Since Google introduced the concept of Knowledge Graphs(KGs)in 2012,their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition,extraction,representati...Since Google introduced the concept of Knowledge Graphs(KGs)in 2012,their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition,extraction,representation,modeling,fusion,computation,and storage.Within this framework,knowledge extraction,as the core component,directly determines KG quality.In military domains,traditional manual curation models face efficiency constraints due to data fragmentation,complex knowledge architectures,and confidentiality protocols.Meanwhile,crowdsourced ontology construction approaches from general domains prove non-transferable,while human-crafted ontologies struggle with generalization deficiencies.To address these challenges,this study proposes an OntologyAware LLM Methodology for Military Domain Knowledge Extraction(LLM-KE).This approach leverages the deep semantic comprehension capabilities of Large Language Models(LLMs)to simulate human experts’cognitive processes in crowdsourced ontology construction,enabling automated extraction of military textual knowledge.It concurrently enhances knowledge processing efficiency and improves KG completeness.Empirical analysis demonstrates that this method effectively resolves scalability and dynamic adaptation challenges in military KG construction,establishing a novel technological pathway for advancing military intelligence development.展开更多
The reliable operation of power grid secondary equipment is an important guarantee for the safety and stability of the power system.However,various defects could be produced in the secondary equipment during longtermo...The reliable operation of power grid secondary equipment is an important guarantee for the safety and stability of the power system.However,various defects could be produced in the secondary equipment during longtermoperation.The complex relationship between the defect phenomenon andmulti-layer causes and the probabilistic influence of secondary equipment cannot be described through knowledge extraction and fusion technology by existing methods,which limits the real-time and accuracy of defect identification.Therefore,a defect recognition method based on the Bayesian network and knowledge graph fusion is proposed.The defect data of secondary equipment is transformed into the structured knowledge graph through knowledge extraction and fusion technology.The knowledge graph of power grid secondary equipment is mapped to the Bayesian network framework,combined with historical defect data,and introduced Noisy-OR nodes.The prior and conditional probabilities of the Bayesian network are then reasonably assigned to build a model that reflects the probability dependence between defect phenomena and potential causes in power grid secondary equipment.Defect identification of power grid secondary equipment is achieved by defect subgraph search based on the knowledge graph,and defect inference based on the Bayesian network.Practical application cases prove this method’s effectiveness in identifying secondary equipment defect causes,improving identification accuracy and efficiency.展开更多
With the widespread use of social media,the propagation of health-related rumors has become a significant public health threat.Existing methods for detecting health rumors predominantly rely on external knowledge or p...With the widespread use of social media,the propagation of health-related rumors has become a significant public health threat.Existing methods for detecting health rumors predominantly rely on external knowledge or propagation structures,with only a few recent approaches attempting causal inference;however,these have not yet effectively integrated causal discovery with domain-specific knowledge graphs for detecting health rumors.In this study,we found that the combined use of causal discovery and domain-specific knowledge graphs can effectively identify implicit pseudo-causal logic embedded within texts,holding significant potential for health rumor detection.To this end,we propose CKDG—a dual-graph fusion framework based on causal logic and medical knowledge graphs.CKDG constructs a weighted causal graph to capture the implicit causal relationships in the text and introduces a medical knowledge graph to verify semantic consistency,thereby enhancing the ability to identify the misuse of professional terminology and pseudoscientific claims.In experiments conducted on a dataset comprising 8430 health rumors,CKDG achieved an accuracy of 91.28%and an F1 score of 90.38%,representing improvements of 5.11%and 3.29%over the best baseline,respectively.Our results indicate that the integrated use of causal discovery and domainspecific knowledge graphs offers significant advantages for health rumor detection systems.This method not only improves detection performance but also enhances the transparency and credibility of model decisions by tracing causal chains and sources of knowledge conflicts.We anticipate that this work will provide key technological support for the development of trustworthy health-information filtering systems,thereby improving the reliability of public health information on social media.展开更多
Xi Jinping,general secretary of the Communist Party of China(CPC)Central Committee,stressed that we should adhere to the“two integrations”(namely,integrating the basic tenets of Marxism with China’s specific realit...Xi Jinping,general secretary of the Communist Party of China(CPC)Central Committee,stressed that we should adhere to the“two integrations”(namely,integrating the basic tenets of Marxism with China’s specific realities and fine traditional culture),root ourselves in Chinese soil,carry forward the Chinese cultural heritage,and strengthen the academic foundation.We should accelerate the building of an independent knowledge system for Chinese philosophy and social sciences,and formulate original concepts and develop systems of academic discipline,research and discourse,drawing on China’s rich experience of advancing human rights.In the face of changes of a magnitude not seen in a century,in the historic process of advancing the great rejuvenation of the Chinese nation on all fronts through Chinese modernization,we should and must strengthen our theoretical self-consciousness and confidence in the path of Chinese modernization.We need to enhance human rights research,develop the human rights theoretical system and paradigm that are based on Chinese realities and express Chinese voice,and an independent Chinese knowledge system for human rights.展开更多
The global rise in animal protein consumption has significantly amplified the demand for fodder.A comprehensive understanding of the diversity and characteristics of existing fodder resources is essential for balanced...The global rise in animal protein consumption has significantly amplified the demand for fodder.A comprehensive understanding of the diversity and characteristics of existing fodder resources is essential for balanced nutritional fodder production.This study investigates the diversity and composition of fodder plants and identifies key species for cattle in Zhaotong City,Yunnan,China,while documenting indigenous knowledge on their usage and selection criteria.Ethnobotanical surveys were conducted in 19 villages across seven townships with 140 informants.Data were collected through semi-structured interviews,free listing,and participatory observation,and analyzed using Relative Frequency Citation.A total of 125 taxa(including 106 wild and 19 cultivated)were reported.The most cited family is Poaceae(27 taxa,21.43%),followed by Asteraceae(17 taxa,13.49%),Fabaceae(14 taxa,11.11%),Polygonaceae(9 taxa,7.14%)and Lamiaceae(4 taxa,3.17%).The whole plant(66.04%)and herbaceous plants(84.80%)were the most used parts and life forms.The most cited species were Zea mays,Brassica rapa,Solanum tuberosum,Eragrostis nigra,and Artemisia dubia.Usage of diverse fodder resources reflects local wisdom in managing resource availability and achieving balanced nutrition while coping with environmental and climatic risks.Preferences for certain taxonomic groups are due to their quality as premier fodder resources.To promote integrated crop-livestock farming,we suggest further research into highly preferred fodder species,focusing on nutritional assessment,digestibility,meat quality impacts,and potential as antibiotic alternatives.Establishing germplasm and gene banks for fodder resources is also recommended.展开更多
