Memory-based key-value cache systems, such as Memcached and Redis, have become indispensable components of data center infrastructures and have been used to cache performance-critical data to avoid expensive back-end ...Memory-based key-value cache systems, such as Memcached and Redis, have become indispensable components of data center infrastructures and have been used to cache performance-critical data to avoid expensive back-end database accesses. As the memory is usually not large enough to hold all the items, cache replacement must be performed to evict some cached items to make room for the newly coming items when there is no free space. Many real-world workloads target small items and have frequent bursts of scans (a scan is a sequence of one-time access requests). The commonly used LRU policy does not work well under such workloads since LRU needs a large amount of metadata and tends to discard hot items with scans. Small decreases in hit ratio can result in large end-to-end losses in these systems. This paper presents MemSC, which is a scan-resistant and compact cache replacement framework for Memcached. MemSC assigns a multi-granularity reference flag for each item, which requires only a few bits (two bits are enough for general use) per item to support scanresistant cache replacement policies. To evaluate MemSC, we implement three representative cache replacement policies (MemSC-HM, MemSC-LH, and MemSC-LF) on MemSC and test them using various workloads. The experimental results show that MemSC outperforms prior techniques. Compared with the optimized LRU policy in Memcached, MemSC-LH reduces the cache miss ratio and the memory usage of the resulting system by up to 23% and 14% respectively.展开更多
With the rapid development of 5G technology,the proportion of video traffic on the Internet is increasing,bringing pressure on the network infrastructure.Edge computing technology provides a feasible solution for opti...With the rapid development of 5G technology,the proportion of video traffic on the Internet is increasing,bringing pressure on the network infrastructure.Edge computing technology provides a feasible solution for optimizing video content distribution.However,the limited edge node cache capacity and dynamic user requests make edge caching more complex.Therefore,we propose a recommendation-driven edge Caching network architecture for the Full life cycle of video streaming(FlyCache)designed to improve users’Quality of Experience(QoE)and reduce backhaul traffic consumption.FlyCache implements intelligent caching management across three key stages:before-playback,during-playback,and after-playback.Specifically,we introduce a cache placement policy for the before-playback stage,a dynamic prefetching and cache admission policy for the during-playback stage,and a progressive cache eviction policy for the after-playback stage.To validate the effectiveness of FlyCache,we developed a user behavior-driven edge caching simulation framework incorporating recommendation mechanisms.Experiments conducted on the MovieLens and synthetic datasets demonstrate that FlyCache outperforms other caching strategies in terms of byte hit rate,backhaul traffic,and delayed startup rate.展开更多
In the Satellite-integrated Internet of Things(S-IoT),data freshness in the time-sensitive scenarios could not be guaranteed over the timevarying topology with current distribution strategies aiming to reduce the tran...In the Satellite-integrated Internet of Things(S-IoT),data freshness in the time-sensitive scenarios could not be guaranteed over the timevarying topology with current distribution strategies aiming to reduce the transmission delay.To address this problem,in this paper,we propose an age-optimal caching distribution mechanism for the high-timeliness data collection in S-IoT by adopting a freshness metric,as called age of information(AoI)through the caching-based single-source multidestinations(SSMDs)transmission,namely Multi-AoI,with a well-designed cross-slot directed graph(CSG).With the proposed CSG,we make optimizations on the locations of cache nodes by solving a nonlinear integer programming problem on minimizing Multi-AoI.In particular,we put up forward three specific algorithms respectively for improving the Multi-AoI,i.e.,the minimum queuing delay algorithm(MQDA)based on node deviation from average level,the minimum propagation delay algorithm(MPDA)based on the node propagation delay reduction,and a delay balanced algorithm(DBA)based on node deviation from average level and propagation delay reduction.The simulation results show that the proposed mechanism can effectively improve the freshness of information compared with the random selection algorithm.展开更多
