期刊文献+
共找到358,033篇文章
< 1 2 250 >
每页显示 20 50 100
Forecasting landslide deformation by integrating domain knowledge into interpretable deep learning considering spatiotemporal correlations 被引量:1
1
作者 Zhengjing Ma Gang Mei 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期960-982,共23页
Forecasting landslide deformation is challenging due to influence of various internal and external factors on the occurrence of systemic and localized heterogeneities.Despite the potential to improve landslide predict... Forecasting landslide deformation is challenging due to influence of various internal and external factors on the occurrence of systemic and localized heterogeneities.Despite the potential to improve landslide predictability,deep learning has yet to be sufficiently explored for complex deformation patterns associated with landslides and is inherently opaque.Herein,we developed a holistic landslide deformation forecasting method that considers spatiotemporal correlations of landslide deformation by integrating domain knowledge into interpretable deep learning.By spatially capturing the interconnections between multiple deformations from different observation points,our method contributes to the understanding and forecasting of landslide systematic behavior.By integrating specific domain knowledge relevant to each observation point and merging internal properties with external variables,the local heterogeneity is considered in our method,identifying deformation temporal patterns in different landslide zones.Case studies involving reservoir-induced landslides and creeping landslides demonstrated that our approach(1)enhances the accuracy of landslide deformation forecasting,(2)identifies significant contributing factors and their influence on spatiotemporal deformation characteristics,and(3)demonstrates how identifying these factors and patterns facilitates landslide forecasting.Our research offers a promising and pragmatic pathway toward a deeper understanding and forecasting of complex landslide behaviors. 展开更多
关键词 GEOHAZARDS Landslide deformation forecasting Landslide predictability knowledge infused deep learning interpretable machine learning Attention mechanism Transformer
在线阅读 下载PDF
A Deep-Learning-Based Method for Interpreting Distribution and Difference Knowledge from Raster Topographic Maps 被引量:1
2
作者 PAN Yalan TI Peng +1 位作者 LI Mingyao LI Zhilin 《Journal of Geodesy and Geoinformation Science》 2025年第2期21-36,共16页
Topographic maps,as essential tools and sources of information for geographic research,contain precise spatial locations and rich map features,and they illustrate spatio-temporal information on the distribution and di... Topographic maps,as essential tools and sources of information for geographic research,contain precise spatial locations and rich map features,and they illustrate spatio-temporal information on the distribution and differences of various surface features.Currently,topographic maps are mainly stored in raster and vector formats.Extraction of the spatio-temporal knowledge in the maps—such as spatial distribution patterns,feature relationships,and dynamic evolution—still primarily relies on manual interpretation.However,manual interpretation is time-consuming and laborious,especially for large-scale,long-term map knowledge extraction and application.With the development of artificial intelligence technology,it is possible to improve the automation level of map knowledge interpretation.Therefore,the present study proposes an automatic interpretation method for raster topographic map knowledge based on deep learning.To address the limitations of current data-driven intelligent technology in learning map spatial relations and cognitive logic,we establish a formal description of map knowledge by mapping the relationship between map knowledge and features,thereby ensuring interpretation accuracy.Subsequently,deep learning techniques are employed to extract map features automatically,and the spatio-temporal knowledge is constructed by combining formal descriptions of geographic feature knowledge.Validation experiments demonstrate that the proposed method effectively achieves automatic interpretation of spatio-temporal knowledge of geographic features in maps,with an accuracy exceeding 80%.The findings of the present study contribute to machine understanding of spatio-temporal differences in map knowledge and advances the intelligent interpretation and utilization of cartographic information. 展开更多
关键词 raster topographic maps geographic feature knowledge intelligent interpretation deep learning
在线阅读 下载PDF
Knowledge Driven Machine Learning Towards Interpretable Intelligent Prognostics and Health Management:Review and Case Study
3
作者 Ruqiang Yan Zheng Zhou +6 位作者 Zuogang Shang Zhiying Wang Chenye Hu Yasong Li Yuangui Yang Xuefeng Chen Robert X.Gao 《Chinese Journal of Mechanical Engineering》 2025年第1期31-61,共31页