Water scarcity poses a significant challenge globally,with South Africa exemplifying the severe socio-economic and environmental impacts of limited water access.Despite advances in modern water management systems,the ...Water scarcity poses a significant challenge globally,with South Africa exemplifying the severe socio-economic and environmental impacts of limited water access.Despite advances in modern water management systems,the integration of indigenous knowledge(IK)into formal frameworks remains underutilized.This study systematically reviews the role of indigenous water conservation practices in South Africa,analyzing over 50 high-quality sources using the PRISMA methodology.The findings highlight the effectiveness of IK in addressing water scarcity through techniques such as rainwater harvesting,terracing,and wetland management,which are low-cost,environmentally sustainable,and deeply rooted in cultural practices.Indigenous methods also enhance climate resilience by enabling communities to adapt to droughts and floods through practices such as weather prediction and adaptive farming techniques.Furthermore,these practices foster social inclusivity and community empowerment,ensuring equitable water access and intergenerational knowledge transfer.The study underscores the potential of integrating IK with modern water technologies to create holistic solutions that are scalable,sustainable,and aligned with South Africa’s goal of achieving water security by 2030.Policy recommendations emphasize the need for institutional support,data collection,and financial incentives to sustain and mainstream indigenous approaches.By bridging the gap between traditional and contemporary systems,this research provides a roadmap for leveraging diverse knowledge systems to address water scarcity and build resilient communities.展开更多
In the context of power generation companies, vast amounts of specialized data and expert knowledge have been accumulated. However, challenges such as data silos and fragmented knowledge hinder the effective utilizati...In the context of power generation companies, vast amounts of specialized data and expert knowledge have been accumulated. However, challenges such as data silos and fragmented knowledge hinder the effective utilization of this information. This study proposes a novel framework for intelligent Question-and-Answer (Q&A) systems based on Retrieval-Augmented Generation (RAG) to address these issues. The system efficiently acquires domain-specific knowledge by leveraging external databases, including Relational Databases (RDBs) and graph databases, without additional fine-tuning for Large Language Models (LLMs). Crucially, the framework integrates a Dynamic Knowledge Base Updating Mechanism (DKBUM) and a Weighted Context-Aware Similarity (WCAS) method to enhance retrieval accuracy and mitigate inherent limitations of LLMs, such as hallucinations and lack of specialization. Additionally, the proposed DKBUM dynamically adjusts knowledge weights within the database, ensuring that the most recent and relevant information is utilized, while WCAS refines the alignment between queries and knowledge items by enhanced context understanding. Experimental validation demonstrates that the system can generate timely, accurate, and context-sensitive responses, making it a robust solution for managing complex business logic in specialized industries.展开更多
In 2024,China’s human rights research has assumed a distinct“autonomy-oriented shift,”with scholars beginning to refine and construct uniquely Chinese and locally identifiable human rights concepts,categories,and d...In 2024,China’s human rights research has assumed a distinct“autonomy-oriented shift,”with scholars beginning to refine and construct uniquely Chinese and locally identifiable human rights concepts,categories,and discourses.Building an independent human rights knowledge system has become a core academic focus in China’s human rights research field.Upholding fundamental principles and breaking new ground are the key methodological principles for the process.China’s human rights research should be rooted in the“cultural lineage”by preserving the essence of fine traditional Chinese culture,guided by the“moral lineage”by adhering to the Marxist view on human rights,and anchored in the“Four-sphere Confidence”by upholding a distinct human rights development path,so as to define the historical coordinates and value stance of China’s independent human rights knowledge system.Meanwhile,it should maintain a high degree of openness in knowledge,theory,and methodology to address emerging rights demands and contribute to building a new global human rights governance order,so as to underscore the mission of China’s independent human rights knowledge system in the contemporary era and China’s responsibility as a major global actor.China’s human rights research should uphold the dialectical unity between the fundamental principles and innovations,and advance the systemic and theoretical interpretation of its independent human rights knowledge.展开更多
To deal with a lack of semantic interoperability of traditional knowledge retrieval approaches, a semantic-based networked manufacturing (NM) knowledge retrieval architecture is proposed, which offers a series of to...To deal with a lack of semantic interoperability of traditional knowledge retrieval approaches, a semantic-based networked manufacturing (NM) knowledge retrieval architecture is proposed, which offers a series of tools for supporting the sharing of knowledge and promoting NM collaboration. A 5-tuple based semantic information retrieval model is proposed, which includes the interoperation on the semantic layer, and a test process is given for this model. The recall ratio and the precision ratio of manufacturing knowledge retrieval are proved to be greatly improved by evaluation. Thus, a practical and reliable approach based on the semantic web is provided for solving the correlated concrete problems in regional networked manufacturing.展开更多
Aim To analyse the influence of knowledge base on the performance of the fuzzy controller of the electrohydraulic position control system,and to determine their selection cri- teria. Methods Experiments based on diffe...Aim To analyse the influence of knowledge base on the performance of the fuzzy controller of the electrohydraulic position control system,and to determine their selection cri- teria. Methods Experiments based on different membership functions,scaling factors and con-trol rules were done separately.The experiment results and the influence of different know- ledge base on the control performance were analysed in theory so that criteria of selcting knowledge base can be summarized correctly.Results Knowledge base,including membershipfunctions, scaling factors and control rules,has a crucial effect on the fuzzy control system.Suitably selected knowledge base can lead to good control performance of fuzzy control sys-tem. Conclusion Being symmetric,having an intersection ratio of 1 and satisfying width con- dition are three necessities for selecting membership functions.Selecting scaling factors dependson both the system requirement and a comprehensive analysis in the overshoot,oscillation, rising time and stability. Integrity and continuity must be guaranteed when determining control rules.展开更多
An investigation and outline of MetaControl and DeControl in Metaverses for control intelligence and knowledge automation are presented.Prescriptive control with prescriptive knowledge and parallel philosophy is propo...An investigation and outline of MetaControl and DeControl in Metaverses for control intelligence and knowledge automation are presented.Prescriptive control with prescriptive knowledge and parallel philosophy is proposed as the starting point for the new control philosophy and technology,especially for computational control of metasystems in cyberphysical-social systems.We argue that circular causality,the generalized feedback mechanism for complex and purposive systems,should be adapted as the fundamental principle for control and management of metasystems with metacomplexity in metaverses.Particularly,an interdisciplinary approach is suggested for MetaControl and DeControl as a new form of intelligent control based on five control metaverses:MetaVerses,MultiVerses,InterVerses,TransVerse,and DeepVerses.展开更多
