Rechargeable magnesium battery Sluggish diffusion kinetic Defect engineering Cathode materials Ion migration
在线阅读 下载PDF
Enhanced Piezoelectric Properties of (1-x)(0.8PZT-0.2PZN)-xBZT Ceramics via Phase Boundary and Domain Engineering
16
作者 CHEN Xiangjie LI Ling +2 位作者 LEI Tianfu WANG Jiajia WANG Yaojin 《无机材料学报》 北大核心 2025年第6期729-734,共6页
Pb(Zr,Ti)O_(3)-Pb(Zn_(1/3)Nb_(2/3))O_(3) (PZT-PZN) based ceramics, as important piezoelectric materials, have a wide range of applications in fields such as sensors and actuators, thus the optimization of their piezoe... Pb(Zr,Ti)O_(3)-Pb(Zn_(1/3)Nb_(2/3))O_(3) (PZT-PZN) based ceramics, as important piezoelectric materials, have a wide range of applications in fields such as sensors and actuators, thus the optimization of their piezoelectric properties has been a hot research topic. This study investigated the effects of phase boundary engineering and domain engineering on (1-x)[0.8Pb(Zr_(0.5)Ti_(0.5))O_(3)-0.2Pb(Zn_(1/3)Nb_(2/3))O_(3)]-xBi(Zn_(0.5)Ti_(0.5))O_(3) ((1-x)(0.8PZT-0.2PZN)- xBZT) ceramic to obtain excellent piezoelectric properties. The crystal phase structure and microstructure of ceramic samples were characterized. The results showed that all samples had a pure perovskite structure, and the addition of BZT gradually increased the grain size. The addition of BZT caused a phase transition in ceramic samples from the morphotropic phase boundary (MPB) towards the tetragonal phase region, which is crucial for optimizing piezoelectric properties. By adjusting content of BZT and precisely controlling position of the phase boundary, the piezoelectric performance can be optimized. Domain structure is one of the key factors affecting piezoelectric performance. By using domain engineering techniques to optimize grain size and domain size, piezoelectric properties of ceramic samples have been significantly improved. Specifically, excellent piezoelectric properties (piezoelectric constant d_(33)=320 pC/N, electromechanical coupling factor kp=0.44) were obtained simultaneously for x=0.08. Based on experimental results and theoretical analysis, influence mechanisms of phase boundary engineering and domain engineering on piezoelectric properties were explored. The study shows that addition of BZT not only promotes grain growth, but also optimizes the domain structure, enabling the polarization reversal process easier, thereby improving piezoelectric properties. These research results not only provide new ideas for the design of high-performance piezoelectric ceramics, but also lay a theoretical foundation for development of related electronic devices. 展开更多
关键词 phase boundary 0.8PZT-0.2PZN domain engineering piezoelectric property
在线阅读 下载PDF
A physics knowledge-based surrogate model framework for timedependent slope deformation:Considering water effect and sliding states
17
作者 Wenyu Zhuang Yaoru Liu +3 位作者 Kai Zhang Qingchao Lyu Shaokang Hou Qiang Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5416-5436,共21页
The surrogate model serves as an efficient simulation tool during the slope parameter inversion process.However,the creep constitutive model integrated with dynamic damage evolution poses challenges in development of ... The surrogate model serves as an efficient simulation tool during the slope parameter inversion process.However,the creep constitutive model integrated with dynamic damage evolution poses challenges in development of the required surrogate model.In this study,a novel physics knowledge-based surrogate model framework is proposed.In this framework,a Transformer module is employed to capture straindriven softening-hardening physical mechanisms.Positional encoding and self-attention are utilized to transform the constitutive parameters associated with shear strain,which are not directly time-related,into intermediate latent features for physical loss calculation.Next,a multi-layer stacked GRU(gated recurrent unit)network is built to provide input interfaces for time-dependent intermediate latent features,hydraulic boundary conditions,and water-rock interaction degradation equations,with static parameters introduced via external fully-connected layers.Finally,a combined loss function is constructed to facilitate the collaborative training of physical and data loss,introducing time-dependent weight adjustments to focus the surrogate model on accurate deformation predictions during critical phases.Based on the deformation of a reservoir bank landslide triggered by impoundment and subsequent restabilization,an elasto-viscoplastic constitutive model that considers water effect and sliding state dependencies is developed to validate the proposed surrogate model framework.The results indicate that the framework exhibits good performance in capturing physical mechanisms and predicting creep behavior,reducing errors by about 30 times compared to baseline models such as GRU and LSTM(long short-term memory),meeting the precision requirements for parameter inversion.Ablation experiments also confirmed the effectiveness of the framework.This framework can also serve as a reference for constructing other creep surrogate models that involve non-time-related across dimensions. 展开更多