Despite significant progress in the Prognostics and Health Management(PHM)domain using pattern learning systems from data,machine learning(ML)still faces challenges related to limited generalization and weak interpret... Despite significant progress in the Prognostics and Health Management(PHM)domain using pattern learning systems from data,machine learning(ML)still faces challenges related to limited generalization and weak interpretability.A promising approach to overcoming these challenges is to embed domain knowledge into the ML pipeline,enhancing the model with additional pattern information.In this paper,we review the latest developments in PHM,encapsulated under the concept of Knowledge Driven Machine Learning(KDML).We propose a hierarchical framework to define KDML in PHM,which includes scientific paradigms,knowledge sources,knowledge representations,and knowledge embedding methods.Using this framework,we examine current research to demonstrate how various forms of knowledge can be integrated into the ML pipeline and provide roadmap to specific usage.Furthermore,we present several case studies that illustrate specific implementations of KDML in the PHM domain,including inductive experience,physical model,and signal processing.We analyze the improvements in generalization capability and interpretability that KDML can achieve.Finally,we discuss the challenges,potential applications,and usage recommendations of KDML in PHM,with a particular focus on the critical need for interpretability to ensure trustworthy deployment of artificial intelligence in PHM. 展开更多
关键词 PHM knowledge driven machine learning Signal processing Physics informed INTERPRETABILITY
在线阅读 下载PDF
An Optimized Unsupervised Defect Detection Approach via Federated Learning and Adaptive Embeddings Knowledge Distillation
4
作者 Jinhai Wang Junwei Xue +5 位作者 Hongyan Zhang Hui Xiao Huiling Wei Mingyou Chen Jiang Liao Lufeng Luo 《Computers, Materials & Continua》 2025年第7期1839-1861,共23页
Defect detection based on computer vision is a critical component in ensuring the quality of industrial products.However,existing detection methods encounter several challenges in practical applications,including the ... Defect detection based on computer vision is a critical component in ensuring the quality of industrial products.However,existing detection methods encounter several challenges in practical applications,including the scarcity of labeled samples,limited adaptability of pre-trained models,and the data heterogeneity in distributed environments.To address these issues,this research proposes an unsupervised defect detection method,FLAME(Federated Learning with Adaptive Multi-Model Embeddings).The method comprises three stages:(1)Feature learning stage:this work proposes FADE(Feature-Adaptive Domain-Specific Embeddings),a framework employs Gaussian noise injection to simulate defective patterns and implements a feature discriminator for defect detection,thereby enhancing the pre-trained model’s industrial imagery representation capabilities.(2)Knowledge distillation co-training stage:a multi-model feature knowledge distillation mechanism is introduced.Through feature-level knowledge transfer between the global model and historical local models,the current local model is guided to learn better feature representations from the global model.The approach prevents local models from converging to local optima and mitigates performance degradation caused by data heterogeneity.(3)Model parameter aggregation stage:participating clients utilize weighted averaging aggregation to synthesize an updated global model,facilitating efficient knowledge consolidation.Experimental results demonstrate that FADE improves the average image-level Area under the Receiver Operating Characteristic Curve(AUROC)by 7.34%compared to methods directly utilizing pre-trained models.In federated learning environments,FLAME’s multi-model feature knowledge distillation mechanism outperforms the classic FedAvg algorithm by 2.34%in average image-level AUROC,while exhibiting superior convergence properties. 展开更多
关键词 Federated learning defect detection knowledge distillation unsupervised learning
在线阅读 下载PDF
Manuscripts,Images,and Medicine:The Encounter of Eurasian Medical Knowledge and Mutual Learning of Civilizations
5
作者 CHEN Ming 《Chinese Medicine and Culture》 2025年第2期97-98,F0002,共3页
For the history of medical culture in the world,the exchange and transmission of medical knowledge has formed an important part of mutual learning among different cultures,which has also increasingly shown unique acad... For the history of medical culture in the world,the exchange and transmission of medical knowledge has formed an important part of mutual learning among different cultures,which has also increasingly shown unique academic value in the study of knowledge history.Traditional Eastern medicine(such as Chinese medicine,Indian ayurvedic medicine,Persian medicine,Arabic medicine),and other medical systems in the ancient Western world(including Greek medicine and Roman medicine)have left precious literature/texts,cultural relics(for example,pills,preparations,medical instruments),folklore and legends,which truly record the process of learning,transplantation,fusion and succession after the encounter of different medical systems at least for the past two thousand years. 展开更多