Deep-time Earth research plays a pivotal role in deciphering the rates,patterns,and mechanisms of Earth's evolutionary processes throughout geological history,providing essential scientific foundations for climate...Deep-time Earth research plays a pivotal role in deciphering the rates,patterns,and mechanisms of Earth's evolutionary processes throughout geological history,providing essential scientific foundations for climate prediction,natural resource exploration,and sustainable planetary stewardship.To advance Deep-time Earth research in the era of big data and artificial intelligence,the International Union of Geological Sciences initiated the“Deeptime Digital Earth International Big Science Program”(DDE)in 2019.At the core of this ambitious program lies the development of geoscience knowledge graphs,serving as a transformative knowledge infrastructure that enables the integration,sharing,mining,and analysis of heterogeneous geoscience big data.The DDE knowledge graph initiative has made significant strides in three critical dimensions:(1)establishing a unified knowledge structure across geoscience disciplines that ensures consistent representation of geological entities and their interrelationships through standardized ontologies and semantic frameworks;(2)developing a robust and scalable software infrastructure capable of supporting both expert-driven and machine-assisted knowledge engineering for large-scale graph construction and management;(3)implementing a comprehensive three-tiered architecture encompassing basic,discipline-specific,and application-oriented knowledge graphs,spanning approximately 20 geoscience disciplines.Through its open knowledge framework and international collaborative network,this initiative has fostered multinational research collaborations,establishing a robust foundation for next-generation geoscience research while propelling the discipline toward FAIR(Findable,Accessible,Interoperable,Reusable)data practices in deep-time Earth systems research.展开更多
Knowledge graph technology has distinct advantages in terms of fault diagnosis.In this study,the control rod drive mechanism(CRDM)of the liquid fuel thorium molten salt reactor(TMSR-LF1)was taken as the research objec...Knowledge graph technology has distinct advantages in terms of fault diagnosis.In this study,the control rod drive mechanism(CRDM)of the liquid fuel thorium molten salt reactor(TMSR-LF1)was taken as the research object,and a fault diagnosis system was proposed based on knowledge graph.The subject–relation–object triples are defined based on CRDM unstructured data,including design specification,operation and maintenance manual,alarm list,and other forms of expert experience.In this study,we constructed a fault event ontology model to label the entity and relationship involved in the corpus of CRDM fault events.A three-layer robustly optimized bidirectional encoder representation from transformers(RBT3)pre-training approach combined with a text convolutional neural network(TextCNN)was introduced to facilitate the application of the constructed CRDM fault diagnosis graph database for fault query.The RBT3-TextCNN model along with the Jieba tool is proposed for extracting entities and recognizing the fault query intent simultaneously.Experiments on the dataset collected from TMSR-LF1 CRDM fault diagnosis unstructured data demonstrate that this model has the potential to improve the effect of intent recognition and entity extraction.Additionally,a fault alarm monitoring module was developed based on WebSocket protocol to deliver detailed information about the appeared fault to the operator automatically.Furthermore,the Bayesian inference method combined with the variable elimination algorithm was proposed to enable the development of a relatively intelligent and reliable fault diagnosis system.Finally,a CRDM fault diagnosis Web interface integrated with graph data visualization was constructed,making the CRDM fault diagnosis process intuitive and effective.展开更多
Forecasting landslide deformation is challenging due to influence of various internal and external factors on the occurrence of systemic and localized heterogeneities.Despite the potential to improve landslide predict...Forecasting landslide deformation is challenging due to influence of various internal and external factors on the occurrence of systemic and localized heterogeneities.Despite the potential to improve landslide predictability,deep learning has yet to be sufficiently explored for complex deformation patterns associated with landslides and is inherently opaque.Herein,we developed a holistic landslide deformation forecasting method that considers spatiotemporal correlations of landslide deformation by integrating domain knowledge into interpretable deep learning.By spatially capturing the interconnections between multiple deformations from different observation points,our method contributes to the understanding and forecasting of landslide systematic behavior.By integrating specific domain knowledge relevant to each observation point and merging internal properties with external variables,the local heterogeneity is considered in our method,identifying deformation temporal patterns in different landslide zones.Case studies involving reservoir-induced landslides and creeping landslides demonstrated that our approach(1)enhances the accuracy of landslide deformation forecasting,(2)identifies significant contributing factors and their influence on spatiotemporal deformation characteristics,and(3)demonstrates how identifying these factors and patterns facilitates landslide forecasting.Our research offers a promising and pragmatic pathway toward a deeper understanding and forecasting of complex landslide behaviors.展开更多
Traditional Chinese medicine(TCM)serves as a treasure trove of ancient knowledge,holding a crucial position in the medical field.However,the exploration of TCM's extensive information has been hindered by challeng...Traditional Chinese medicine(TCM)serves as a treasure trove of ancient knowledge,holding a crucial position in the medical field.However,the exploration of TCM's extensive information has been hindered by challenges related to data standardization,completeness,and accuracy,primarily due to the decen-tralized distribution of TCM resources.To address these issues,we developed a platform for TCM knowledge discovery(TCMKD,https://cbcb.cdutcm.edu.cn/TCMKD/).Seven types of data,including syndromes,formulas,Chinese patent drugs(CPDs),Chinese medicinal materials(CMMs),ingredients,targets,and diseases,were manually proofread and consolidated within TCMKD.To strengthen the integration of TCM with modern medicine,TCMKD employs analytical methods such as TCM data mining,enrichment analysis,and network localization and separation.These tools help elucidate the molecular-level commonalities between TCM and contemporary scientific insights.In addition to its analytical capabilities,a quick question and answer(Q&A)system is also embedded within TCMKD to query the database efficiently,thereby improving the interactivity of the platform.The platform also provides a TCM text annotation tool,offering a simple and efficient method for TCM text mining.Overall,TCMKD not only has the potential to become a pivotal repository for TCM,delving into the pharmaco-logical foundations of TCM treatments,but its flexible embedded tools and algorithms can also be applied to the study of other traditional medical systems,extending beyond just TCM.展开更多
Large language models(LLMs)have significantly advanced artificial intelligence(AI)by excelling in tasks such as understanding,generation,and reasoning across multiple modalities.Despite these achievements,LLMs have in...Large language models(LLMs)have significantly advanced artificial intelligence(AI)by excelling in tasks such as understanding,generation,and reasoning across multiple modalities.Despite these achievements,LLMs have inherent limitations including outdated information,hallucinations,inefficiency,lack of interpretability,and challenges in domain-specific accuracy.To address these issues,this survey explores three promising directions in the post-LLM era:knowledge empowerment,model collaboration,and model co-evolution.First,we examine methods of integrating external knowledge into LLMs to enhance factual accuracy,reasoning capabilities,and interpretability,including incorporating knowledge into training objectives,instruction tuning,retrieval-augmented inference,and knowledge prompting.Second,we discuss model collaboration strategies that leverage the complementary strengths of LLMs and smaller models to improve efficiency and domain-specific performance through techniques such as model merging,functional model collaboration,and knowledge injection.Third,we delve into model co-evolution,in which multiple models collaboratively evolve by sharing knowledge,parameters,and learning strategies to adapt to dynamic environments and tasks,thereby enhancing their adaptability and continual learning.We illustrate how the integration of these techniques advances AI capabilities in science,engineering,and society—particularly in hypothesis development,problem formulation,problem-solving,and interpretability across various domains.We conclude by outlining future pathways for further advancement and applications.展开更多