关键词 Reservoir bank slope Time-dependent deformation Elasto-viscoplastic constitutive model Physics knowledge-based deep learning Surrogate model
在线阅读 下载PDF
China Ocean Engineering An International Journal Information for Contributors
18
《China Ocean Engineering》 2025年第2期F0003-F0003,共1页
Aims and scope Being an international journal,China Ocean Engineering(COE)takes its prime function as the integration of new research concepts,equipment,technology,materials and structures and other scientific advance... Aims and scope Being an international journal,China Ocean Engineering(COE)takes its prime function as the integration of new research concepts,equipment,technology,materials and structures and other scientific advances within the field of estuarial,coastal,offshore,and deepwater engineering with particular reference to developments.The Journal is concerned with all engineering aspects involved in the exploration and utilization of ocean resources.Topics regularly covered include research,design and construction of structures(including wharfs,dikes,breakwaters,platforms,mooring systems,etc.),instrumentation/testing(physical model and numerical model),wave dynamics,sedimentation,structural/stress analysis,soil mechanics,and material research. 展开更多
关键词 offshore engineering exploration utilization ocean resourcestopics structure design coastal engineering construction integration new research ocean resources estuarial engineering
在线阅读 下载PDF
International Journal of Plant Engineering and Management Call for Papers
19
《International Journal of Plant Engineering and Management》 2025年第3期F0003-F0003,共1页
Journal Introduction"International Journal of Plant Engineering and Management"is in the charge of Ministry of Industry and Information Technology of the People's Republic of China,and organized by North... Journal Introduction"International Journal of Plant Engineering and Management"is in the charge of Ministry of Industry and Information Technology of the People's Republic of China,and organized by Northwestern Polytechnical University.It is a kind of English academic quarterly publication publicly issued at home and abroad.Plant engineering and management is a comprehensive interdisciplinary subject mainly reporting academic research on the application technology of equipment and industry management. 展开更多
关键词 application technology equipment plant engineering managementis interdisciplinary subject equipment application technology plant engineering industry management academic research engineering management
在线阅读 下载PDF
Geological, Engineering Geological and Hydrogeological Characteristics of the Knowledge Economic City, Al Madinah Al Munawwarah, KSA
20
作者 Mutasim A. M. Ez Eldin Tareq Saeid Al Zahrani +4 位作者 Gabel Zamil Al-Barakati Ibrahim Mohamed AlHarthi Marwan Mohamed Al Saikhan Waleed Abdel Aziz Al Aklouk Waheed Mohamed Saeid Ba Amer 《Geomaterials》 2025年第1期40-55,共16页
The Knowledge Economic City (KEC) of Al Madinah Al Munawwarah is one of the major projects and represents the cornerstone for the new development activities for Al Madinah. The study area contains different geological... The Knowledge Economic City (KEC) of Al Madinah Al Munawwarah is one of the major projects and represents the cornerstone for the new development activities for Al Madinah. The study area contains different geological units dominated by basalt and overlain by surface deposits. The surface soils vary in thickness and can be classified into well-graded SAND with silt and gravel (SW-SM), silty SAND with gravel (SM), silty GRAVEL with sand (GM), and sandy SILTY clay (CL-ML). The subsurface soil obtained from the drilled boreholes can be classified into poorly graded GRAVEL (GP), well-graded GRAVEL with sand (GW), poorly graded GRAVEL with silt (GP-GM), silty CLAYEY gravel with sand (GC-GM), silty SAND with gravel (SM), silt with SAND (ML), and silty CLAY with sand (CL-ML), sandy lean CLAY (CL), and lean CLAY (CL). The relative density of the deposit and the different gravel sizes intercalated with the soil influenced the Standard Penetration Test (SPT) values. The SPT N values are high and approach refusal even at shallow depths. The shallow refusal depth (0.10 to 0.90 m) of the Dynamic Cone Penetration Test (DCPT) was observed. Generally, the soil can be described as inactive with low plasticity and dense to very dense consistency. The basalt of the KEC site is characterized by slightly (W2) to highly (W4) weathering, their strength ranges from moderate (S4) to very strong (S2), and the Rock Quality Designation (RQD) ranges from very poor (R5) to excellent (R1). The engineering geological map of the KEC characterized the geoengineering properties of the soil and rock materials and classified them into many zones. The high sulphate (SO42−) and chloride (Cl−) contents in groundwater call for protective measures for foundation concrete. The current study revealed that geohazard(s) mitigation measures concerning floods, volcanic eruptions, and earthquakes should be considered. 展开更多
关键词 engineering Geology Knowledge Economic City Petrographic Description Rock and Soil Investigations
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部