关键词 IMAGES mutual learning MANUSCRIPTS medical systems exchange transmission medical knowledge eastern medicine such MEDICINE Eurasian medical knowledge
暂未订购
The Construction of Knowledge Base in Project-Based Learning Research-A Cite Space Visualization Study
6
作者 Gaoyu Xu 《Journal of Contemporary Educational Research》 2025年第9期38-49,共12页
The“Opinions on Comprehensively Deepening Curriculum Reform to Fulfill the Fundamental Task of Strengthening Moral Education”,issued by China’s Ministry of Education in 2015,explicitly identified Project-Based Lear... The“Opinions on Comprehensively Deepening Curriculum Reform to Fulfill the Fundamental Task of Strengthening Moral Education”,issued by China’s Ministry of Education in 2015,explicitly identified Project-Based Learning(PBL)as a key strategy for cultivating students’core competencies.Since then,PBL has been widely implemented as a pilot initiative in primary and secondary schools,gaining increasing influence.Analyzing the intellectual foundations of PBL research in China can offer valuable insights into its theoretical and practical dimensions.This study uses CiteSpace to examine 156 PBL-related articles from the CSSCI database,revealing that the knowledge base of PBL research is primarily built on two major domains.The first is the theoretical foundation,characterized by frequently cited literature focusing on the conceptual framework,educational value,interdisciplinary approaches,core competency cultivation,and instructional objectives of PBL.The second is empirical research,where highly cited studies include case analyses across K–12 settings,general high schools,and higher education institutions.Moving forward,future research on PBL should explore its meaning and value from a dual-subject and integrated perspective,expand case studies to include vocational education,and further promote the interdisciplinary development of core competencies through PBL. 展开更多
关键词 Project-based learning knowledge base Cite space
在线阅读 下载PDF
DKP-ADS:Domain knowledge prompt combined with multi-task learning for assessment of foliar disease severity in staple crops
7
作者 Yujiao Dan Xingcai Wu +5 位作者 Ya Yu Ziang Zou R.D.S.M Gunarathna Peijia Yu Yuanyuan Xiao Qi Wang 《The Crop Journal》 2025年第6期1939-1954,共16页
Staple crops are the cornerstone of the food supply but are frequently threatened by plant diseases.Effective disease management,including disease identification and severity assessment,helps to better address these c... Staple crops are the cornerstone of the food supply but are frequently threatened by plant diseases.Effective disease management,including disease identification and severity assessment,helps to better address these challenges.Currently,methods for disease severity assessment typically rely on calculating the area proportion of disease segmentation regions or using classification networks for severity assessment.However,these methods require large amounts of labeled data and fail to quantify lesion proportions when using classification networks,leading to inaccurate evaluations.To address these issues,we propose an automated framework for disease severity assessment that combines multi-task learning and knowledge-driven large-model segmentation techniques.This framework includes an image information processor,a lesion and leaf segmentation module,and a disease severity assessment module.First,the image information processor utilizes a multi-task learning strategy to analyze input images comprehensively,ensuring a deep understanding of disease characteristics.Second,the lesion and leaf segmentation module employ prompt-driven large-model technology to accurately segment diseased areas and entire leaves,providing detailed visual analysis.Finally,the disease severity assessment module objectively evaluates the severity of the disease based on professional grading standards by calculating lesion area proportions.Additionally,we have developed a comprehensive database of diseased leaf images from major crops,including several task-specific datasets.Experimental results demonstrate that our framework can accurately identify and assess the types and severity of crop diseases,even without extensive labeled data.Codes and data are available at http://dkp-ads.samlab.cn/. 展开更多
关键词 Domain knowledge Prompt-driven Multi-task learning Staple crop Assessment of disease severity
在线阅读 下载PDF
A knowledge graph-based reinforcement learning approach for cooperative caching in MEC-enabled heterogeneous networks
8
作者 Dan Wang Yalu Bai Bin Song 《Digital Communications and Networks》 2025年第4期1236-1244,共9页