In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shippi...In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shipping is characterized by a vast array of document types, filled with complex, large-scale, and often chaotic knowledge and relationships. Effectively managing these documents is crucial for developing a Large Language Model (LLM) in the maritime domain, enabling practitioners to access and leverage valuable information. A Knowledge Graph (KG) offers a state-of-the-art solution for enhancing knowledge retrieval, providing more accurate responses and enabling context-aware reasoning. This paper presents a framework for utilizing maritime and shipping documents to construct a knowledge graph using GraphRAG, a hybrid tool combining graph-based retrieval and generation capabilities. The extraction of entities and relationships from these documents and the KG construction process are detailed. Furthermore, the KG is integrated with an LLM to develop a Q&A system, demonstrating that the system significantly improves answer accuracy compared to traditional LLMs. Additionally, the KG construction process is up to 50% faster than conventional LLM-based approaches, underscoring the efficiency of our method. This study provides a promising approach to digital intelligence in shipping, advancing knowledge accessibility and decision-making.展开更多
Accurate prediction of drug-target interactions(DTIs)plays a pivotal role in drug discovery,facilitating optimization of lead compounds,drug repurposing and elucidation of drug side effects.However,traditional DTI pre...Accurate prediction of drug-target interactions(DTIs)plays a pivotal role in drug discovery,facilitating optimization of lead compounds,drug repurposing and elucidation of drug side effects.However,traditional DTI prediction methods are often limited by incomplete biological data and insufficient representation of protein features.In this study,we proposed KG-CNNDTI,a novel knowledge graph-enhanced framework for DTI prediction,which integrates heterogeneous biological information to improve model generalizability and predictive performance.The proposed model utilized protein embeddings derived from a biomedical knowledge graph via the Node2Vec algorithm,which were further enriched with contextualized sequence representations obtained from ProteinBERT.For compound representation,multiple molecular fingerprint schemes alongside the Uni-Mol pre-trained model were evaluated.The fused representations served as inputs to both classical machine learning models and a convolutional neural network-based predictor.Experimental evaluations across benchmark datasets demonstrated that KG-CNNDTI achieved superior performance compared to state-of-the-art methods,particularly in terms of Precision,Recall,F1-Score and area under the precision-recall curve(AUPR).Ablation analysis highlighted the substantial contribution of knowledge graph-derived features.Moreover,KG-CNNDTI was employed for virtual screening of natural products against Alzheimer's disease,resulting in 40 candidate compounds.5 were supported by literature evidence,among which 3 were further validated in vitro assays.展开更多
Topographic maps,as essential tools and sources of information for geographic research,contain precise spatial locations and rich map features,and they illustrate spatio-temporal information on the distribution and di...Topographic maps,as essential tools and sources of information for geographic research,contain precise spatial locations and rich map features,and they illustrate spatio-temporal information on the distribution and differences of various surface features.Currently,topographic maps are mainly stored in raster and vector formats.Extraction of the spatio-temporal knowledge in the maps—such as spatial distribution patterns,feature relationships,and dynamic evolution—still primarily relies on manual interpretation.However,manual interpretation is time-consuming and laborious,especially for large-scale,long-term map knowledge extraction and application.With the development of artificial intelligence technology,it is possible to improve the automation level of map knowledge interpretation.Therefore,the present study proposes an automatic interpretation method for raster topographic map knowledge based on deep learning.To address the limitations of current data-driven intelligent technology in learning map spatial relations and cognitive logic,we establish a formal description of map knowledge by mapping the relationship between map knowledge and features,thereby ensuring interpretation accuracy.Subsequently,deep learning techniques are employed to extract map features automatically,and the spatio-temporal knowledge is constructed by combining formal descriptions of geographic feature knowledge.Validation experiments demonstrate that the proposed method effectively achieves automatic interpretation of spatio-temporal knowledge of geographic features in maps,with an accuracy exceeding 80%.The findings of the present study contribute to machine understanding of spatio-temporal differences in map knowledge and advances the intelligent interpretation and utilization of cartographic information.展开更多
The implementation of strategies to achieve the Sustainable Development Goals(SDGs)is frequently hindered by potential trade-offs between priorities for either environmental protection or human well-being.However,ecos...The implementation of strategies to achieve the Sustainable Development Goals(SDGs)is frequently hindered by potential trade-offs between priorities for either environmental protection or human well-being.However,ecosystem services(ES)-based solutions can offer possible co-benefits for SDGs implementation that are often overlooked or underexploited.In this study,we cover this gap and investigate how experts from different countries value the SDGs and relate them with ES.A total of 66 countries participated to the survey,and answers were grouped into three macro-regions:Asia;Europe,North America,and Oceania(ENO);Latin America,Caribbean and Africa(LA).Results show that the most prioritized SDGs in the three macro-regions are usually those related to essential material needs and environmental conditions,such as SDG2(Zero Hunger),SDG1(No Poverty),and SDG6(Clean Water).At a global scale,the number of prioritized synergies between SDGs and ES largely exceeded trade-offs.The highest amount of synergies was observed for SDG1(No Poverty),mainly with SDG2,SDG3(Good Health),SDG5(Gender Equality),and SDG8(Economic Growth).Other major synergies among SDGs include SDG14-15(Life below water-Life on land),SDG5-10(Gender Equity-Reduced Inequality),and SDG1-2(No poverty-Zero Hunger).At a global scale,SDG15,SDG13,SDG14,and SDG6 were closely related to ES like climate regulation,freshwater,food,water purification,biodiversity,and education.SDG11(Sustainable Cities)and SDG3 were also relevant in Asia and in LA,respectively.Overall,this study shows the potential to couple future policies that can implement SDGs’strategies while adopting ES-based solutions in different regions of the world.展开更多
文摘Since Google introduced the concept of Knowledge Graphs(KGs)in 2012,their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition,extraction,representation,modeling,fusion,computation,and storage.Within this framework,knowledge extraction,as the core component,directly determines KG quality.In military domains,traditional manual curation models face efficiency constraints due to data fragmentation,complex knowledge architectures,and confidentiality protocols.Meanwhile,crowdsourced ontology construction approaches from general domains prove non-transferable,while human-crafted ontologies struggle with generalization deficiencies.To address these challenges,this study proposes an OntologyAware LLM Methodology for Military Domain Knowledge Extraction(LLM-KE).This approach leverages the deep semantic comprehension capabilities of Large Language Models(LLMs)to simulate human experts’cognitive processes in crowdsourced ontology construction,enabling automated extraction of military textual knowledge.It concurrently enhances knowledge processing efficiency and improves KG completeness.Empirical analysis demonstrates that this method effectively resolves scalability and dynamic adaptation challenges in military KG construction,establishing a novel technological pathway for advancing military intelligence development.
