This paper reports the kinetic process of Ag ion exchange for the polycrystalline Na-β'-Al2O3.The interdiffusion coefficients in the process of Ag+ and Na+ ion exchange have been calculated with an 'one dimen...This paper reports the kinetic process of Ag ion exchange for the polycrystalline Na-β'-Al2O3.The interdiffusion coefficients in the process of Ag+ and Na+ ion exchange have been calculated with an 'one dimensional double side diffusion model'. Microstructures of the samples were observed and analysed by XRD, EMPA, SEM. The results of the conductivity measurements for samples with Na+, Ag+ and Na+-Ag+ mobile ions are presented and explained展开更多
Fe3 O4 has attracted tremendous interest in vast areas of biomedicine and catalysis as well as environment engineering.However,it is highly desired to fully understand the chemical kinetic process and propose a genera...Fe3 O4 has attracted tremendous interest in vast areas of biomedicine and catalysis as well as environment engineering.However,it is highly desired to fully understand the chemical kinetic process and propose a general,surfactantfree,large-scale synthesis approach for Fe3 O4 spheres.Herein,we developed a facile scalable solvothermal method in the absence of surfactants to produce Fe3 O4 spheres with the yield of 5.1 g,which present tunable sizes from 107 to 450 nm by modulated molar ratio of Fe3+/COO-in the solution.Particularly,it is observed that the reactants undergo a redox process,composed of a precipitation-dissolution equilibrium combined with a coordination reaction(termed as RPC),to the final product based on the LaMer model.It is worth noting that the generation of di-carboxyl group and its coordination with iron cations determine the formation of Fe3 O4 spheres.This work not only offers a strategy to precisely tailor the particle size in scalable synthesis process,but also gives the insight on the role of dihydric alcohol in the formation mechanism of Fe3 O4 spheres in the absence of surfactants.展开更多
Lightweight and energy saving autoclaved aerated concrete(AAC) acting as a newbuilding material were prepared by using magnetite tailings from iron ore as main rawmaterials,and the purpose of comprehensive utilization...Lightweight and energy saving autoclaved aerated concrete(AAC) acting as a newbuilding material were prepared by using magnetite tailings from iron ore as main rawmaterials,and the purpose of comprehensive utilization of tailings resources was to improve their utilization efficiency.The effects of curing system on AAC product performance were discussed.The autoclave curing reaction kinetics was studied as well as the generated amount of hydration product trends over autoclave curing temperature and time were analyzed.The results indicated that the properties of AAC was in accordance with Chinese national standard the A3.5 B06 class of GB/T11968-2006 by prepared from magnetite tailing as the main rawmaterials.Meanwhile,autoclave curing process was controlled by the diffusion velocity through the products ' layers of reactants,and the apparent activation energy of autoclave curing process was 19.269 k J/mol.Compressive strength of aerated concrete is improved by mutual cementation between the appropriate amount of calcium silicate hydrate and tobermorite crystal.展开更多
Based on Kolmgorov-Johnson-Mehl-Avrami analysis, a new bainite kinetics of high strength low alloy steel in fast cooling process was developed by utilizing different experimental methods. Upper bainite transformation ...Based on Kolmgorov-Johnson-Mehl-Avrami analysis, a new bainite kinetics of high strength low alloy steel in fast cooling process was developed by utilizing different experimental methods. Upper bainite transformation morphological evolutions at a cooling rate of 8.3 K/s were directly observed by laser scanning confocal microscopy. This qualitative analysis suggests that bainite packet is more suitable to give a one-dimensional growth model if it is considered as a transformation unit. The nucleation rate of bainite packets in fast cooling process is assumed to give an a priori item. One-dimensional growth model with constant growth rate which is assumed as a function of cooling rate is adopted as well. Thus, the devel- oped new bainite kinetics is simple in expression and contains an adjustable parameter and an empirical pa rameter. Experimental results show upper bainite and lower bainite transformations in fast cooling processes. Their referential phase volume fractions are calculated by the expanded lever rule on the first derivative dilatometer curves. For the similar transformation mechanisms, upper bainite and lower bainite are considered to give the same kinetics. With considering the Nakamura's equation, the bainite kinetics is fitted with experimental data. Results show that bainite volume fractions and bainite transformation rates can be expressed precisely bY the newly developed bainite kinetics.展开更多
Metal foils have emerged as one of the promising materials for anode-free batteries due to their high energy density and scalability in production.The unclear lithium plating/stripping kinetics of metal foil current c...Metal foils have emerged as one of the promising materials for anode-free batteries due to their high energy density and scalability in production.The unclear lithium plating/stripping kinetics of metal foil current collectors in anode-free batteries was addressed by using the non-destructive distribution of relaxation times(DRT)analysis to systematically investigate the lithium transport behavior of 14 metal foils and its correlation with electrochemical performance.By integrating energy-dispersive spectro scopy(EDS),cyclic voltammetry(CV),and galvanostatic testing,the exceptional properties of indium(In),tin(Sn),and silver(Ag)were revealed:the Li-In alloying reaction exhibits high reversibility,Li-Sn alloys demonstrate outstanding cycling stability,and the Li-Ag solid-solution mechanism provides an ideal lithium deposition interface on the silver substrate.The DRT separates the polarization internal resistance of lithium ions passing through the SEI layer(R_(sei),τ2)and the polarization internal resistance of lithium ions undergoing charge transfer reaction at the electrolyte/electrode interface(R_(ct),τ3)by decoupling the electrochemical impedance spectroscopy(EIS).For the first time,the correlation betweenτ2,τ3,and the cycle life/Coulombic efficiency of alloy/solid-solution metals was established,while non-alloy metals are not suitable for this method due to differences in lithium deposition mechanisms.This study not only illuminates the structure-property relationship governing the lithium kinetics of metal foil electrodes but also provides a novel non-destructive analytical strategy and theoretical guidance for the rational design of stable anodes in high-energy-density batteries,facilitating the efficient screening and optimization of anode-free battery.展开更多