为了在数据密集型工作流下有效降低缓存碎片整理开销并提高缓存命中率,提出一种持久性分布式文件系统客户端缓存DFS-Cache(Distributed File System Cache)。DFS-Cache基于非易失性内存(NVM)设计实现,能够保证数据的持久性和崩溃一致性...为了在数据密集型工作流下有效降低缓存碎片整理开销并提高缓存命中率,提出一种持久性分布式文件系统客户端缓存DFS-Cache(Distributed File System Cache)。DFS-Cache基于非易失性内存(NVM)设计实现,能够保证数据的持久性和崩溃一致性,并大幅减少冷启动时间。DFS-Cache包括基于虚拟内存重映射的缓存碎片整理机制和基于生存时间(TTL)的缓存空间管理策略。前者基于NVM可被内存控制器直接寻址的特性,动态修改虚拟地址和物理地址之间的映射关系,实现零拷贝的内存碎片整理;后者是一种冷热分离的分组管理策略,借助重映射的缓存碎片整理机制,提升缓存空间的管理效率。实验采用真实的Intel傲腾持久性内存设备,对比商用的分布式文件系统MooseFS和GlusterFS,采用Fio和Filebench等标准测试程序,DFS-Cache最高能提升5.73倍和1.89倍的系统吞吐量。展开更多
针对多核处理器性能优化问题,文中深入研究多核处理器上共享Cache的管理策略,提出了基于缓存时间公平性与吞吐率的共享Cache划分算法MT-FTP(Memory Time based Fair and Throughput Partitioning)。以公平性和吞吐率两个评价性指标建立...针对多核处理器性能优化问题,文中深入研究多核处理器上共享Cache的管理策略,提出了基于缓存时间公平性与吞吐率的共享Cache划分算法MT-FTP(Memory Time based Fair and Throughput Partitioning)。以公平性和吞吐率两个评价性指标建立数学模型,并分析了算法的划分流程。仿真实验结果表明,MT-FTP算法在系统吞吐率方面表现较好,其平均IPC(Instructions Per Cycles)值比UCP(Use Case Point)算法高1.3%,比LRU(Least Recently Used)算法高11.6%。MT-FTP算法对应的系统平均公平性比LRU算法的系统平均公平性高17%,比UCP算法的平均公平性高16.5%。该算法实现了共享Cache划分公平性并兼顾了系统的吞吐率。展开更多
In recent years,the research field of data collection under local differential privacy(LDP)has expanded its focus fromelementary data types to includemore complex structural data,such as set-value and graph data.Howev...In recent years,the research field of data collection under local differential privacy(LDP)has expanded its focus fromelementary data types to includemore complex structural data,such as set-value and graph data.However,our comprehensive review of existing literature reveals that there needs to be more studies that engage with key-value data collection.Such studies would simultaneously collect the frequencies of keys and the mean of values associated with each key.Additionally,the allocation of the privacy budget between the frequencies of keys and the means of values for each key does not yield an optimal utility tradeoff.Recognizing the importance of obtaining accurate key frequencies and mean estimations for key-value data collection,this paper presents a novel framework:the Key-Strategy Framework forKey-ValueDataCollection under LDP.Initially,theKey-StrategyUnary Encoding(KS-UE)strategy is proposed within non-interactive frameworks for the purpose of privacy budget allocation to achieve precise key frequencies;subsequently,the Key-Strategy Generalized Randomized Response(KS-GRR)strategy is introduced for interactive frameworks to enhance the efficiency of collecting frequent keys through group-anditeration methods.Both strategies are adapted for scenarios in which users possess either a single or multiple key-value pairs.Theoretically,we demonstrate that the variance of KS-UE is lower than that of existing methods.These claims are substantiated through extensive experimental evaluation on real-world datasets,confirming the effectiveness and efficiency of the KS-UE and KS-GRR strategies.展开更多
The cache-based covert channel is one of the common vulnerabilities exploited in the Spectre attacks.Current mitigation strategies focus on blocking the eviction-based channel by using a random/encrypted mapping funct...The cache-based covert channel is one of the common vulnerabilities exploited in the Spectre attacks.Current mitigation strategies focus on blocking the eviction-based channel by using a random/encrypted mapping function to translate memory address to the cache address,while the updated-based channel is still vulnerable.In addition,some mitigation strategies are also costly as it needs software and hardware modifications.In this paper,our objective is to devise low-cost,comprehensive-protection techniques for mitigating the Spectre attacks.We proposed a novel cache structure,named EBCache,which focuses on the RISC-V processor and applies the address encryption and blacklist to resist the Spectre attacks.The addresses encryption mechanism increases the difficulty of pruning a minimal eviction set.The blacklist mechanism makes the updated cache lines loaded by the malicious updates invisible.Our experiments demonstrated that the EBCache can prevent malicious modifications.The EBCache,however,reduces the processor’s performance by about 23%but involves only a low-cost modification in the hardware.展开更多
