期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Knowledge Driven Machine Learning Towards Interpretable Intelligent Prognostics and Health Management:Review and Case Study
1
作者 Ruqiang Yan Zheng Zhou +6 位作者 Zuogang Shang Zhiying Wang Chenye Hu Yasong Li Yuangui Yang Xuefeng Chen Robert X.Gao 《Chinese Journal of Mechanical Engineering》 2025年第1期31-61,共31页
Despite significant progress in the Prognostics and Health Management(PHM)domain using pattern learning systems from data,machine learning(ML)still faces challenges related to limited generalization and weak interpret... Despite significant progress in the Prognostics and Health Management(PHM)domain using pattern learning systems from data,machine learning(ML)still faces challenges related to limited generalization and weak interpretability.A promising approach to overcoming these challenges is to embed domain knowledge into the ML pipeline,enhancing the model with additional pattern information.In this paper,we review the latest developments in PHM,encapsulated under the concept of Knowledge Driven Machine Learning(KDML).We propose a hierarchical framework to define KDML in PHM,which includes scientific paradigms,knowledge sources,knowledge representations,and knowledge embedding methods.Using this framework,we examine current research to demonstrate how various forms of knowledge can be integrated into the ML pipeline and provide roadmap to specific usage.Furthermore,we present several case studies that illustrate specific implementations of KDML in the PHM domain,including inductive experience,physical model,and signal processing.We analyze the improvements in generalization capability and interpretability that KDML can achieve.Finally,we discuss the challenges,potential applications,and usage recommendations of KDML in PHM,with a particular focus on the critical need for interpretability to ensure trustworthy deployment of artificial intelligence in PHM. 展开更多
关键词 PHM knowledge driven machine learning Signal processing Physics informed INTERPRETABILITY
在线阅读 下载PDF
Trajectory prediction algorithm of ballistic missile driven by data and knowledge
2
作者 Hongyan Zang Changsheng Gao +1 位作者 Yudong Hu Wuxing Jing 《Defence Technology(防务技术)》 2025年第6期187-203,共17页
Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve ... Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve this problem. Firstly, the complex dynamics characteristics of ballistic missile in the boost phase are analyzed in detail. Secondly, combining the missile dynamics model with the target gravity turning model, a knowledge-driven target three-dimensional turning(T3) model is derived. Then, the BP neural network is used to train the boost phase trajectory database in typical scenarios to obtain a datadriven state parameter mapping(SPM) model. On this basis, an online trajectory prediction framework driven by data and knowledge is established. Based on the SPM model, the three-dimensional turning coefficients of the target are predicted by using the current state of the target, and the state of the target at the next moment is obtained by combining the T3 model. Finally, simulation verification is carried out under various conditions. The simulation results show that the DKTP algorithm combines the advantages of data-driven and knowledge-driven, improves the interpretability of the algorithm, reduces the uncertainty, which can achieve high-precision trajectory prediction of ballistic missile in the boost phase. 展开更多
关键词 Ballistic missile Trajectory prediction The boost phase Data and knowledge driven The BP neural network
在线阅读 下载PDF
A Domain Knowledge Driven Approach for User Interface Software Development
3
作者 王海鹰 刘慎权 《Journal of Computer Science & Technology》 SCIE EI CSCD 1991年第2期145-152,共8页
A domain knowledge driven user interface development approach is described.As a conceptual de- sign of the user interface,the domain knowledge defines the user interface in terms of objects,actions and their relations... A domain knowledge driven user interface development approach is described.As a conceptual de- sign of the user interface,the domain knowledge defines the user interface in terms of objects,actions and their relationships that the user would use to interact with the application system.It also serves as input to a user interface management system(UIMS)and is the kernel of the target user interface. The principal ideas and the implementation techniques of the approach is discussed.The user interface model,user interface designer oriented high-level specification notation,and the transformation algorithms on domain knowledge are presented. 展开更多
关键词 In UIMS A Domain knowledge driven Approach for User Interface Software Development
原文传递
Exploring the Road to 6G: ABC-Foundation for Intelligent Mobile Networks 被引量:10
4
作者 Jinkang Zhu Ming Zhao +1 位作者 Sihai Zhang Wuyang Zhou 《China Communications》 SCIE CSCD 2020年第6期51-67,共17页
The 5 th generation(5 G)mobile networks has been put into services across a number of markets,which aims at providing subscribers with high bit rates,low latency,high capacity,many new services and vertical applicatio... The 5 th generation(5 G)mobile networks has been put into services across a number of markets,which aims at providing subscribers with high bit rates,low latency,high capacity,many new services and vertical applications.Therefore the research and development on 6 G have been put on the agenda.Regarding demands and characteristics of future 6 G,artificial intelligence(A),big data(B)and cloud computing(C)will play indispensable roles in achieving the highest efficiency and the largest benefits.Interestingly,the initials of these three aspects remind us the significance of vitamin ABC to human body.In this article we specifically expound on the three elements of ABC and relationships in between.We analyze the basic characteristics of wireless big data(WBD)and the corresponding technical action in A and C,which are the high dimensional feature and spatial separation,the predictive ability,and the characteristics of knowledge.Based on the abilities of WBD,a new learning approach for wireless AI called knowledge+data-driven deep learning(KD-DL)method,and a layered computing architecture of mobile network integrating cloud/edge/terminal computing,is proposed,and their achievable efficiency is discussed.These progress will be conducive to the development of future 6 G. 展开更多
关键词 6G Artificial intelligence Wireless big data Cloud computing knowledge+data driven deep learning layered computing layered network
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部