Evaluation on nitrogen removal of step-feed anoxic/oxic activated sludge process at the standpoint of reaction kinetics and process kinetics was conducted. Theoretical biological nitrogen removal efficiency was deduce...Evaluation on nitrogen removal of step-feed anoxic/oxic activated sludge process at the standpoint of reaction kinetics and process kinetics was conducted. Theoretical biological nitrogen removal efficiency was deduced based on the mass balance of nitrate in the last stage. The comparison of pre-denitrification process and step feed process in the aspects of nitrogen removal efficiency, volume of reactor and building investment was studied, and the results indicated that step-feed anoxic/oxic activated sludge process was superior to pre-denitrification process in these aspects.展开更多
Aerobically activated sludge processing was carried out to treat terylene artificial silk printing and dyeing wastewater (TPD wastewater) in a lab-scale experiment, focusing on the kinetics of the COD removal. The kin...Aerobically activated sludge processing was carried out to treat terylene artificial silk printing and dyeing wastewater (TPD wastewater) in a lab-scale experiment, focusing on the kinetics of the COD removal. The kinetics pa-rameters determined from experiment were applied to evaluate the biological treatability of wastewater. Experiments showed that COD removal could be divided into two stages, in which the ratio BOD/COD (B/C) was the key factor for stage division. At the rapid-removal stage with B/C>0.1, COD removal could be described by a zero order reaction. At the mod-erate-removal stage with B/C<0.1, COD removal could be described by a first order reaction. Then Monod equation was introduced to indicate COD removal. The reaction rate constant (K) and half saturation constant (KS) were 0.0208-0.0642 L/(gMLSS)h and 0.44-0.59 (gCOD)/L respectively at 20 C-35 C. Activation energy (Ea) was 6.05104 J/mol. By comparison of kinetic parameters, the biological treatability of TPD wastewater was superior to that of traditional textile wastewater. But COD removal from TPD-wastewater was much more difficult than that from domestic and industrial wastewater, such as papermaking, beer, phenol wastewater, etc. The expected effluent quality strongly related to un-biodegradable COD and kinetics rather than total COD. The results provide useful basis for further scaling up and efficient operation of TPD wastewater treatment.展开更多
Basic oxygen furnace slag(BOFS) has the potential to remove hexavalent chromium(Cr(VI))from wastewater by a redox process due to the presence of minerals containing Fe2+. The effects of the solution p H, initia...Basic oxygen furnace slag(BOFS) has the potential to remove hexavalent chromium(Cr(VI))from wastewater by a redox process due to the presence of minerals containing Fe2+. The effects of the solution p H, initial Cr(VI) concentration, BOFS dosage, BOFS particle size, and temperature on the removal of Cr(VI) was investigated in detail through batch tests. The chemical and mineral compositions of fresh and reacted BOFS were characterized using scanning electron microscope(SEM) equipped with an energy dispersive spectrometer(EDS)system and X-ray diffractometer(XRD). The results show that Cr(VI) in wastewater can be efficiently removed by Fe2+released from BOFS under appropriate acidic conditions. The removal of Cr(VI) by BOFS significantly depended on the parameters mentioned above. The reaction of Cr(VI) with BOFS followed the pseudo-second-order kinetic model. Fe2+responsible for Cr(VI) removal was primarily derived from the dissolution of Fe O and Fe3O4 in BOFS. When H2SO4 was used to adjust the solution acidity, gypsum(Ca SO4·2H2O)could be formed and become an armoring precipitate layer on the BOFS surface, hindering the release of Fe2+and the removal of Cr(VI). Finally, the main mechanism of Cr(VI) removal by BOFS was described using several consecutive reaction steps.展开更多
A thermodynamic analysis on the acid leaching process of germanium oxide dust and discussion on the behaviors of main substances of the dust in the leaching process were carried out. The effects of temperature, acid c...A thermodynamic analysis on the acid leaching process of germanium oxide dust and discussion on the behaviors of main substances of the dust in the leaching process were carried out. The effects of temperature, acid concentration, leaching time and stirring speed on the leaching rate of germanium were investigated. Based on the characteristic of the dust, the kinetics and reactive mechanism of acid leaching were studied. The results show that the leaching of the dust by acid belonged to "the unreacted core shrinking model" of producing solid outgrowth layer. The chemical reaction was controlled by inner diffusion process. The apparent activation energy of leaching process was 12.60 kJ/mol. The leaching reaction of germanium was determined to be mainly second order reaction. The optimum conditions were the reaction temperature of 363 K, the leaching time of 2.5 h, the stirring speed of 120 r/min, the solid-to-liquid ratio of 1/8 and the acid concentration of 120 g/L. Under these conditions, the leaching rate of germanium can come up to more than 87%.展开更多