A notable portion of cachelines in real-world workloads exhibits inner non-uniform access behaviors.However,modern cache management rarely considers this fine-grained feature,which impacts the effective cache capacity...A notable portion of cachelines in real-world workloads exhibits inner non-uniform access behaviors.However,modern cache management rarely considers this fine-grained feature,which impacts the effective cache capacity of contemporary high-performance spacecraft processors.To harness these non-uniform access behaviors,an efficient cache replacement framework featuring an auxiliary cache specifically designed to retain evicted hot data was proposed.This framework reconstructs the cache replacement policy,facilitating data migration between the main cache and the auxiliary cache.Unlike traditional cacheline-granularity policies,the approach excels at identifying and evicting infrequently used data,thereby optimizing cache utilization.The evaluation shows impressive performance improvement,especially on workloads with irregular access patterns.Benefiting from fine granularity,the proposal achieves superior storage efficiency compared with commonly used cache management schemes,providing a potential optimization opportunity for modern resource-constrained processors,such as spacecraft processors.Furthermore,the framework complements existing modern cache replacement policies and can be seamlessly integrated with minimal modifications,enhancing their overall efficacy.展开更多
The dual frequency Heterogeneous Network(HetNet),including sub-6 GHz networks together with Millimeter Wave(mmWave),achieves the high data rates of user in the networks with hotspots.The cache-enabled HetNets with hot...The dual frequency Heterogeneous Network(HetNet),including sub-6 GHz networks together with Millimeter Wave(mmWave),achieves the high data rates of user in the networks with hotspots.The cache-enabled HetNets with hotspots are investigated using an analytical framework in which Macro Base Stations(MBSs)and hotspot centers are treated as two independent homogeneous Poisson Point Processes(PPPs),and locations of Small Base Stations(SBSs)and users are modeled as two Poisson Cluster Processes(PCPs).Under the PCP-based modeling method and the Most Popular Caching(MPC)scheme,we propose a cache-enabled association strategy for HetNets with limited storage capacity.The performance of association probability and coverage probability is explicitly derived,and Monte Carlo simulation is utilized to verify that the results are correct.The outcomes of the simulation present the influence of antenna configuration and cache capacities of MBSs and SBSs on network performance.Numerical optimization of the standard deviation ratio of SBSs and users of association probability is enabled by our analysis.展开更多
Virtual Reality(VR)is a key industry for the development of the digital economy in the future.Mobile VR has advantages in terms of mobility,lightweight and cost-effectiveness,which has gradually become the mainstream ...Virtual Reality(VR)is a key industry for the development of the digital economy in the future.Mobile VR has advantages in terms of mobility,lightweight and cost-effectiveness,which has gradually become the mainstream implementation of VR.In this paper,a mobile VR video adaptive transmission mechanism based on intelligent caching and hierarchical buffering strategy in Mobile Edge Computing(MEC)-equipped 5G networks is proposed,aiming at the low latency requirements of mobile VR services and flexible buffer management for VR video adaptive transmission.To support VR content proactive caching and intelligent buffer management,users’behavioral similarity and head movement trajectory are jointly used for viewpoint prediction.The tile-based content is proactively cached in the MEC nodes based on the popularity of the VR content.Second,a hierarchical buffer-based adaptive update algorithm is presented,which jointly considers bandwidth,buffer,and predicted viewpoint status to update the tile chunk in client buffer.Then,according to the decomposition of the problem,the buffer update problem is modeled as an optimization problem,and the corresponding solution algorithms are presented.Finally,the simulation results show that the adaptive caching algorithm based on 5G intelligent edge and hierarchical buffer strategy can improve the user experience in the case of bandwidth fluctuations,and the proposed viewpoint prediction method can significantly improve the accuracy of viewpoint prediction by 15%.展开更多