Existing wireless networks are flooded with video data transmissions,and the demand for high-speed and low-latency video services continues to surge.This has brought with it challenges to networks in the form of conge... Existing wireless networks are flooded with video data transmissions,and the demand for high-speed and low-latency video services continues to surge.This has brought with it challenges to networks in the form of congestion as well as the need for more resources and more dedicated caching schemes.Recently,Multi-access Edge Computing(MEC)-enabled heterogeneous networks,which leverage edge caches for proximity delivery,have emerged as a promising solution to all of these problems.Designing an effective edge caching scheme is critical to its success,however,in the face of limited resources.We propose a novel Knowledge Graph(KG)-based Dueling Deep Q-Network(KG-DDQN)for cooperative caching in MEC-enabled heterogeneous networks.The KGDDQN scheme leverages a KG to uncover video relations,providing valuable insights into user preferences for the caching scheme.Specifically,the KG guides the selection of related videos as caching candidates(i.e.,actions in the DDQN),thus providing a rich reference for implementing a personalized caching scheme while also improving the decision efficiency of the DDQN.Extensive simulation results validate the convergence effectiveness of the KG-DDQN,and it also outperforms baselines regarding cache hit rate and service delay. 展开更多
关键词 Multi-access edge computing Cooperative caching Resource allocation knowledge graph Reinforcement learning
在线阅读 下载PDF
Fault Detection in Wind Turbine Bearings by Coupling Knowledge Graph and Machine Learning Approach
9
作者 Paras Garg Arvind Keprate +2 位作者 Gunjan Soni A.P.S.Rathore O.P.Yadav 《Journal of Dynamics, Monitoring and Diagnostics》 2025年第4期250-263,共14页
Fault sensing in wind turbine(WT)generator bearings is essential for ensuring reliability and holding down maintenance costs.Feeding raw sensor data to machine learning(ML)model often overlooks the enveloping interdep... Fault sensing in wind turbine(WT)generator bearings is essential for ensuring reliability and holding down maintenance costs.Feeding raw sensor data to machine learning(ML)model often overlooks the enveloping interdependencies between system elements.This study proposes a new hybrid method that combines the domain knowledge via knowledge graphs(KGs)and the traditional feature-based data.Incorporation of contextual relationships through construction of graph embedding methods,such as Node2Vec,can capture meaningful information,such as the relationships among key parameters(e.g.wind speed,rotor Revolutions Per Minute(RPM),and temperature)in the enriched feature representations.These node embeddings,when augmented with the original data,can be used to allow the model to learn and generalize better.As shown in results achieved on experimental data,the augmented ML model(with KG)is much better at predicting with the help of accuracy and error measure compared to traditional ML methods.Paired t-test analysis proves the statistical validity of this improvement.Moreover,graph-based feature importance increases the interpretability of the model and helps to uncover the structurally significant variables that are otherwise ignored by the common methods.The approach provides an excellent,knowledge-guided manner through which intelligent fault detection can be executed on WT systems. 展开更多
关键词 anomaly detection knowledge graph embedding machine learning wind turbine fault detection
在线阅读 下载PDF
Adaptive multi-view learning method for enhanced drug repurposing using chemical-induced transcriptional profiles, knowledge graphs, and large language models
10
作者 Yudong Yan Yinqi Yang +9 位作者 Zhuohao Tong Yu Wang Fan Yang Zupeng Pan Chuan Liu Mingze Bai Yongfang Xie Yuefei Li Kunxian Shu Yinghong Li 《Journal of Pharmaceutical Analysis》 2025年第6期1354-1369,共16页
Drug repurposing offers a promising alternative to traditional drug development and significantly re-duces costs and timelines by identifying new therapeutic uses for existing drugs.However,the current approaches ofte... Drug repurposing offers a promising alternative to traditional drug development and significantly re-duces costs and timelines by identifying new therapeutic uses for existing drugs.However,the current approaches often rely on limited data sources and simplistic hypotheses,which restrict their ability to capture the multi-faceted nature of biological systems.This study introduces adaptive multi-view learning(AMVL),a novel methodology that integrates chemical-induced transcriptional profiles(CTPs),knowledge graph(KG)embeddings,and large language model(LLM)representations,to enhance drug repurposing predictions.AMVL incorporates an innovative similarity matrix expansion strategy and leverages multi-view learning(MVL),matrix factorization,and ensemble optimization techniques to integrate heterogeneous multi-source data.Comprehensive evaluations on benchmark datasets(Fdata-set,Cdataset,and Ydataset)and the large-scale iDrug dataset demonstrate that AMVL outperforms state-of-the-art(SOTA)methods,achieving superior accuracy in predicting drug-disease associations across multiple metrics.Literature-based validation further confirmed the model's predictive capabilities,with seven out of the top ten predictions corroborated by post-2011 evidence.To promote transparency and reproducibility,all data and codes used in this study were open-sourced,providing resources for pro-cessing CTPs,KG,and LLM-based similarity calculations,along with the complete AMVL algorithm and benchmarking procedures.By unifying diverse data modalities,AMVL offers a robust and scalable so-lution for accelerating drug discovery,fostering advancements in translational medicine and integrating multi-omics data.We aim to inspire further innovations in multi-source data integration and support the development of more precise and efficient strategies for advancing drug discovery and translational medicine. 展开更多