The reaction process and mechanistn of reaction synthesis of TiC in Al-Ti-C system have been investigated in detail by observing the microstructure of the water quenched preform with SEM and EDX. The results showed th...The reaction process and mechanistn of reaction synthesis of TiC in Al-Ti-C system have been investigated in detail by observing the microstructure of the water quenched preform with SEM and EDX. The results showed that the reaction processing can be divided into three stages: aluminium powder is melted firstly, then titanium dissolves in the melted aluminium and Al3Ti is formed around titanium powder, titanium concentrates around carbon powder and a Ti-rich layer is observed around carbon pariicles,in which titanium atom reacts with carbon atom to synthesize TiC;TiC precipitates out of the melt, and diffuses out of the layer. A solution-precipitation mechanism and a reaction model were set up based on the experimental results.展开更多
The notion of cooperativity comprises a specific characteristic of a multipartite system concerning its ability to demonstrate a sigmoidal-type response of varying sensitivities to input stimuli in transitions between...The notion of cooperativity comprises a specific characteristic of a multipartite system concerning its ability to demonstrate a sigmoidal-type response of varying sensitivities to input stimuli in transitions between states under controlled conditions.From a statistical physics viewpoint,in this work we attempt to describe the cooperativity by the stability of a metastable open system with respect to irreversibility.To treat the evolution of a system weakly coupled to the environment in a kinetic framework,we consider two fluctuating energy levels of different dimensionalities,initial population of one level,reversible transitions of population between the levels,and irreversible depopulation of another level.An average is made over level fluctuations and environment vibrations so that an inter-level transition rate can be obtained accounting for the influences of external control on level position and dimensionality.It is found that the cooperativity of the two-level system is bounded approximately between 0.736 and unity,with the lower bound indicating worsening system stability.展开更多
Due to the existence of poly-hydroxyl structures,the temperature may have an effect on the thermal stability of oleuropein for its applications.In the current study,the thermal decomposition process and kinetics behav...Due to the existence of poly-hydroxyl structures,the temperature may have an effect on the thermal stability of oleuropein for its applications.In the current study,the thermal decomposition process and kinetics behavior of oleuropein from the olive resource were researched by thermogravimetric theoretical analysis methods and non-isothermal kinetics simulation.The results of thermogravimetry analysis showed the whole thermal decomposi-tion process of oleuropein involved two stages,with 21.22%of residue.It was also revealed that high heating rates of more than 20 K min^(-1) led to significant thermal hysteresis and inhibited the whole thermal decomposition behavior of oleuropein.Moreover,an investigation of the thermal decomposition kinetics indicated that the non-isothermal decomposition behavior followed a D3 model during thefirst stage(three-dimensional diffusion,Jander equation)and a D1 model in the second stage(one-dimensional diffusion).For thefirst and second ther-mal decomposition stages,the Kissinger,Friedman,Flynn-Wall-Ozawa,and Coats–Redfern four methods were applied to determine the activation energy(E=143.72 and 247.01 kJ mol^(-1))and Arrhenius preexponential factor(ln A=26.34 and 42.45 min^(-1)),respectively.Therefore,the study will provide good theoretical guidance for ther-mal stability and thermal transformation application of oleuropein.It will be suitable for low-temperature appli-cations in the cosmetic,food supplement and pharmaceutical industries.展开更多
Commercialization of Zn-metal anodes with low cost and high theoretical capacity is hindered by the poor reversibility caused by dendrites growth,side reactions,and the slow Zn^(2+)-transport and reaction kinetics.Her...Commercialization of Zn-metal anodes with low cost and high theoretical capacity is hindered by the poor reversibility caused by dendrites growth,side reactions,and the slow Zn^(2+)-transport and reaction kinetics.Herein,a reversible heterogeneous electrode of Zn-nanocrystallites/polyvinylphosphonic acrylamide(Zn/PPAm)with fast electrochemical kinetics is designed for the first time:phosphonic acid groups with strong polarity and chelation effect ensure structural reversibility and stability of the threedimensional Zn-storage-host PPAm network and the Zn/PPAm hybrid;hydrophobic carbon chains suppress side reactions such as hydrogen evolution and corrosion;weak electron-donating amide groups constitute Zn^(2+)-transport channels and promote“desolvation”and“solvation”effects of Zn^(2+)by dragging the PPAm network on the Zn-metal surface to compress/stretch during Zn plating/stripping,respectively;and the heterostructure and Zn nanocrystallites suppress dendrite growth and enhance electrochemical reactivity,respectively.Thus,the Zn/PPAm electrode shows cycle reversibility of over 6000 h with a hysteresis voltage as low as 31 mV in symmetrical cells and excellent durability and flexibility in fiber-shaped batteries.展开更多
The kinetic behaviour of aluminum naphthenate/benzene system in the process of gela- tion and degradation wag systematically studied. The results obtained from the kinetic experiments indicated that the gelation stage...The kinetic behaviour of aluminum naphthenate/benzene system in the process of gela- tion and degradation wag systematically studied. The results obtained from the kinetic experiments indicated that the gelation stage was in accordance with a. kinetic model of an auto-catalytic first-order reaction, and the degradation stage was a simple first-order reaction. The rate constants in these two stages at various temperaturs were measured. And the determined apparent activation energies for the gelation stage and for the degradation stage are 27.5±2.0 and 37.7±2.3 kJ/mol, respectively.展开更多
