The gas kick represents a major risk in deepwater oil and gas exploration.Understanding the dynamics of gas kick evolution and the associated pressure response characteristics is critical for effective well control.In...The gas kick represents a major risk in deepwater oil and gas exploration.Understanding the dynamics of gas kick evolution and the associated pressure response characteristics is critical for effective well control.In this paper,we introduce a transient wellbore multiphase flow model specifically developed to simulate gas kick in deepwater dual-gradient drilling,incorporating a downhole separator.The model accounts for the variable mass flow within the annulus and heat exchange between the annular fluid and the formation.Using this model,we analyzed the multiphase flow and thermodynamic behavior during the gas kick.Simulation results reveal a progressive increase in bottom-hole temperature,underscoring its potential as a key indicator for gas kick early detection.Additionally,variable gradient parameters affect not only the annular equivalent circulating density(ECD)profile but also the evolution of the gas kick.The inclusion of a downhole separator alters the annular ECD profile,creating a“broken line”shape,which enhances adaptability to the multi-pressure systems typically encountered in deepwater forma-tion.By adjusting factors such as hollow sphere concentration,separator position,and separation effi-ciency,the annular ECD profile can be effectively customized.This study provides important theoretical insights and practical applications for utilizing dual-gradient drilling technology to address challenges in deepwater formation drilling.展开更多
This study analyzed the difference between using a downward breaststroke kick and a horizontal breaststroke kick in a sample of world class elite swimmers.We compared average muscle activity of the gluteus maximus,qua...This study analyzed the difference between using a downward breaststroke kick and a horizontal breaststroke kick in a sample of world class elite swimmers.We compared average muscle activity of the gluteus maximus,quadriceps femoris(vastus medialis and rectus femoris),hamstring/long head of the biceps femoris,gastrocnemius medialis,rectus abdominal,and erector spinae when using the downward breaststroke kick technique.We find that when this sample of swimmers utilized the downward breaststroke kick,max speed and velocity per stroke increased,measured by 12,788 EMG samples,where the results are highly correlated to duration of the aerodynamic buoyant force in breaststroke kick technique.The increases in performance observed from measuring the world class elite swimmers is highly correlated to the duration of the kick aerodynamic buoyant force.Among this sample of elite swimmers,the longer a swimmer demonstrates a buoyant force breaststroke kick,the lower the time in a 100 breaststroke.展开更多
Under the same aerodynamic load,the load transmitted by the kick-reaction link actuator to the aircraft structure is only 1/5 to 1/3 of that of the point-to-point actuator,which can significantly reduce the weight of ...Under the same aerodynamic load,the load transmitted by the kick-reaction link actuator to the aircraft structure is only 1/5 to 1/3 of that of the point-to-point actuator,which can significantly reduce the weight of the structure,and is widely used in the main flight control surface of large and medium-sized civil airliners.In order to restrain the flutter of aircraft rudder surface,it is necessary to design the servo stiffness of the kick-reaction link actuator in the development stage,so that it can meet the dynamic stiffness requirement within the frequency range.Taking the actuator of a civil airliner as the research object,the dynamic stiffness modeling of elevator actuator is carried out on MATLAB platform,and the dynamic stiffness test is carried out to verify the correctness of dynamic stiffness modeling.The simulation and test results show that the actuator can meet the dynamic stiffness design requirements.展开更多
Proportional and derivative kick i.e., a large change in control action of a proportional plus integral plus derivative (PID) controller due to a sudden change in reference set-point is generally undesired in proces...Proportional and derivative kick i.e., a large change in control action of a proportional plus integral plus derivative (PID) controller due to a sudden change in reference set-point is generally undesired in process industry. Therefore, the structure of conventional parallel PID controller is modified to integral minus proportional derivative (I-PD) controller. In this paper, three hybrid fuzzy IPD controllers such as a fuzzy I-fuzzy PD (FI-FPD) controller and its hybrid combinations with its conventional counterpart such as fuzzy I-PD (FI-PD) and I-fuzzy PD (I-FPD) are presented in view of above industrial problem. These controllers are based upon the counterpart conventional I-PD controller and contains analytical formulae. Computer simulations are carried out to evaluate the performance of hybrid fuzzy controllers along with conventional I-PD and PID controllers for set-point tracking and disturbance rejection for an induction motor in closed loop using LabVIEWTM environment. The gains of conventional and hybrid fuzzy controllers are tuned using genetic algorithm (GA) for minimum overshoot and settling time. It has been observed that hybrid fuzzy controllers along with the conventional I-PD controller significantly remove the kick from the control action in reference set-point tracking. However, in disturbance rejection, I-PD and FI-PD controllers fail to eliminate the kick from the control signal. In contrast, FI-FPD and I-FPD controllers considerably reduced spikes from the control action in disturbance rejection. Among the conventional and hybrid fuzzy IPD controllers, FI--FPD demonstrates much better set-point tracking and disturbance rejection response with spike free control action.展开更多
A Peking Opera mask shaped like a monkey peered out from Charassri Jiraphas’phone case.In a caféat U-Center in Beijing’s Wudaokou area,she recalled her favorite scene from Shaw Brothers’cinematic adaptation of...A Peking Opera mask shaped like a monkey peered out from Charassri Jiraphas’phone case.In a caféat U-Center in Beijing’s Wudaokou area,she recalled her favorite scene from Shaw Brothers’cinematic adaptation of Journey to the West.“When the Monkey King shrinks into an insect just to enter the belly of Princess Iron Fan,”she recounted,her eyes sparkling with reminiscent wonder,“he punches and kicks until Princess Iron Fan can’t take it anymore,gives in,and lends him her Iron Fan.”Later,the Monkey King uses the magical fan to conjure such strong wind that the Flaming Mountains subside,breaking yet another impasse impeding the four Buddhist scriptureseeking monks.展开更多
基金supported by the Postdoctoral Fellow-ship Program of CPSF(Grant No.GZC20233105)the Science Foundation of China University of Petroleum,Beijing(Grant No.2462024XKBH006)+2 种基金the China Postdoctoral Science Foundation(Grant No.2024M753615)the Major Scientific Research Instrument Development Program of National Natural Science Foundation of China(Grant No.52227804)the Youth Science Foundation Program of National Natural Science Foundation of China(Grant No.52404012).