关键词 Drug repurposing Multi-view learning Chemical-induced transcriptional profile knowledge graph Large language model Heterogeneous network
在线阅读 下载PDF
Rethinking Ancient Learning:The Japanese KohōSchool and Medical Knowledge Exchange in Early Modern East Asia
11
作者 XIANG Jingjing 《Chinese Medicine and Culture》 2025年第2期181-191,共11页
During the 17th and 18th centuries,medical exchanges between Japan and China were frequent and intensive.In the 17th century,due to the wars during the Ming-Qing transition,numerous Chinese physicians came to Japan,br... During the 17th and 18th centuries,medical exchanges between Japan and China were frequent and intensive.In the 17th century,due to the wars during the Ming-Qing transition,numerous Chinese physicians came to Japan,bringing with them advanced medical techniques and newly published medical texts.In the early 18th century,following Tokugawa Yoshimune’s(徳川吉宗)implementation of medical reform policies,many Chinese physicians arrived in Japan.There,they exchanged knowledge with Japanese physicians and facilitated the publication of Chinese medical texts in Japan.These exchanges significantly increased attention to Chinese medical works,particularly Shang Han Lun(《伤寒论》Treatise on Cold Damage),within Edo medical circles.This had a profound impact on physicians of the Japanese Kohōschool(古方派)and significantly contributed to shaping Kampōmedicine into its contemporary form.From the perspectives of intellectual history and knowledge exchange,this paper explores the circulation of medical knowledge between China and Japan during the early modern period,examining its profound historical influence on Japanese medicine.The study specifically aims to clarify the authentic meaning of“Ancient Learning(复古)”and to correct the prevailing academic misconception that the Kohōschool exclusively focused on reviving Shang Han Lun. 展开更多
关键词 East Asian cultural sphere Medical knowledge Kohōschool(古方派) “Returning to Ancient learning(复古)” Shang Han Lun(《伤寒论》Treatise on Cold Damage)
暂未订购
Extrapolation Reasoning on Temporal Knowledge Graphs via Temporal Dependencies Learning
12
作者 Ye Wang Binxing Fang +3 位作者 Shuxian Huang Kai Chen Yan Jia Aiping Li 《CAAI Transactions on Intelligence Technology》 2025年第3期815-826,共12页
Extrapolation on Temporal Knowledge Graphs(TKGs)aims to predict future knowledge from a set of historical Knowledge Graphs in chronological order.The temporally adjacent facts in TKGs naturally form event sequences,ca... Extrapolation on Temporal Knowledge Graphs(TKGs)aims to predict future knowledge from a set of historical Knowledge Graphs in chronological order.The temporally adjacent facts in TKGs naturally form event sequences,called event evolution patterns,implying informative temporal dependencies between events.Recently,many extrapolation works on TKGs have been devoted to modelling these evolutional patterns,but the task is still far from resolved because most existing works simply rely on encoding these patterns into entity representations while overlooking the significant information implied by relations of evolutional patterns.However,the authors realise that the temporal dependencies inherent in the relations of these event evolution patterns may guide the follow-up event prediction to some extent.To this end,a Temporal Relational Context-based Temporal Dependencies Learning Network(TRenD)is proposed to explore the temporal context of relations for more comprehensive learning of event evolution patterns,especially those temporal dependencies caused by interactive patterns of relations.Trend incorporates a semantic context unit to capture semantic correlations between relations,and a structural context unit to learn the interaction pattern of relations.By learning the temporal contexts of relations semantically and structurally,the authors gain insights into the underlying event evolution patterns,enabling to extract comprehensive historical information for future prediction better.Experimental results on benchmark datasets demonstrate the superiority of the model. 展开更多
关键词 EXTRAPOLATION link prediction temporal knowledge graph reasoning
在线阅读 下载PDF
Contrastive Learning-Based Multi-Level Knowledge Distillation
13
作者 Lin Li Jianping Gou +2 位作者 Weihua Ou Wenbai Chen Lan Du 《CAAI Transactions on Intelligence Technology》 2025年第5期1478-1488,共11页