基金supported by the State Grid Southwest Branch Project“Research on Defect Diagnosis and Early Warning Technology of Relay Protection and Safety Automation Devices Based on Multi-Source Heterogeneous Defect Data”.
文摘The reliable operation of power grid secondary equipment is an important guarantee for the safety and stability of the power system.However,various defects could be produced in the secondary equipment during longtermoperation.The complex relationship between the defect phenomenon andmulti-layer causes and the probabilistic influence of secondary equipment cannot be described through knowledge extraction and fusion technology by existing methods,which limits the real-time and accuracy of defect identification.Therefore,a defect recognition method based on the Bayesian network and knowledge graph fusion is proposed.The defect data of secondary equipment is transformed into the structured knowledge graph through knowledge extraction and fusion technology.The knowledge graph of power grid secondary equipment is mapped to the Bayesian network framework,combined with historical defect data,and introduced Noisy-OR nodes.The prior and conditional probabilities of the Bayesian network are then reasonably assigned to build a model that reflects the probability dependence between defect phenomena and potential causes in power grid secondary equipment.Defect identification of power grid secondary equipment is achieved by defect subgraph search based on the knowledge graph,and defect inference based on the Bayesian network.Practical application cases prove this method’s effectiveness in identifying secondary equipment defect causes,improving identification accuracy and efficiency.
基金funded by the Hunan Provincial Natural Science Foundation of China(Grant No.2025JJ70105)the Hunan Provincial College Students’Innovation and Entrepreneurship Training Program(Project No.S202411342056)The article processing charge(APC)was funded by the Project No.2025JJ70105.
文摘With the widespread use of social media,the propagation of health-related rumors has become a significant public health threat.Existing methods for detecting health rumors predominantly rely on external knowledge or propagation structures,with only a few recent approaches attempting causal inference;however,these have not yet effectively integrated causal discovery with domain-specific knowledge graphs for detecting health rumors.In this study,we found that the combined use of causal discovery and domain-specific knowledge graphs can effectively identify implicit pseudo-causal logic embedded within texts,holding significant potential for health rumor detection.To this end,we propose CKDG—a dual-graph fusion framework based on causal logic and medical knowledge graphs.CKDG constructs a weighted causal graph to capture the implicit causal relationships in the text and introduces a medical knowledge graph to verify semantic consistency,thereby enhancing the ability to identify the misuse of professional terminology and pseudoscientific claims.In experiments conducted on a dataset comprising 8430 health rumors,CKDG achieved an accuracy of 91.28%and an F1 score of 90.38%,representing improvements of 5.11%and 3.29%over the best baseline,respectively.Our results indicate that the integrated use of causal discovery and domainspecific knowledge graphs offers significant advantages for health rumor detection systems.This method not only improves detection performance but also enhances the transparency and credibility of model decisions by tracing causal chains and sources of knowledge conflicts.We anticipate that this work will provide key technological support for the development of trustworthy health-information filtering systems,thereby improving the reliability of public health information on social media.
文摘Xi Jinping,general secretary of the Communist Party of China(CPC)Central Committee,stressed that we should adhere to the“two integrations”(namely,integrating the basic tenets of Marxism with China’s specific realities and fine traditional culture),root ourselves in Chinese soil,carry forward the Chinese cultural heritage,and strengthen the academic foundation.We should accelerate the building of an independent knowledge system for Chinese philosophy and social sciences,and formulate original concepts and develop systems of academic discipline,research and discourse,drawing on China’s rich experience of advancing human rights.In the face of changes of a magnitude not seen in a century,in the historic process of advancing the great rejuvenation of the Chinese nation on all fronts through Chinese modernization,we should and must strengthen our theoretical self-consciousness and confidence in the path of Chinese modernization.We need to enhance human rights research,develop the human rights theoretical system and paradigm that are based on Chinese realities and express Chinese voice,and an independent Chinese knowledge system for human rights.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA26050301-02)。
文摘The global rise in animal protein consumption has significantly amplified the demand for fodder.A comprehensive understanding of the diversity and characteristics of existing fodder resources is essential for balanced nutritional fodder production.This study investigates the diversity and composition of fodder plants and identifies key species for cattle in Zhaotong City,Yunnan,China,while documenting indigenous knowledge on their usage and selection criteria.Ethnobotanical surveys were conducted in 19 villages across seven townships with 140 informants.Data were collected through semi-structured interviews,free listing,and participatory observation,and analyzed using Relative Frequency Citation.A total of 125 taxa(including 106 wild and 19 cultivated)were reported.The most cited family is Poaceae(27 taxa,21.43%),followed by Asteraceae(17 taxa,13.49%),Fabaceae(14 taxa,11.11%),Polygonaceae(9 taxa,7.14%)and Lamiaceae(4 taxa,3.17%).The whole plant(66.04%)and herbaceous plants(84.80%)were the most used parts and life forms.The most cited species were Zea mays,Brassica rapa,Solanum tuberosum,Eragrostis nigra,and Artemisia dubia.Usage of diverse fodder resources reflects local wisdom in managing resource availability and achieving balanced nutrition while coping with environmental and climatic risks.Preferences for certain taxonomic groups are due to their quality as premier fodder resources.To promote integrated crop-livestock farming,we suggest further research into highly preferred fodder species,focusing on nutritional assessment,digestibility,meat quality impacts,and potential as antibiotic alternatives.Establishing germplasm and gene banks for fodder resources is also recommended.