文摘The gas kick represents a major risk in deepwater oil and gas exploration.Understanding the dynamics of gas kick evolution and the associated pressure response characteristics is critical for effective well control.In this paper,we introduce a transient wellbore multiphase flow model specifically developed to simulate gas kick in deepwater dual-gradient drilling,incorporating a downhole separator.The model accounts for the variable mass flow within the annulus and heat exchange between the annular fluid and the formation.Using this model,we analyzed the multiphase flow and thermodynamic behavior during the gas kick.Simulation results reveal a progressive increase in bottom-hole temperature,underscoring its potential as a key indicator for gas kick early detection.Additionally,variable gradient parameters affect not only the annular equivalent circulating density(ECD)profile but also the evolution of the gas kick.The inclusion of a downhole separator alters the annular ECD profile,creating a“broken line”shape,which enhances adaptability to the multi-pressure systems typically encountered in deepwater forma-tion.By adjusting factors such as hollow sphere concentration,separator position,and separation effi-ciency,the annular ECD profile can be effectively customized.This study provides important theoretical insights and practical applications for utilizing dual-gradient drilling technology to address challenges in deepwater formation drilling.
文摘This study analyzed the difference between using a downward breaststroke kick and a horizontal breaststroke kick in a sample of world class elite swimmers.We compared average muscle activity of the gluteus maximus,quadriceps femoris(vastus medialis and rectus femoris),hamstring/long head of the biceps femoris,gastrocnemius medialis,rectus abdominal,and erector spinae when using the downward breaststroke kick technique.We find that when this sample of swimmers utilized the downward breaststroke kick,max speed and velocity per stroke increased,measured by 12,788 EMG samples,where the results are highly correlated to duration of the aerodynamic buoyant force in breaststroke kick technique.The increases in performance observed from measuring the world class elite swimmers is highly correlated to the duration of the kick aerodynamic buoyant force.Among this sample of elite swimmers,the longer a swimmer demonstrates a buoyant force breaststroke kick,the lower the time in a 100 breaststroke.
文摘Under the same aerodynamic load,the load transmitted by the kick-reaction link actuator to the aircraft structure is only 1/5 to 1/3 of that of the point-to-point actuator,which can significantly reduce the weight of the structure,and is widely used in the main flight control surface of large and medium-sized civil airliners.In order to restrain the flutter of aircraft rudder surface,it is necessary to design the servo stiffness of the kick-reaction link actuator in the development stage,so that it can meet the dynamic stiffness requirement within the frequency range.Taking the actuator of a civil airliner as the research object,the dynamic stiffness modeling of elevator actuator is carried out on MATLAB platform,and the dynamic stiffness test is carried out to verify the correctness of dynamic stiffness modeling.The simulation and test results show that the actuator can meet the dynamic stiffness design requirements.
文摘Proportional and derivative kick i.e., a large change in control action of a proportional plus integral plus derivative (PID) controller due to a sudden change in reference set-point is generally undesired in process industry. Therefore, the structure of conventional parallel PID controller is modified to integral minus proportional derivative (I-PD) controller. In this paper, three hybrid fuzzy IPD controllers such as a fuzzy I-fuzzy PD (FI-FPD) controller and its hybrid combinations with its conventional counterpart such as fuzzy I-PD (FI-PD) and I-fuzzy PD (I-FPD) are presented in view of above industrial problem. These controllers are based upon the counterpart conventional I-PD controller and contains analytical formulae. Computer simulations are carried out to evaluate the performance of hybrid fuzzy controllers along with conventional I-PD and PID controllers for set-point tracking and disturbance rejection for an induction motor in closed loop using LabVIEWTM environment. The gains of conventional and hybrid fuzzy controllers are tuned using genetic algorithm (GA) for minimum overshoot and settling time. It has been observed that hybrid fuzzy controllers along with the conventional I-PD controller significantly remove the kick from the control action in reference set-point tracking. However, in disturbance rejection, I-PD and FI-PD controllers fail to eliminate the kick from the control signal. In contrast, FI-FPD and I-FPD controllers considerably reduced spikes from the control action in disturbance rejection. Among the conventional and hybrid fuzzy IPD controllers, FI--FPD demonstrates much better set-point tracking and disturbance rejection response with spike free control action.
文摘A Peking Opera mask shaped like a monkey peered out from Charassri Jiraphas’phone case.In a caféat U-Center in Beijing’s Wudaokou area,she recalled her favorite scene from Shaw Brothers’cinematic adaptation of Journey to the West.“When the Monkey King shrinks into an insect just to enter the belly of Princess Iron Fan,”she recounted,her eyes sparkling with reminiscent wonder,“he punches and kicks until Princess Iron Fan can’t take it anymore,gives in,and lends him her Iron Fan.”Later,the Monkey King uses the magical fan to conjure such strong wind that the Flaming Mountains subside,breaking yet another impasse impeding the four Buddhist scriptureseeking monks.