With the increasing constraints of hardware devices,there is a growing demand for compact models to be deployed on device endpoints.Knowledge distillation,a widely used technique for model compression and knowledge tr... With the increasing constraints of hardware devices,there is a growing demand for compact models to be deployed on device endpoints.Knowledge distillation,a widely used technique for model compression and knowledge transfer,has gained significant attention in recent years.However,traditional distillation approaches compare the knowledge of individual samples indirectly through class prototypes overlooking the structural relationships between samples.Although recent distillation methods based on contrastive learning can capture relational knowledge,their relational constraints often distort the positional information of the samples leading to compromised performance in the distilled model.To address these challenges and further enhance the performance of compact models,we propose a novel approach,termed contrastive learning-based multi-level knowledge distillation(CLMKD).The CLMKD framework introduces three key modules:class-guided contrastive distillation,gradient relation contrastive distillation,and semantic similarity distillation.These modules are effectively integrated into a unified framework to extract feature knowledge from multiple levels,capturing not only the representational consistency of individual samples but also their higher-order structure and semantic similarity.We evaluate the proposed CLMKD method on multiple image classification datasets and the results demonstrate its superior performance compared to state-of-the-art knowledge distillation methods. 展开更多
关键词 computer vision deep learning image classification image processing
在线阅读 下载PDF
Semantic Knowledge Based Reinforcement Learning Formalism for Smart Learning Environments
14
作者 Taimoor Hassan Ibrar Hussain +3 位作者 Hafiz Mahfooz Ul Haque Hamid Turab Mirza Muhammad Nadeem Ali Byung-Seo Kim 《Computers, Materials & Continua》 2025年第10期2071-2094,共24页
Smart learning environments have been considered as vital sources and essential needs in modern digital education systems.With the rapid proliferation of smart and assistive technologies,smart learning processes have ... Smart learning environments have been considered as vital sources and essential needs in modern digital education systems.With the rapid proliferation of smart and assistive technologies,smart learning processes have become quite convenient,comfortable,and financially affordable.This shift has led to the emergence of pervasive computing environments,where user’s intelligent behavior is supported by smart gadgets;however,it is becoming more challenging due to inconsistent behavior of Artificial intelligence(AI)assistive technologies in terms of networking issues,slow user responses to technologies and limited computational resources.This paper presents a context-aware predictive reasoning based formalism for smart learning environments that facilitates students in managing their academic as well as extra-curricular activities autonomously with limited human intervention.This system consists of a three-tier architecture including the acquisition of the contextualized information from the environment autonomously,modeling the system using Web Ontology Rule Language(OWL 2 RL)and Semantic Web Rule Language(SWRL),and perform reasoning to infer the desired goals whenever and wherever needed.For contextual reasoning,we develop a non-monotonic reasoning based formalism to reason with contextual information using rule-based reasoning.The focus is on distributed problem solving,where context-aware agents exchange information using rule-based reasoning and specify constraints to accomplish desired goals.To formally model-check and simulate the system behavior,we model the case study of a smart learning environment in the UPPAAL model checker and verify the desired properties in the model,such as safety,liveness and robust properties to reflect the overall correctness behavior of the system with achieving the minimum analysis time of 0.002 s and 34,712 KB memory utilization. 展开更多
关键词 CONTEXT-AWARENESS reinforcement learning multi-agent systems non-monotonic reasoning formal verification
在线阅读 下载PDF
Evaluations of large language models in computational fluid dynamics:Leveraging,learning and creating knowledge
15
作者 Long Wang Lei Zhang Guowei He 《Theoretical & Applied Mechanics Letters》 2025年第3期207-218,共12页