In this paper,unmanned aerial vehicle(UAV)is adopted to serve as aerial base station(ABS)and mobile edge computing(MEC)platform for wire-less communication systems.When Internet of Things devices(IoTDs)cannot cope wit...In this paper,unmanned aerial vehicle(UAV)is adopted to serve as aerial base station(ABS)and mobile edge computing(MEC)platform for wire-less communication systems.When Internet of Things devices(IoTDs)cannot cope with computation-intensive and/or time-sensitive tasks,part of tasks is offloaded to the UAV side,and UAV process them with its own computing resources and caching resources.Thus,the burden of IoTDs gets relieved under the satisfaction of the quality of service(QoS)require-ments.However,owing to the limited resources of UAV,the cost of whole system,i.e.,that is defined as the weighted sum of energy consumption and time de-lay with caching,should be further optimized while the objective function and the constraints are non-convex.Therefore,we first jointly optimize commu-nication resources B,computing resources F and of-floading rates X with alternating iteration and convex optimization method,and then determine the value of caching decision Y with branch-and-bound(BB)al-gorithm.Numerical results show that UAV assisting partial task offloading with content caching is supe-rior to local computing and full offloading mechanism without caching,and meanwhile the cost of whole sys-tem gets further optimized with our proposed scheme.展开更多
Efficient edge caching is essential for maximizing utility in video streaming systems,especially under constraints such as limited storage capacity and dynamically fluctuating content popularity.Utility,defined as the...Efficient edge caching is essential for maximizing utility in video streaming systems,especially under constraints such as limited storage capacity and dynamically fluctuating content popularity.Utility,defined as the benefit obtained per unit of cache bandwidth usage,degrades when static or greedy caching strategies fail to adapt to changing demand patterns.To address this,we propose a deep reinforcement learning(DRL)-based caching framework built upon the proximal policy optimization(PPO)algorithm.Our approach formulates edge caching as a sequential decision-making problem and introduces a reward model that balances cache hit performance and utility by prioritizing high-demand,high-quality content while penalizing degraded quality delivery.We construct a realistic synthetic dataset that captures both temporal variations and shifting content popularity to validate our model.Experimental results demonstrate that our proposed method improves utility by up to 135.9%and achieves an average improvement of 22.6%compared to traditional greedy algorithms and long short-term memory(LSTM)-based prediction models.Moreover,our method consistently performs well across a variety of utility functions,workload distributions,and storage limitations,underscoring its adaptability and robustness in dynamic video caching environments.展开更多
文摘Memory-based key-value cache systems, such as Memcached and Redis, have become indispensable components of data center infrastructures and have been used to cache performance-critical data to avoid expensive back-end database accesses. As the memory is usually not large enough to hold all the items, cache replacement must be performed to evict some cached items to make room for the newly coming items when there is no free space. Many real-world workloads target small items and have frequent bursts of scans (a scan is a sequence of one-time access requests). The commonly used LRU policy does not work well under such workloads since LRU needs a large amount of metadata and tends to discard hot items with scans. Small decreases in hit ratio can result in large end-to-end losses in these systems. This paper presents MemSC, which is a scan-resistant and compact cache replacement framework for Memcached. MemSC assigns a multi-granularity reference flag for each item, which requires only a few bits (two bits are enough for general use) per item to support scanresistant cache replacement policies. To evaluate MemSC, we implement three representative cache replacement policies (MemSC-HM, MemSC-LH, and MemSC-LF) on MemSC and test them using various workloads. The experimental results show that MemSC outperforms prior techniques. Compared with the optimized LRU policy in Memcached, MemSC-LH reduces the cache miss ratio and the memory usage of the resulting system by up to 23% and 14% respectively.
基金supported by the National Natural Science Foundation of China(NSFC)[Grant No.62072469].