The introduction of foreign metals with a higher oxophilicity represents a promising strategy to promote water dissociation and in turn kinetics of alkaline hydrogen evolution reaction(HER).However,the further improve...The introduction of foreign metals with a higher oxophilicity represents a promising strategy to promote water dissociation and in turn kinetics of alkaline hydrogen evolution reaction(HER).However,the further improvement of HER activity is limited by the unfavorable interaction of hydroxyl generated by the dissociation of water with active sites.Herein,we propose a strategy of alkaline earth metal cations-driven electron delocalization to elaborately tailor the binding of hydroxyl with the active sites.Taking FeNiMg-layered double hydroxides(FeNiMg-LDH)as a prototypical example,the combined operando spectroscopy analysis and theoretical calculations show that the introduction of Mg cations in solid-solution phase can create a local electronic field and delocalize the electron between Fe and adsorbed hydroxyl,resulting in an optimization of hydroxyl binding strength.Accordingly,FeNiMg-LDH lowers the overpotentials to deliver 10 mA cm−2 in alkaline electrolyte by 39 and 64 mV,compared to FeNi-LDH and Ni-LDH catalysts,respectively.This work sheds new light on the rational design of advanced HER electrocatalyst for alkaline water electrolysis.展开更多
The majority of higher plants use sucrose as their main mobile carbohydrate. Proton-driven sucrose trans- porters play a crucial role in cell-to-cell and long-distance distribution of sucrose throughout the plant. A v...The majority of higher plants use sucrose as their main mobile carbohydrate. Proton-driven sucrose trans- porters play a crucial role in cell-to-cell and long-distance distribution of sucrose throughout the plant. A very negative plant membrane potential and the ability of sucrose transporters to accumulate sucrose concentrations of more than 1 M indicate that plants evolved transporters with unique structural and functional features. The knowledge about the trans- port mechanism and structural/functional domains of these the current knowledge about the biophysical properties of nano-machines is, however, still fragmentary. In this review, plant sucrose transporters is summarized and discussed.展开更多
The import of nuclear-encoded preproteins is necessary to maintain chloroplast function. The recognition and transfer of most precursor proteins across the chloroplast envelopes are facilitated by two membrane-inserte...The import of nuclear-encoded preproteins is necessary to maintain chloroplast function. The recognition and transfer of most precursor proteins across the chloroplast envelopes are facilitated by two membrane-inserted protein complexes, the translocons of the chloroplast outer and inner envelope (Toc and Tic complexes, respectively). Several signals have been invoked to regulate the import of preproteins. In our study, we were interested in redox-based import regulation mediated by two signals: regulation based on thiols and on the metabolic NADP+/NADPH ratio. We sought to identify the proteins participating in the regulation of these transport pathways and to characterize the preprotein subgroups whose import is redox-dependent. Our results provide evidence that the formation and reduction of disulfide bridges in the Toc receptors and Toc translocation channel have a strong influence on import yield of all tested preproteins that depend on the Toc complex for translocation. Furthermore, the metabolic NADP+/NADPH ratio influences not only the composition of the Tic complex, but also the import efficiency of most, but not all, preproteins tested. Thus, several Tic subcomplexes appear to participate in the translocation of different preprotein subgroups, and the redox-active compo- nents of these complexes likely play a role in regulating transport.展开更多
Cellular organelles move within the cellular volume and the effect of the resulting drag forces on the liquid causes bulk movement in the cytosol. The movement of both organelles and cytosol leads to an overall motion...Cellular organelles move within the cellular volume and the effect of the resulting drag forces on the liquid causes bulk movement in the cytosol. The movement of both organelles and cytosol leads to an overall motion pattern called cytoplasmic streaming or cyclosis. This streaming enables the active and passive transport of molecules and orga- nelles between cellular compartments. Furthermore, the fusion and budding of vesicles with and from the plasma mem- brane (exo/endocytosis) allow for transport of material between the inside and the outside of the cell. In the pollen tube, cytoplasmic streaming and exo/endocytosis are very active and fulfill several different functions. In this review, we focus on the logistics of intracellular motion and transport processes as well as their biophysical underpinnings. We discuss various modeling attempts that have been performed to understand both long-distance shuttling and short-distance targeting of organelles. We show how the combination of mechanical and mathematical modeling with cell biological approaches has contributed to our understanding of intracellular transport logistics.展开更多
Crystal morphology is known to be of great importance to the end-use properties of crystal products, and to affect down-stream processing such as filtration and drying. However, it has been previously regarded as too ...Crystal morphology is known to be of great importance to the end-use properties of crystal products, and to affect down-stream processing such as filtration and drying. However, it has been previously regarded as too challenging to achieve automatic closed-loop control. Previous work has focused on controlling the crystal size distribution, where the size of a crystal is often defined as the diameter of a sphere that has the same volume as the crystal. This paper reviews the new advances in morphological population balance models for modelling and simulating the crystal shape distribution (CShD), measuring and estimating crystal facet growth kinetics, and two- and three-dimensional imaging for on-line characterisation of the crystal morphology and CShD. A framework is presented that integrates the various components to achieve the ultimate objective of model-based closed-loop control of the CShD. The knowledge gaps and challenges that require further research are also identified.展开更多
文摘This paper reports the kinetic process of Ag ion exchange for the polycrystalline Na-β'-Al2O3.The interdiffusion coefficients in the process of Ag+ and Na+ ion exchange have been calculated with an 'one dimensional double side diffusion model'. Microstructures of the samples were observed and analysed by XRD, EMPA, SEM. The results of the conductivity measurements for samples with Na+, Ag+ and Na+-Ag+ mobile ions are presented and explained