This paper investigates the capabilities of large language models(LLMs)to leverage,learn and create knowledge in solving computational fluid dynamics(CFD)problems through three categories of baseline problems.These ca... This paper investigates the capabilities of large language models(LLMs)to leverage,learn and create knowledge in solving computational fluid dynamics(CFD)problems through three categories of baseline problems.These categories include(1)conventional CFD problems that can be solved using existing numerical methods in LLMs,such as lid-driven cavity flow and the Sod shock tube problem;(2)problems that require new numerical methods beyond those available in LLMs,such as the recently developed Chien-physics-informed neural networks for singularly perturbed convection-diffusion equations;and(3)problems that cannot be solved using existing numerical methods in LLMs,such as the ill-conditioned Hilbert linear algebraic systems.The evaluations indicate that reasoning LLMs overall outperform non-reasoning models in four test cases.Reasoning LLMs show excellent performance for CFD problems according to the tailored prompts,but their current capability in autonomous knowledge exploration and creation needs to be enhanced. 展开更多
关键词 Large language models Computational fluid dynamics Machine learning
在线阅读 下载PDF
Deep learning retrieval of 3D casting models combined with professional knowledge for process reuse
16
作者 Xiao-long Pei Hua Hou +2 位作者 Li-wen Chen Zhi-qiang Duan Yu-hong Zhao 《China Foundry》 2025年第6期710-722,共13页
Accurate retrieval of casting 3D models is crucial for process reuse.Current methods primarily focus on shape similarity,neglecting process design features,which compromises reusability.In this study,a novel deep lear... Accurate retrieval of casting 3D models is crucial for process reuse.Current methods primarily focus on shape similarity,neglecting process design features,which compromises reusability.In this study,a novel deep learning retrieval method for process reuse was proposed,which integrates process design features into the retrieval of casting 3D models.This method leverages the comparative language-image pretraining(CLIP)model to extract shape features from the three views and sectional views of the casting model and combines them with process design features such as modulus,main wall thickness,symmetry,and length-to-height ratio to enhance process reusability.A database of 230 production casting models was established for model validation.Results indicate that incorporating process design features improves model accuracy by 6.09%,reaching 97.82%,and increases process similarity by 30.25%.The reusability of the process was further verified using the casting simulation software EasyCast.The results show that the process retrieved after integrating process design features produces the least shrinkage in the target model,demonstrating this method’s superior ability for process reuse.This approach does not require a large dataset for training and optimization,making it highly applicable to casting process design and related manufacturing processes. 展开更多
关键词 CASTING 3D model retrieval process reuse deep learning
在线阅读 下载PDF
Knowledge-integrated deep learning for predicting stochastic thermal regime of embankment in permafrost region
17
作者 Lei Xiao Gang Mei Nengxiong Xu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3420-3434,共15页
The warming and thawing of permafrost are the primary factors that impact the stability of embankments in cold regions.However,due to uncertainties in thermal boundaries and soil properties,the stochastic modeling of ... The warming and thawing of permafrost are the primary factors that impact the stability of embankments in cold regions.However,due to uncertainties in thermal boundaries and soil properties,the stochastic modeling of thermal regimes is challenging and computationally expensive.To address this,we propose a knowledge-integrated deep learning method for predicting the stochastic thermal regime of embankments in permafrost regions.Geotechnical knowledge is embedded in the training data through numerical modeling,while the neural network learns the mapping from the thermal boundary and soil property fields to the temperature field.The effectiveness of our method is verified in comparison with monitoring data and numerical analysis results.Experimental results show that the proposed method achieves good accuracy with small coefficient of variation.It still provides satisfactory accuracy as the coefficient of variation increases.The proposed knowledge-integrated deep learning method provides an efficient approach to predict the stochastic thermal regime of heterogeneous embankments.It can also be used in other permafrost engineering investigations that require stochastic numerical modeling. 展开更多
关键词 Frozen soil EMBANKMENT Stochastic thermal regime knowledge-integrated deep learning Deep neural operator
在线阅读 下载PDF
Machine learning on glass-forming ability of metallic glasses guided by domain knowledge
18
作者 Hong BO Xu-dong CHEN +3 位作者 Li-bin LIU Xiao-gang FANG Jian-liang HU Li-min WANG 《Transactions of Nonferrous Metals Society of China》 2025年第11期3824-3835,共12页