文摘With the rapid development of 5G technology,the proportion of video traffic on the Internet is increasing,bringing pressure on the network infrastructure.Edge computing technology provides a feasible solution for optimizing video content distribution.However,the limited edge node cache capacity and dynamic user requests make edge caching more complex.Therefore,we propose a recommendation-driven edge Caching network architecture for the Full life cycle of video streaming(FlyCache)designed to improve users’Quality of Experience(QoE)and reduce backhaul traffic consumption.FlyCache implements intelligent caching management across three key stages:before-playback,during-playback,and after-playback.Specifically,we introduce a cache placement policy for the before-playback stage,a dynamic prefetching and cache admission policy for the during-playback stage,and a progressive cache eviction policy for the after-playback stage.To validate the effectiveness of FlyCache,we developed a user behavior-driven edge caching simulation framework incorporating recommendation mechanisms.Experiments conducted on the MovieLens and synthetic datasets demonstrate that FlyCache outperforms other caching strategies in terms of byte hit rate,backhaul traffic,and delayed startup rate.
基金supports from the Major Key Project of PCL (PCL2021A031)Shenzhen Science Technology Program (GXWD20201230155427003-20200824093323001)
文摘In the Satellite-integrated Internet of Things(S-IoT),data freshness in the time-sensitive scenarios could not be guaranteed over the timevarying topology with current distribution strategies aiming to reduce the transmission delay.To address this problem,in this paper,we propose an age-optimal caching distribution mechanism for the high-timeliness data collection in S-IoT by adopting a freshness metric,as called age of information(AoI)through the caching-based single-source multidestinations(SSMDs)transmission,namely Multi-AoI,with a well-designed cross-slot directed graph(CSG).With the proposed CSG,we make optimizations on the locations of cache nodes by solving a nonlinear integer programming problem on minimizing Multi-AoI.In particular,we put up forward three specific algorithms respectively for improving the Multi-AoI,i.e.,the minimum queuing delay algorithm(MQDA)based on node deviation from average level,the minimum propagation delay algorithm(MPDA)based on the node propagation delay reduction,and a delay balanced algorithm(DBA)based on node deviation from average level and propagation delay reduction.The simulation results show that the proposed mechanism can effectively improve the freshness of information compared with the random selection algorithm.
文摘为了在数据密集型工作流下有效降低缓存碎片整理开销并提高缓存命中率,提出一种持久性分布式文件系统客户端缓存DFS-Cache(Distributed File System Cache)。DFS-Cache基于非易失性内存(NVM)设计实现,能够保证数据的持久性和崩溃一致性,并大幅减少冷启动时间。DFS-Cache包括基于虚拟内存重映射的缓存碎片整理机制和基于生存时间(TTL)的缓存空间管理策略。前者基于NVM可被内存控制器直接寻址的特性,动态修改虚拟地址和物理地址之间的映射关系,实现零拷贝的内存碎片整理;后者是一种冷热分离的分组管理策略,借助重映射的缓存碎片整理机制,提升缓存空间的管理效率。实验采用真实的Intel傲腾持久性内存设备,对比商用的分布式文件系统MooseFS和GlusterFS,采用Fio和Filebench等标准测试程序,DFS-Cache最高能提升5.73倍和1.89倍的系统吞吐量。
文摘针对多核处理器性能优化问题,文中深入研究多核处理器上共享Cache的管理策略,提出了基于缓存时间公平性与吞吐率的共享Cache划分算法MT-FTP(Memory Time based Fair and Throughput Partitioning)。以公平性和吞吐率两个评价性指标建立数学模型,并分析了算法的划分流程。仿真实验结果表明,MT-FTP算法在系统吞吐率方面表现较好,其平均IPC(Instructions Per Cycles)值比UCP(Use Case Point)算法高1.3%,比LRU(Least Recently Used)算法高11.6%。MT-FTP算法对应的系统平均公平性比LRU算法的系统平均公平性高17%,比UCP算法的平均公平性高16.5%。该算法实现了共享Cache划分公平性并兼顾了系统的吞吐率。
基金supported by a grant fromthe National Key R&DProgram of China.