文摘Water scarcity poses a significant challenge globally,with South Africa exemplifying the severe socio-economic and environmental impacts of limited water access.Despite advances in modern water management systems,the integration of indigenous knowledge(IK)into formal frameworks remains underutilized.This study systematically reviews the role of indigenous water conservation practices in South Africa,analyzing over 50 high-quality sources using the PRISMA methodology.The findings highlight the effectiveness of IK in addressing water scarcity through techniques such as rainwater harvesting,terracing,and wetland management,which are low-cost,environmentally sustainable,and deeply rooted in cultural practices.Indigenous methods also enhance climate resilience by enabling communities to adapt to droughts and floods through practices such as weather prediction and adaptive farming techniques.Furthermore,these practices foster social inclusivity and community empowerment,ensuring equitable water access and intergenerational knowledge transfer.The study underscores the potential of integrating IK with modern water technologies to create holistic solutions that are scalable,sustainable,and aligned with South Africa’s goal of achieving water security by 2030.Policy recommendations emphasize the need for institutional support,data collection,and financial incentives to sustain and mainstream indigenous approaches.By bridging the gap between traditional and contemporary systems,this research provides a roadmap for leveraging diverse knowledge systems to address water scarcity and build resilient communities.
文摘In the context of power generation companies, vast amounts of specialized data and expert knowledge have been accumulated. However, challenges such as data silos and fragmented knowledge hinder the effective utilization of this information. This study proposes a novel framework for intelligent Question-and-Answer (Q&A) systems based on Retrieval-Augmented Generation (RAG) to address these issues. The system efficiently acquires domain-specific knowledge by leveraging external databases, including Relational Databases (RDBs) and graph databases, without additional fine-tuning for Large Language Models (LLMs). Crucially, the framework integrates a Dynamic Knowledge Base Updating Mechanism (DKBUM) and a Weighted Context-Aware Similarity (WCAS) method to enhance retrieval accuracy and mitigate inherent limitations of LLMs, such as hallucinations and lack of specialization. Additionally, the proposed DKBUM dynamically adjusts knowledge weights within the database, ensuring that the most recent and relevant information is utilized, while WCAS refines the alignment between queries and knowledge items by enhanced context understanding. Experimental validation demonstrates that the system can generate timely, accurate, and context-sensitive responses, making it a robust solution for managing complex business logic in specialized industries.
基金a phased result funded by the Special Funds for Basic Scientific Research Expenses of Universities under the Central Government(24CXTD01).
文摘In 2024,China’s human rights research has assumed a distinct“autonomy-oriented shift,”with scholars beginning to refine and construct uniquely Chinese and locally identifiable human rights concepts,categories,and discourses.Building an independent human rights knowledge system has become a core academic focus in China’s human rights research field.Upholding fundamental principles and breaking new ground are the key methodological principles for the process.China’s human rights research should be rooted in the“cultural lineage”by preserving the essence of fine traditional Chinese culture,guided by the“moral lineage”by adhering to the Marxist view on human rights,and anchored in the“Four-sphere Confidence”by upholding a distinct human rights development path,so as to define the historical coordinates and value stance of China’s independent human rights knowledge system.Meanwhile,it should maintain a high degree of openness in knowledge,theory,and methodology to address emerging rights demands and contribute to building a new global human rights governance order,so as to underscore the mission of China’s independent human rights knowledge system in the contemporary era and China’s responsibility as a major global actor.China’s human rights research should uphold the dialectical unity between the fundamental principles and innovations,and advance the systemic and theoretical interpretation of its independent human rights knowledge.
基金The National High Technology Research and Devel-opment Program of China (863Program) (No2003AA1Z2560,2002AA414060)the Key Science and Technology Program of Shaanxi Province (No2006K04-G10)
文摘To deal with a lack of semantic interoperability of traditional knowledge retrieval approaches, a semantic-based networked manufacturing (NM) knowledge retrieval architecture is proposed, which offers a series of tools for supporting the sharing of knowledge and promoting NM collaboration. A 5-tuple based semantic information retrieval model is proposed, which includes the interoperation on the semantic layer, and a test process is given for this model. The recall ratio and the precision ratio of manufacturing knowledge retrieval are proved to be greatly improved by evaluation. Thus, a practical and reliable approach based on the semantic web is provided for solving the correlated concrete problems in regional networked manufacturing.
文摘Aim To analyse the influence of knowledge base on the performance of the fuzzy controller of the electrohydraulic position control system,and to determine their selection cri- teria. Methods Experiments based on different membership functions,scaling factors and con-trol rules were done separately.The experiment results and the influence of different know- ledge base on the control performance were analysed in theory so that criteria of selcting knowledge base can be summarized correctly.Results Knowledge base,including membershipfunctions, scaling factors and control rules,has a crucial effect on the fuzzy control system.Suitably selected knowledge base can lead to good control performance of fuzzy control sys-tem. Conclusion Being symmetric,having an intersection ratio of 1 and satisfying width con- dition are three necessities for selecting membership functions.Selecting scaling factors dependson both the system requirement and a comprehensive analysis in the overshoot,oscillation, rising time and stability. Integrity and continuity must be guaranteed when determining control rules.
文摘An investigation and outline of MetaControl and DeControl in Metaverses for control intelligence and knowledge automation are presented.Prescriptive control with prescriptive knowledge and parallel philosophy is proposed as the starting point for the new control philosophy and technology,especially for computational control of metasystems in cyberphysical-social systems.We argue that circular causality,the generalized feedback mechanism for complex and purposive systems,should be adapted as the fundamental principle for control and management of metasystems with metacomplexity in metaverses.Particularly,an interdisciplinary approach is suggested for MetaControl and DeControl as a new form of intelligent control based on five control metaverses:MetaVerses,MultiVerses,InterVerses,TransVerse,and DeepVerses.