基金financially supported by the National Natural Science Foundation of China(51631001,51672010 and81421004)the National Key R&D Program of China(2017YFA0206301 and 2016YFA0200102)
文摘Fe3 O4 has attracted tremendous interest in vast areas of biomedicine and catalysis as well as environment engineering.However,it is highly desired to fully understand the chemical kinetic process and propose a general,surfactantfree,large-scale synthesis approach for Fe3 O4 spheres.Herein,we developed a facile scalable solvothermal method in the absence of surfactants to produce Fe3 O4 spheres with the yield of 5.1 g,which present tunable sizes from 107 to 450 nm by modulated molar ratio of Fe3+/COO-in the solution.Particularly,it is observed that the reactants undergo a redox process,composed of a precipitation-dissolution equilibrium combined with a coordination reaction(termed as RPC),to the final product based on the LaMer model.It is worth noting that the generation of di-carboxyl group and its coordination with iron cations determine the formation of Fe3 O4 spheres.This work not only offers a strategy to precisely tailor the particle size in scalable synthesis process,but also gives the insight on the role of dihydric alcohol in the formation mechanism of Fe3 O4 spheres in the absence of surfactants.
基金National 12th Five-Year Science and Technology Planning Project,China(No.2013BAB03B03)
文摘Lightweight and energy saving autoclaved aerated concrete(AAC) acting as a newbuilding material were prepared by using magnetite tailings from iron ore as main rawmaterials,and the purpose of comprehensive utilization of tailings resources was to improve their utilization efficiency.The effects of curing system on AAC product performance were discussed.The autoclave curing reaction kinetics was studied as well as the generated amount of hydration product trends over autoclave curing temperature and time were analyzed.The results indicated that the properties of AAC was in accordance with Chinese national standard the A3.5 B06 class of GB/T11968-2006 by prepared from magnetite tailing as the main rawmaterials.Meanwhile,autoclave curing process was controlled by the diffusion velocity through the products ' layers of reactants,and the apparent activation energy of autoclave curing process was 19.269 k J/mol.Compressive strength of aerated concrete is improved by mutual cementation between the appropriate amount of calcium silicate hydrate and tobermorite crystal.
文摘Based on Kolmgorov-Johnson-Mehl-Avrami analysis, a new bainite kinetics of high strength low alloy steel in fast cooling process was developed by utilizing different experimental methods. Upper bainite transformation morphological evolutions at a cooling rate of 8.3 K/s were directly observed by laser scanning confocal microscopy. This qualitative analysis suggests that bainite packet is more suitable to give a one-dimensional growth model if it is considered as a transformation unit. The nucleation rate of bainite packets in fast cooling process is assumed to give an a priori item. One-dimensional growth model with constant growth rate which is assumed as a function of cooling rate is adopted as well. Thus, the devel- oped new bainite kinetics is simple in expression and contains an adjustable parameter and an empirical pa rameter. Experimental results show upper bainite and lower bainite transformations in fast cooling processes. Their referential phase volume fractions are calculated by the expanded lever rule on the first derivative dilatometer curves. For the similar transformation mechanisms, upper bainite and lower bainite are considered to give the same kinetics. With considering the Nakamura's equation, the bainite kinetics is fitted with experimental data. Results show that bainite volume fractions and bainite transformation rates can be expressed precisely bY the newly developed bainite kinetics.
基金supported by the Quzhou Science and Technology Bureau Project(2023D023,2023D030,2023D002,and2024D028)the Joint Funds of the Zhejiang Provincial Natural Science Foundation of China(LZY23B030002)+3 种基金the Shijiazhuang Shangtai Technology Co.,Ltd.Hebei Provincial Department of Science and Technology(24291101Z)the International Cooperation Projects of Sichuan Provincial Department of Science and Technology(2021YFH0126)the Sichuan Provincial Science and Technology Department's key research project(2023YFG0203)。
文摘Metal foils have emerged as one of the promising materials for anode-free batteries due to their high energy density and scalability in production.The unclear lithium plating/stripping kinetics of metal foil current collectors in anode-free batteries was addressed by using the non-destructive distribution of relaxation times(DRT)analysis to systematically investigate the lithium transport behavior of 14 metal foils and its correlation with electrochemical performance.By integrating energy-dispersive spectro scopy(EDS),cyclic voltammetry(CV),and galvanostatic testing,the exceptional properties of indium(In),tin(Sn),and silver(Ag)were revealed:the Li-In alloying reaction exhibits high reversibility,Li-Sn alloys demonstrate outstanding cycling stability,and the Li-Ag solid-solution mechanism provides an ideal lithium deposition interface on the silver substrate.The DRT separates the polarization internal resistance of lithium ions passing through the SEI layer(R_(sei),τ2)and the polarization internal resistance of lithium ions undergoing charge transfer reaction at the electrolyte/electrode interface(R_(ct),τ3)by decoupling the electrochemical impedance spectroscopy(EIS).For the first time,the correlation betweenτ2,τ3,and the cycle life/Coulombic efficiency of alloy/solid-solution metals was established,while non-alloy metals are not suitable for this method due to differences in lithium deposition mechanisms.This study not only illuminates the structure-property relationship governing the lithium kinetics of metal foil electrodes but also provides a novel non-destructive analytical strategy and theoretical guidance for the rational design of stable anodes in high-energy-density batteries,facilitating the efficient screening and optimization of anode-free battery.