文摘In recent years,the research field of data collection under local differential privacy(LDP)has expanded its focus fromelementary data types to includemore complex structural data,such as set-value and graph data.However,our comprehensive review of existing literature reveals that there needs to be more studies that engage with key-value data collection.Such studies would simultaneously collect the frequencies of keys and the mean of values associated with each key.Additionally,the allocation of the privacy budget between the frequencies of keys and the means of values for each key does not yield an optimal utility tradeoff.Recognizing the importance of obtaining accurate key frequencies and mean estimations for key-value data collection,this paper presents a novel framework:the Key-Strategy Framework forKey-ValueDataCollection under LDP.Initially,theKey-StrategyUnary Encoding(KS-UE)strategy is proposed within non-interactive frameworks for the purpose of privacy budget allocation to achieve precise key frequencies;subsequently,the Key-Strategy Generalized Randomized Response(KS-GRR)strategy is introduced for interactive frameworks to enhance the efficiency of collecting frequent keys through group-anditeration methods.Both strategies are adapted for scenarios in which users possess either a single or multiple key-value pairs.Theoretically,we demonstrate that the variance of KS-UE is lower than that of existing methods.These claims are substantiated through extensive experimental evaluation on real-world datasets,confirming the effectiveness and efficiency of the KS-UE and KS-GRR strategies.
基金This work was supported in part by the China Ministry of Science and Technology under Grant 2015GA600002。
文摘The cache-based covert channel is one of the common vulnerabilities exploited in the Spectre attacks.Current mitigation strategies focus on blocking the eviction-based channel by using a random/encrypted mapping function to translate memory address to the cache address,while the updated-based channel is still vulnerable.In addition,some mitigation strategies are also costly as it needs software and hardware modifications.In this paper,our objective is to devise low-cost,comprehensive-protection techniques for mitigating the Spectre attacks.We proposed a novel cache structure,named EBCache,which focuses on the RISC-V processor and applies the address encryption and blacklist to resist the Spectre attacks.The addresses encryption mechanism increases the difficulty of pruning a minimal eviction set.The blacklist mechanism makes the updated cache lines loaded by the malicious updates invisible.Our experiments demonstrated that the EBCache can prevent malicious modifications.The EBCache,however,reduces the processor’s performance by about 23%but involves only a low-cost modification in the hardware.
文摘A notable portion of cachelines in real-world workloads exhibits inner non-uniform access behaviors.However,modern cache management rarely considers this fine-grained feature,which impacts the effective cache capacity of contemporary high-performance spacecraft processors.To harness these non-uniform access behaviors,an efficient cache replacement framework featuring an auxiliary cache specifically designed to retain evicted hot data was proposed.This framework reconstructs the cache replacement policy,facilitating data migration between the main cache and the auxiliary cache.Unlike traditional cacheline-granularity policies,the approach excels at identifying and evicting infrequently used data,thereby optimizing cache utilization.The evaluation shows impressive performance improvement,especially on workloads with irregular access patterns.Benefiting from fine granularity,the proposal achieves superior storage efficiency compared with commonly used cache management schemes,providing a potential optimization opportunity for modern resource-constrained processors,such as spacecraft processors.Furthermore,the framework complements existing modern cache replacement policies and can be seamlessly integrated with minimal modifications,enhancing their overall efficacy.
基金supported in part by National Key Research and Development Project under Grant 2020YFB1807204in part by the National Natural Science Foundation of China under Grant U2001213 and 61971191+2 种基金in part by the Beijing Natural Science Foundation under Grant L201011in part by the Key project of Natural Science Foundation of Jiangxi Province under Grant 20202ACBL202006in part by the Science and Technology Foundation of Jiangxi Province(20202BCD42010)。
文摘The dual frequency Heterogeneous Network(HetNet),including sub-6 GHz networks together with Millimeter Wave(mmWave),achieves the high data rates of user in the networks with hotspots.The cache-enabled HetNets with hotspots are investigated using an analytical framework in which Macro Base Stations(MBSs)and hotspot centers are treated as two independent homogeneous Poisson Point Processes(PPPs),and locations of Small Base Stations(SBSs)and users are modeled as two Poisson Cluster Processes(PCPs).Under the PCP-based modeling method and the Most Popular Caching(MPC)scheme,we propose a cache-enabled association strategy for HetNets with limited storage capacity.The performance of association probability and coverage probability is explicitly derived,and Monte Carlo simulation is utilized to verify that the results are correct.The outcomes of the simulation present the influence of antenna configuration and cache capacities of MBSs and SBSs on network performance.Numerical optimization of the standard deviation ratio of SBSs and users of association probability is enabled by our analysis.