基金Strategic Priority Research Program of the Chinese Academy of Sciences,No.XDB0740000National Key Research and Development Program of China,No.2022YFB3904200,No.2022YFF0711601+1 种基金Key Project of Innovation LREIS,No.PI009National Natural Science Foundation of China,No.42471503。
文摘Deep-time Earth research plays a pivotal role in deciphering the rates,patterns,and mechanisms of Earth's evolutionary processes throughout geological history,providing essential scientific foundations for climate prediction,natural resource exploration,and sustainable planetary stewardship.To advance Deep-time Earth research in the era of big data and artificial intelligence,the International Union of Geological Sciences initiated the“Deeptime Digital Earth International Big Science Program”(DDE)in 2019.At the core of this ambitious program lies the development of geoscience knowledge graphs,serving as a transformative knowledge infrastructure that enables the integration,sharing,mining,and analysis of heterogeneous geoscience big data.The DDE knowledge graph initiative has made significant strides in three critical dimensions:(1)establishing a unified knowledge structure across geoscience disciplines that ensures consistent representation of geological entities and their interrelationships through standardized ontologies and semantic frameworks;(2)developing a robust and scalable software infrastructure capable of supporting both expert-driven and machine-assisted knowledge engineering for large-scale graph construction and management;(3)implementing a comprehensive three-tiered architecture encompassing basic,discipline-specific,and application-oriented knowledge graphs,spanning approximately 20 geoscience disciplines.Through its open knowledge framework and international collaborative network,this initiative has fostered multinational research collaborations,establishing a robust foundation for next-generation geoscience research while propelling the discipline toward FAIR(Findable,Accessible,Interoperable,Reusable)data practices in deep-time Earth systems research.
基金the Young Potential Program of Shanghai Institute of Applied Physics,Chinese Academy of Sciences(No.E0553101).
文摘Knowledge graph technology has distinct advantages in terms of fault diagnosis.In this study,the control rod drive mechanism(CRDM)of the liquid fuel thorium molten salt reactor(TMSR-LF1)was taken as the research object,and a fault diagnosis system was proposed based on knowledge graph.The subject–relation–object triples are defined based on CRDM unstructured data,including design specification,operation and maintenance manual,alarm list,and other forms of expert experience.In this study,we constructed a fault event ontology model to label the entity and relationship involved in the corpus of CRDM fault events.A three-layer robustly optimized bidirectional encoder representation from transformers(RBT3)pre-training approach combined with a text convolutional neural network(TextCNN)was introduced to facilitate the application of the constructed CRDM fault diagnosis graph database for fault query.The RBT3-TextCNN model along with the Jieba tool is proposed for extracting entities and recognizing the fault query intent simultaneously.Experiments on the dataset collected from TMSR-LF1 CRDM fault diagnosis unstructured data demonstrate that this model has the potential to improve the effect of intent recognition and entity extraction.Additionally,a fault alarm monitoring module was developed based on WebSocket protocol to deliver detailed information about the appeared fault to the operator automatically.Furthermore,the Bayesian inference method combined with the variable elimination algorithm was proposed to enable the development of a relatively intelligent and reliable fault diagnosis system.Finally,a CRDM fault diagnosis Web interface integrated with graph data visualization was constructed,making the CRDM fault diagnosis process intuitive and effective.
基金supported by the Postdoctoral Fellowship Program of CPSF(Grant No.GZB20230685)the National Science Foundation of China(Grant No.42277161).
文摘Forecasting landslide deformation is challenging due to influence of various internal and external factors on the occurrence of systemic and localized heterogeneities.Despite the potential to improve landslide predictability,deep learning has yet to be sufficiently explored for complex deformation patterns associated with landslides and is inherently opaque.Herein,we developed a holistic landslide deformation forecasting method that considers spatiotemporal correlations of landslide deformation by integrating domain knowledge into interpretable deep learning.By spatially capturing the interconnections between multiple deformations from different observation points,our method contributes to the understanding and forecasting of landslide systematic behavior.By integrating specific domain knowledge relevant to each observation point and merging internal properties with external variables,the local heterogeneity is considered in our method,identifying deformation temporal patterns in different landslide zones.Case studies involving reservoir-induced landslides and creeping landslides demonstrated that our approach(1)enhances the accuracy of landslide deformation forecasting,(2)identifies significant contributing factors and their influence on spatiotemporal deformation characteristics,and(3)demonstrates how identifying these factors and patterns facilitates landslide forecasting.Our research offers a promising and pragmatic pathway toward a deeper understanding and forecasting of complex landslide behaviors.
基金supported by Natural Science Foundation of Sichuan,China(Grant No.:2024ZDZX0019).
文摘Traditional Chinese medicine(TCM)serves as a treasure trove of ancient knowledge,holding a crucial position in the medical field.However,the exploration of TCM's extensive information has been hindered by challenges related to data standardization,completeness,and accuracy,primarily due to the decen-tralized distribution of TCM resources.To address these issues,we developed a platform for TCM knowledge discovery(TCMKD,https://cbcb.cdutcm.edu.cn/TCMKD/).Seven types of data,including syndromes,formulas,Chinese patent drugs(CPDs),Chinese medicinal materials(CMMs),ingredients,targets,and diseases,were manually proofread and consolidated within TCMKD.To strengthen the integration of TCM with modern medicine,TCMKD employs analytical methods such as TCM data mining,enrichment analysis,and network localization and separation.These tools help elucidate the molecular-level commonalities between TCM and contemporary scientific insights.In addition to its analytical capabilities,a quick question and answer(Q&A)system is also embedded within TCMKD to query the database efficiently,thereby improving the interactivity of the platform.The platform also provides a TCM text annotation tool,offering a simple and efficient method for TCM text mining.Overall,TCMKD not only has the potential to become a pivotal repository for TCM,delving into the pharmaco-logical foundations of TCM treatments,but its flexible embedded tools and algorithms can also be applied to the study of other traditional medical systems,extending beyond just TCM.
基金supported in part by National Natural Science Foundation of China(62441605)。
文摘Large language models(LLMs)have significantly advanced artificial intelligence(AI)by excelling in tasks such as understanding,generation,and reasoning across multiple modalities.Despite these achievements,LLMs have inherent limitations including outdated information,hallucinations,inefficiency,lack of interpretability,and challenges in domain-specific accuracy.To address these issues,this survey explores three promising directions in the post-LLM era:knowledge empowerment,model collaboration,and model co-evolution.First,we examine methods of integrating external knowledge into LLMs to enhance factual accuracy,reasoning capabilities,and interpretability,including incorporating knowledge into training objectives,instruction tuning,retrieval-augmented inference,and knowledge prompting.Second,we discuss model collaboration strategies that leverage the complementary strengths of LLMs and smaller models to improve efficiency and domain-specific performance through techniques such as model merging,functional model collaboration,and knowledge injection.Third,we delve into model co-evolution,in which multiple models collaboratively evolve by sharing knowledge,parameters,and learning strategies to adapt to dynamic environments and tasks,thereby enhancing their adaptability and continual learning.We illustrate how the integration of these techniques advances AI capabilities in science,engineering,and society—particularly in hypothesis development,problem formulation,problem-solving,and interpretability across various domains.We conclude by outlining future pathways for further advancement and applications.