文摘Evaluation on nitrogen removal of step-feed anoxic/oxic activated sludge process at the standpoint of reaction kinetics and process kinetics was conducted. Theoretical biological nitrogen removal efficiency was deduced based on the mass balance of nitrate in the last stage. The comparison of pre-denitrification process and step feed process in the aspects of nitrogen removal efficiency, volume of reactor and building investment was studied, and the results indicated that step-feed anoxic/oxic activated sludge process was superior to pre-denitrification process in these aspects.
文摘Aerobically activated sludge processing was carried out to treat terylene artificial silk printing and dyeing wastewater (TPD wastewater) in a lab-scale experiment, focusing on the kinetics of the COD removal. The kinetics pa-rameters determined from experiment were applied to evaluate the biological treatability of wastewater. Experiments showed that COD removal could be divided into two stages, in which the ratio BOD/COD (B/C) was the key factor for stage division. At the rapid-removal stage with B/C>0.1, COD removal could be described by a zero order reaction. At the mod-erate-removal stage with B/C<0.1, COD removal could be described by a first order reaction. Then Monod equation was introduced to indicate COD removal. The reaction rate constant (K) and half saturation constant (KS) were 0.0208-0.0642 L/(gMLSS)h and 0.44-0.59 (gCOD)/L respectively at 20 C-35 C. Activation energy (Ea) was 6.05104 J/mol. By comparison of kinetic parameters, the biological treatability of TPD wastewater was superior to that of traditional textile wastewater. But COD removal from TPD-wastewater was much more difficult than that from domestic and industrial wastewater, such as papermaking, beer, phenol wastewater, etc. The expected effluent quality strongly related to un-biodegradable COD and kinetics rather than total COD. The results provide useful basis for further scaling up and efficient operation of TPD wastewater treatment.
基金financially supported by the Fundamental Research Fund for the Central Universities(No.N130302004)the National Natural Science Foundation of China(No.21407020)
文摘Basic oxygen furnace slag(BOFS) has the potential to remove hexavalent chromium(Cr(VI))from wastewater by a redox process due to the presence of minerals containing Fe2+. The effects of the solution p H, initial Cr(VI) concentration, BOFS dosage, BOFS particle size, and temperature on the removal of Cr(VI) was investigated in detail through batch tests. The chemical and mineral compositions of fresh and reacted BOFS were characterized using scanning electron microscope(SEM) equipped with an energy dispersive spectrometer(EDS)system and X-ray diffractometer(XRD). The results show that Cr(VI) in wastewater can be efficiently removed by Fe2+released from BOFS under appropriate acidic conditions. The removal of Cr(VI) by BOFS significantly depended on the parameters mentioned above. The reaction of Cr(VI) with BOFS followed the pseudo-second-order kinetic model. Fe2+responsible for Cr(VI) removal was primarily derived from the dissolution of Fe O and Fe3O4 in BOFS. When H2SO4 was used to adjust the solution acidity, gypsum(Ca SO4·2H2O)could be formed and become an armoring precipitate layer on the BOFS surface, hindering the release of Fe2+and the removal of Cr(VI). Finally, the main mechanism of Cr(VI) removal by BOFS was described using several consecutive reaction steps.
基金financially supported by the Guizhou Prov-ince Nomarch Fund for Excellence Educationists, Scientists, and Technicians (No. 2005-363)the Natural Science Fund of Guizhou Provincial Education Department of China (No. 2007-078)
文摘A thermodynamic analysis on the acid leaching process of germanium oxide dust and discussion on the behaviors of main substances of the dust in the leaching process were carried out. The effects of temperature, acid concentration, leaching time and stirring speed on the leaching rate of germanium were investigated. Based on the characteristic of the dust, the kinetics and reactive mechanism of acid leaching were studied. The results show that the leaching of the dust by acid belonged to "the unreacted core shrinking model" of producing solid outgrowth layer. The chemical reaction was controlled by inner diffusion process. The apparent activation energy of leaching process was 12.60 kJ/mol. The leaching reaction of germanium was determined to be mainly second order reaction. The optimum conditions were the reaction temperature of 363 K, the leaching time of 2.5 h, the stirring speed of 120 r/min, the solid-to-liquid ratio of 1/8 and the acid concentration of 120 g/L. Under these conditions, the leaching rate of germanium can come up to more than 87%.