To improve the accuracy of machine learning in predicting the glass-forming ability,the atomic size difference,mixing enthalpy and estimated viscosity at liquidus temperature were selected as features from the perspec... To improve the accuracy of machine learning in predicting the glass-forming ability,the atomic size difference,mixing enthalpy and estimated viscosity at liquidus temperature were selected as features from the perspectives of structure,thermodynamics and kinetics.Various algorithms including random forest(RF),extreme gradient boosting(XGBoost),and multilayer perceptron(MLP),were employed to predict the maximum size of the metallic glasses.Results show that the XGBoost models using the original and augmented datasets both exhibit superior performance,with the latter achieving the highest determination coefficient of 0.9148 among all the models.For predicting the maximum sizes of unseen Zr-Cu-Ni-Al-(Y)alloys,the XGBoost model trained on the augmented dataset demonstrates the best agreement with the measured data,indicating excellent generalization ability.By model interpretation,it is found that the kinetic factor correlates more with glass-forming ability compared with the thermodynamic and structural factors. 展开更多
关键词 machine learning extreme gradient boosting(XGBoost) Zr-Cu-Ni-Al-Y alloys glass-forming ability data augmentation
在线阅读 下载PDF
LLM-KE: An Ontology-Aware LLM Methodology for Military Domain Knowledge Extraction
19
作者 Yu Tao Ruopeng Yang +3 位作者 Yongqi Wen Yihao Zhong Kaige Jiao Xiaolei Gu 《Computers, Materials & Continua》 2026年第1期2045-2061,共17页
Since Google introduced the concept of Knowledge Graphs(KGs)in 2012,their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition,extraction,representati... Since Google introduced the concept of Knowledge Graphs(KGs)in 2012,their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition,extraction,representation,modeling,fusion,computation,and storage.Within this framework,knowledge extraction,as the core component,directly determines KG quality.In military domains,traditional manual curation models face efficiency constraints due to data fragmentation,complex knowledge architectures,and confidentiality protocols.Meanwhile,crowdsourced ontology construction approaches from general domains prove non-transferable,while human-crafted ontologies struggle with generalization deficiencies.To address these challenges,this study proposes an OntologyAware LLM Methodology for Military Domain Knowledge Extraction(LLM-KE).This approach leverages the deep semantic comprehension capabilities of Large Language Models(LLMs)to simulate human experts’cognitive processes in crowdsourced ontology construction,enabling automated extraction of military textual knowledge.It concurrently enhances knowledge processing efficiency and improves KG completeness.Empirical analysis demonstrates that this method effectively resolves scalability and dynamic adaptation challenges in military KG construction,establishing a novel technological pathway for advancing military intelligence development. 展开更多
关键词 knowledge extraction natural language processing knowledge graph large language model
在线阅读 下载PDF
Predicting lymph node metastasis in colorectal cancer using caselevel multiple instance learning
20
作者 Ling-Feng Zou Xuan-Bing Wang +4 位作者 Jing-Wen Li Xin Ouyang Yi-Ying Luo Yan Luo Cheng-Long Wang 《World Journal of Gastroenterology》 2026年第1期110-125,共16页
BACKGROUND The accurate prediction of lymph node metastasis(LNM)is crucial for managing locally advanced(T3/T4)colorectal cancer(CRC).However,both traditional histopathology and standard slide-level deep learning ofte... BACKGROUND The accurate prediction of lymph node metastasis(LNM)is crucial for managing locally advanced(T3/T4)colorectal cancer(CRC).However,both traditional histopathology and standard slide-level deep learning often fail to capture the sparse and diagnostically critical features of metastatic potential.AIM To develop and validate a case-level multiple-instance learning(MIL)framework mimicking a pathologist's comprehensive review and improve T3/T4 CRC LNM prediction.METHODS The whole-slide images of 130 patients with T3/T4 CRC were retrospectively collected.A case-level MIL framework utilising the CONCH v1.5 and UNI2-h deep learning models was trained on features from all haematoxylin and eosinstained primary tumour slides for each patient.These pathological features were subsequently integrated with clinical data,and model performance was evaluated using the area under the curve(AUC).RESULTS The case-level framework demonstrated superior LNM prediction over slide-level training,with the CONCH v1.5 model achieving a mean AUC(±SD)of 0.899±0.033 vs 0.814±0.083,respectively.Integrating pathology features with clinical data further enhanced performance,yielding a top model with a mean AUC of 0.904±0.047,in sharp contrast to a clinical-only model(mean AUC 0.584±0.084).Crucially,a pathologist’s review confirmed that the model-identified high-attention regions correspond to known high-risk histopathological features.CONCLUSION A case-level MIL framework provides a superior approach for predicting LNM in advanced CRC.This method shows promise for risk stratification and therapy decisions,requiring further validation. 展开更多
关键词 Colorectal cancer Lymph node metastasis Deep learning Multiple instance learning HISTOPATHOLOGY
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部