文摘In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shipping is characterized by a vast array of document types, filled with complex, large-scale, and often chaotic knowledge and relationships. Effectively managing these documents is crucial for developing a Large Language Model (LLM) in the maritime domain, enabling practitioners to access and leverage valuable information. A Knowledge Graph (KG) offers a state-of-the-art solution for enhancing knowledge retrieval, providing more accurate responses and enabling context-aware reasoning. This paper presents a framework for utilizing maritime and shipping documents to construct a knowledge graph using GraphRAG, a hybrid tool combining graph-based retrieval and generation capabilities. The extraction of entities and relationships from these documents and the KG construction process are detailed. Furthermore, the KG is integrated with an LLM to develop a Q&A system, demonstrating that the system significantly improves answer accuracy compared to traditional LLMs. Additionally, the KG construction process is up to 50% faster than conventional LLM-based approaches, underscoring the efficiency of our method. This study provides a promising approach to digital intelligence in shipping, advancing knowledge accessibility and decision-making.
基金supported by the National Natural Science Foundation of China(Nos.82173746 and U23A20530)Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism(Shanghai Municipal Education Commission)。
文摘Accurate prediction of drug-target interactions(DTIs)plays a pivotal role in drug discovery,facilitating optimization of lead compounds,drug repurposing and elucidation of drug side effects.However,traditional DTI prediction methods are often limited by incomplete biological data and insufficient representation of protein features.In this study,we proposed KG-CNNDTI,a novel knowledge graph-enhanced framework for DTI prediction,which integrates heterogeneous biological information to improve model generalizability and predictive performance.The proposed model utilized protein embeddings derived from a biomedical knowledge graph via the Node2Vec algorithm,which were further enriched with contextualized sequence representations obtained from ProteinBERT.For compound representation,multiple molecular fingerprint schemes alongside the Uni-Mol pre-trained model were evaluated.The fused representations served as inputs to both classical machine learning models and a convolutional neural network-based predictor.Experimental evaluations across benchmark datasets demonstrated that KG-CNNDTI achieved superior performance compared to state-of-the-art methods,particularly in terms of Precision,Recall,F1-Score and area under the precision-recall curve(AUPR).Ablation analysis highlighted the substantial contribution of knowledge graph-derived features.Moreover,KG-CNNDTI was employed for virtual screening of natural products against Alzheimer's disease,resulting in 40 candidate compounds.5 were supported by literature evidence,among which 3 were further validated in vitro assays.
基金Deep-time Digital Earth(DDE)Big Science Program(No.GJ-C03-SGF-2025-004)National Natural Science Foundation of China(No.42394063)Sichuan Science and Technology Program(No.2025ZNSFSC0325).
文摘Topographic maps,as essential tools and sources of information for geographic research,contain precise spatial locations and rich map features,and they illustrate spatio-temporal information on the distribution and differences of various surface features.Currently,topographic maps are mainly stored in raster and vector formats.Extraction of the spatio-temporal knowledge in the maps—such as spatial distribution patterns,feature relationships,and dynamic evolution—still primarily relies on manual interpretation.However,manual interpretation is time-consuming and laborious,especially for large-scale,long-term map knowledge extraction and application.With the development of artificial intelligence technology,it is possible to improve the automation level of map knowledge interpretation.Therefore,the present study proposes an automatic interpretation method for raster topographic map knowledge based on deep learning.To address the limitations of current data-driven intelligent technology in learning map spatial relations and cognitive logic,we establish a formal description of map knowledge by mapping the relationship between map knowledge and features,thereby ensuring interpretation accuracy.Subsequently,deep learning techniques are employed to extract map features automatically,and the spatio-temporal knowledge is constructed by combining formal descriptions of geographic feature knowledge.Validation experiments demonstrate that the proposed method effectively achieves automatic interpretation of spatio-temporal knowledge of geographic features in maps,with an accuracy exceeding 80%.The findings of the present study contribute to machine understanding of spatio-temporal differences in map knowledge and advances the intelligent interpretation and utilization of cartographic information.
基金This work was supported by National Key R&D Program of China(Grant No.2017YFA0604700)National Natural Science Foundation of China(Grant No.4181101243)+2 种基金the Fundamental Research Funds for the Central UniversitiesFrancesco Cherubini was supported by Nor-wegian Research Council(Grant No.286773)Paulo Pereira was sup-ported by the European Social Fund project LINESAM(Grant No.09.3.3-LMT-K-712-01-0104).
文摘The implementation of strategies to achieve the Sustainable Development Goals(SDGs)is frequently hindered by potential trade-offs between priorities for either environmental protection or human well-being.However,ecosystem services(ES)-based solutions can offer possible co-benefits for SDGs implementation that are often overlooked or underexploited.In this study,we cover this gap and investigate how experts from different countries value the SDGs and relate them with ES.A total of 66 countries participated to the survey,and answers were grouped into three macro-regions:Asia;Europe,North America,and Oceania(ENO);Latin America,Caribbean and Africa(LA).Results show that the most prioritized SDGs in the three macro-regions are usually those related to essential material needs and environmental conditions,such as SDG2(Zero Hunger),SDG1(No Poverty),and SDG6(Clean Water).At a global scale,the number of prioritized synergies between SDGs and ES largely exceeded trade-offs.The highest amount of synergies was observed for SDG1(No Poverty),mainly with SDG2,SDG3(Good Health),SDG5(Gender Equality),and SDG8(Economic Growth).Other major synergies among SDGs include SDG14-15(Life below water-Life on land),SDG5-10(Gender Equity-Reduced Inequality),and SDG1-2(No poverty-Zero Hunger).At a global scale,SDG15,SDG13,SDG14,and SDG6 were closely related to ES like climate regulation,freshwater,food,water purification,biodiversity,and education.SDG11(Sustainable Cities)and SDG3 were also relevant in Asia and in LA,respectively.Overall,this study shows the potential to couple future policies that can implement SDGs’strategies while adopting ES-based solutions in different regions of the world.