文摘The reaction process and mechanistn of reaction synthesis of TiC in Al-Ti-C system have been investigated in detail by observing the microstructure of the water quenched preform with SEM and EDX. The results showed that the reaction processing can be divided into three stages: aluminium powder is melted firstly, then titanium dissolves in the melted aluminium and Al3Ti is formed around titanium powder, titanium concentrates around carbon powder and a Ti-rich layer is observed around carbon pariicles,in which titanium atom reacts with carbon atom to synthesize TiC;TiC precipitates out of the melt, and diffuses out of the layer. A solution-precipitation mechanism and a reaction model were set up based on the experimental results.
基金supported by the National Academy of Sciences of Ukraine(Grant No.0110U007542)the National Research Foundation of Singapore through the Competitive Research Programme(Grant No.NRF-CRP5-2009-04)
文摘The notion of cooperativity comprises a specific characteristic of a multipartite system concerning its ability to demonstrate a sigmoidal-type response of varying sensitivities to input stimuli in transitions between states under controlled conditions.From a statistical physics viewpoint,in this work we attempt to describe the cooperativity by the stability of a metastable open system with respect to irreversibility.To treat the evolution of a system weakly coupled to the environment in a kinetic framework,we consider two fluctuating energy levels of different dimensionalities,initial population of one level,reversible transitions of population between the levels,and irreversible depopulation of another level.An average is made over level fluctuations and environment vibrations so that an inter-level transition rate can be obtained accounting for the influences of external control on level position and dimensionality.It is found that the cooperativity of the two-level system is bounded approximately between 0.736 and unity,with the lower bound indicating worsening system stability.
基金This work was funded by Guangdong Basic and Applied Basic Research Foundation(No.2019A1515111159)Characteristic Innovative Projects for Education Department of Guangdong Province 2021 Year(No.2021KTSCX302).
文摘Due to the existence of poly-hydroxyl structures,the temperature may have an effect on the thermal stability of oleuropein for its applications.In the current study,the thermal decomposition process and kinetics behavior of oleuropein from the olive resource were researched by thermogravimetric theoretical analysis methods and non-isothermal kinetics simulation.The results of thermogravimetry analysis showed the whole thermal decomposi-tion process of oleuropein involved two stages,with 21.22%of residue.It was also revealed that high heating rates of more than 20 K min^(-1) led to significant thermal hysteresis and inhibited the whole thermal decomposition behavior of oleuropein.Moreover,an investigation of the thermal decomposition kinetics indicated that the non-isothermal decomposition behavior followed a D3 model during thefirst stage(three-dimensional diffusion,Jander equation)and a D1 model in the second stage(one-dimensional diffusion).For thefirst and second ther-mal decomposition stages,the Kissinger,Friedman,Flynn-Wall-Ozawa,and Coats–Redfern four methods were applied to determine the activation energy(E=143.72 and 247.01 kJ mol^(-1))and Arrhenius preexponential factor(ln A=26.34 and 42.45 min^(-1)),respectively.Therefore,the study will provide good theoretical guidance for ther-mal stability and thermal transformation application of oleuropein.It will be suitable for low-temperature appli-cations in the cosmetic,food supplement and pharmaceutical industries.
基金National Research Foundation of Korea,Grant/Award Numbers:2022R1F1A1074441,2022R1F1A1074707KIST Institutional Program,Grant/Award Numbers:2V09480,2E32582。
文摘Commercialization of Zn-metal anodes with low cost and high theoretical capacity is hindered by the poor reversibility caused by dendrites growth,side reactions,and the slow Zn^(2+)-transport and reaction kinetics.Herein,a reversible heterogeneous electrode of Zn-nanocrystallites/polyvinylphosphonic acrylamide(Zn/PPAm)with fast electrochemical kinetics is designed for the first time:phosphonic acid groups with strong polarity and chelation effect ensure structural reversibility and stability of the threedimensional Zn-storage-host PPAm network and the Zn/PPAm hybrid;hydrophobic carbon chains suppress side reactions such as hydrogen evolution and corrosion;weak electron-donating amide groups constitute Zn^(2+)-transport channels and promote“desolvation”and“solvation”effects of Zn^(2+)by dragging the PPAm network on the Zn-metal surface to compress/stretch during Zn plating/stripping,respectively;and the heterostructure and Zn nanocrystallites suppress dendrite growth and enhance electrochemical reactivity,respectively.Thus,the Zn/PPAm electrode shows cycle reversibility of over 6000 h with a hysteresis voltage as low as 31 mV in symmetrical cells and excellent durability and flexibility in fiber-shaped batteries.
基金This project was supported by the National Natural Science Foundation of China.
文摘The kinetic behaviour of aluminum naphthenate/benzene system in the process of gela- tion and degradation wag systematically studied. The results obtained from the kinetic experiments indicated that the gelation stage was in accordance with a. kinetic model of an auto-catalytic first-order reaction, and the degradation stage was a simple first-order reaction. The rate constants in these two stages at various temperaturs were measured. And the determined apparent activation energies for the gelation stage and for the degradation stage are 27.5±2.0 and 37.7±2.3 kJ/mol, respectively.