基金supported in part by the Chongqing Municipal Education Commission projects under Grant No.KJCX2020035,KJQN202200829Chongqing Science and Technology Commission projects under grant No.CSTB2022BSXM-JCX0117 and cstc2020jcyjmsxmX0339+1 种基金supported in part by National Natural Science Foundation of China under Grant No.(62171072,62172064,62003067,61901067)supported in part by Chongqing Technology and Business University projects under Grant no.(2156004,212017).
文摘Virtual Reality(VR)is a key industry for the development of the digital economy in the future.Mobile VR has advantages in terms of mobility,lightweight and cost-effectiveness,which has gradually become the mainstream implementation of VR.In this paper,a mobile VR video adaptive transmission mechanism based on intelligent caching and hierarchical buffering strategy in Mobile Edge Computing(MEC)-equipped 5G networks is proposed,aiming at the low latency requirements of mobile VR services and flexible buffer management for VR video adaptive transmission.To support VR content proactive caching and intelligent buffer management,users’behavioral similarity and head movement trajectory are jointly used for viewpoint prediction.The tile-based content is proactively cached in the MEC nodes based on the popularity of the VR content.Second,a hierarchical buffer-based adaptive update algorithm is presented,which jointly considers bandwidth,buffer,and predicted viewpoint status to update the tile chunk in client buffer.Then,according to the decomposition of the problem,the buffer update problem is modeled as an optimization problem,and the corresponding solution algorithms are presented.Finally,the simulation results show that the adaptive caching algorithm based on 5G intelligent edge and hierarchical buffer strategy can improve the user experience in the case of bandwidth fluctuations,and the proposed viewpoint prediction method can significantly improve the accuracy of viewpoint prediction by 15%.
基金supported by National Natural Science Foundation of China(No.61821001)Science and Technology Key Project of Guangdong Province,China(2019B010157001).
文摘In this paper,unmanned aerial vehicle(UAV)is adopted to serve as aerial base station(ABS)and mobile edge computing(MEC)platform for wire-less communication systems.When Internet of Things devices(IoTDs)cannot cope with computation-intensive and/or time-sensitive tasks,part of tasks is offloaded to the UAV side,and UAV process them with its own computing resources and caching resources.Thus,the burden of IoTDs gets relieved under the satisfaction of the quality of service(QoS)require-ments.However,owing to the limited resources of UAV,the cost of whole system,i.e.,that is defined as the weighted sum of energy consumption and time de-lay with caching,should be further optimized while the objective function and the constraints are non-convex.Therefore,we first jointly optimize commu-nication resources B,computing resources F and of-floading rates X with alternating iteration and convex optimization method,and then determine the value of caching decision Y with branch-and-bound(BB)al-gorithm.Numerical results show that UAV assisting partial task offloading with content caching is supe-rior to local computing and full offloading mechanism without caching,and meanwhile the cost of whole sys-tem gets further optimized with our proposed scheme.
文摘Efficient edge caching is essential for maximizing utility in video streaming systems,especially under constraints such as limited storage capacity and dynamically fluctuating content popularity.Utility,defined as the benefit obtained per unit of cache bandwidth usage,degrades when static or greedy caching strategies fail to adapt to changing demand patterns.To address this,we propose a deep reinforcement learning(DRL)-based caching framework built upon the proximal policy optimization(PPO)algorithm.Our approach formulates edge caching as a sequential decision-making problem and introduces a reward model that balances cache hit performance and utility by prioritizing high-demand,high-quality content while penalizing degraded quality delivery.We construct a realistic synthetic dataset that captures both temporal variations and shifting content popularity to validate our model.Experimental results demonstrate that our proposed method improves utility by up to 135.9%and achieves an average improvement of 22.6%compared to traditional greedy algorithms and long short-term memory(LSTM)-based prediction models.Moreover,our method consistently performs well across a variety of utility functions,workload distributions,and storage limitations,underscoring its adaptability and robustness in dynamic video caching environments.