基金supported by the National Natural Science Foundation of China(52225104 and 52071084)the Key Research and Development Program of Shanxi Province(2024CY2-GJHX-65)+1 种基金“Shuguang Program”supported by the Shanghai Education Development Foundation and Shanghai Municipal Education Commission(20SG03)Science and Technology Commission of Shanghai Municipality(22520710600)。
文摘The introduction of foreign metals with a higher oxophilicity represents a promising strategy to promote water dissociation and in turn kinetics of alkaline hydrogen evolution reaction(HER).However,the further improvement of HER activity is limited by the unfavorable interaction of hydroxyl generated by the dissociation of water with active sites.Herein,we propose a strategy of alkaline earth metal cations-driven electron delocalization to elaborately tailor the binding of hydroxyl with the active sites.Taking FeNiMg-layered double hydroxides(FeNiMg-LDH)as a prototypical example,the combined operando spectroscopy analysis and theoretical calculations show that the introduction of Mg cations in solid-solution phase can create a local electronic field and delocalize the electron between Fe and adsorbed hydroxyl,resulting in an optimization of hydroxyl binding strength.Accordingly,FeNiMg-LDH lowers the overpotentials to deliver 10 mA cm−2 in alkaline electrolyte by 39 and 64 mV,compared to FeNi-LDH and Ni-LDH catalysts,respectively.This work sheds new light on the rational design of advanced HER electrocatalyst for alkaline water electrolysis.
文摘The majority of higher plants use sucrose as their main mobile carbohydrate. Proton-driven sucrose trans- porters play a crucial role in cell-to-cell and long-distance distribution of sucrose throughout the plant. A very negative plant membrane potential and the ability of sucrose transporters to accumulate sucrose concentrations of more than 1 M indicate that plants evolved transporters with unique structural and functional features. The knowledge about the trans- port mechanism and structural/functional domains of these the current knowledge about the biophysical properties of nano-machines is, however, still fragmentary. In this review, plant sucrose transporters is summarized and discussed.
文摘The import of nuclear-encoded preproteins is necessary to maintain chloroplast function. The recognition and transfer of most precursor proteins across the chloroplast envelopes are facilitated by two membrane-inserted protein complexes, the translocons of the chloroplast outer and inner envelope (Toc and Tic complexes, respectively). Several signals have been invoked to regulate the import of preproteins. In our study, we were interested in redox-based import regulation mediated by two signals: regulation based on thiols and on the metabolic NADP+/NADPH ratio. We sought to identify the proteins participating in the regulation of these transport pathways and to characterize the preprotein subgroups whose import is redox-dependent. Our results provide evidence that the formation and reduction of disulfide bridges in the Toc receptors and Toc translocation channel have a strong influence on import yield of all tested preproteins that depend on the Toc complex for translocation. Furthermore, the metabolic NADP+/NADPH ratio influences not only the composition of the Tic complex, but also the import efficiency of most, but not all, preproteins tested. Thus, several Tic subcomplexes appear to participate in the translocation of different preprotein subgroups, and the redox-active compo- nents of these complexes likely play a role in regulating transport.
文摘Cellular organelles move within the cellular volume and the effect of the resulting drag forces on the liquid causes bulk movement in the cytosol. The movement of both organelles and cytosol leads to an overall motion pattern called cytoplasmic streaming or cyclosis. This streaming enables the active and passive transport of molecules and orga- nelles between cellular compartments. Furthermore, the fusion and budding of vesicles with and from the plasma mem- brane (exo/endocytosis) allow for transport of material between the inside and the outside of the cell. In the pollen tube, cytoplasmic streaming and exo/endocytosis are very active and fulfill several different functions. In this review, we focus on the logistics of intracellular motion and transport processes as well as their biophysical underpinnings. We discuss various modeling attempts that have been performed to understand both long-distance shuttling and short-distance targeting of organelles. We show how the combination of mechanical and mathematical modeling with cell biological approaches has contributed to our understanding of intracellular transport logistics.
基金Financial support from the following projects and organisa- tions are acknowledged: the China One Thousand Talent Scheme, the National Natural Science Foundation of China (NNSFC) under its Major Research Scheme of Meso-scale Mechanism and Control in Multi-phase Reaction Processes (project reference: 91434126), the Natural Science Foundation of Guangdong Province (project reference: 2014A030313228), the UK Engineering and Physical Sciences Research Council (EPSRC) for the projects of Shape (EP/C009541) and StereoVision (EP/E045707), and the Technology Strategy Board (TSB) for the project of High Value Manufacturing CGM (TP/BD059E).
文摘Crystal morphology is known to be of great importance to the end-use properties of crystal products, and to affect down-stream processing such as filtration and drying. However, it has been previously regarded as too challenging to achieve automatic closed-loop control. Previous work has focused on controlling the crystal size distribution, where the size of a crystal is often defined as the diameter of a sphere that has the same volume as the crystal. This paper reviews the new advances in morphological population balance models for modelling and simulating the crystal shape distribution (CShD), measuring and estimating crystal facet growth kinetics, and two- and three-dimensional imaging for on-line characterisation of the crystal morphology and CShD. A framework is presented that integrates the various components to achieve the ultimate objective of model-based closed-loop control of the CShD. The knowledge gaps and challenges that require further research are also identified.