【目的】跨视角对象级地理定位(CVOGL)旨在卫星影像上精确定位地面街景或无人机影像所观测目标的地理位置。现有方法多聚焦于图像级匹配,通过对整张影像全局处理实现跨视角关联,缺乏对特定目标的位置编码研究,导致无法将模型的注意力引...【目的】跨视角对象级地理定位(CVOGL)旨在卫星影像上精确定位地面街景或无人机影像所观测目标的地理位置。现有方法多聚焦于图像级匹配,通过对整张影像全局处理实现跨视角关联,缺乏对特定目标的位置编码研究,导致无法将模型的注意力引导到感兴趣目标。并且由于参考图像覆盖范围的变化,查询目标在对应卫星图像中的像素占比极低,精确定位较为困难。【方法】针对以上问题,本文提出了一种基于高斯核函数与异构空间对比损失的跨视角对象级地理定位方法(Cross-View Object-Level Geo-Localization Method with Gaussian Kernel Function and Heterogeneous Spatial Contrastive Loss,GHGeo),用于精确定位感兴趣目标位置。该方法首先通过高斯核函数对查询目标进行精确位置编码,实现了对目标中心点及其分布特征的精细化建模;此外还提出了动态注意力精细化融合模块来动态加权交叉感知全局上下文与局部几何特征的空间相似性,以概率密度预测查询目标在卫星影像中的精确位置;最后通过异构空间对比损失函数来约束其训练过程,缓解跨视角特征差异。【结果】本文在CVOGL数据集进行了实验,实验结果显示:GHGeo在该数据集的“无人机-卫星”任务中,当交并比(IoU)≥25%和≥50%时定位准确率分别达到67.73%和63.00%,相较于基准方法DetGeo分别提升了5.76%和5.34%;在“街景-卫星”定位任务中,对应IoU阈值下的定位准确率分别为48.41%和45.43%的定位准确率,相较于基准方法DetGeo分别提升了2.98%和3.19%。同时与TransGeo,SAFA和VAGeo等方法在CVOGL数据集上进行对比,GHGeo则展现出了更高的定位准确性。【结论】本文方法有效提升了跨视角对象级地理定位方法的精度,为城市规划监测,应急救援调度等应用领域提供关键技术支持和精确位置信息支撑。展开更多
为提高自然环境中玉米害虫识别的准确性,开发一种基于优化YOLOv8的深度学习模型YOLOv8-LAP。该模型将大型可分离卷积核注意力(LSKA)机制引入特征融合模块空间快速金字塔池化(SPPF),增强多尺度特征提取能力,提升检测性能。针对玉米害虫...为提高自然环境中玉米害虫识别的准确性,开发一种基于优化YOLOv8的深度学习模型YOLOv8-LAP。该模型将大型可分离卷积核注意力(LSKA)机制引入特征融合模块空间快速金字塔池化(SPPF),增强多尺度特征提取能力,提升检测性能。针对玉米害虫图像检测中小目标难以捕捉、背景复杂和光照变化等挑战,在主干网络中加入AFGC(Attention for Fine-Grained Categorization)层,以进一步增强图像特征提取的效果,提升模型的泛化能力和鲁棒性。为保证实时检测和模型轻量化,引入可编程梯度信息(PGI)技术,通过辅助监督优化训练过程,减少参数并加速推理。在9种常见玉米害虫的检测中,YOLOv8-LAP模型的平均精度均值(mAP0.5)达到了95.7%,相较于原始YOLOv8模型提高了4.9个百分点。此外,为验证YOLOv8-LAP模型的效果,开发一款基于PySide6的应用程序,该应用拥有用户友好的图形用户界面(GUI),具有实时图像处理和视频分析功能,并支持静态图像、动态视频和摄像头实时目标检测。可见,YOLOv8-LAP模型在降低漏检率和误检率方面表现突出,目标定位更精准,适用于自然环境下的玉米害虫识别,并为精准施药提供技术支持。展开更多
文摘【目的】跨视角对象级地理定位(CVOGL)旨在卫星影像上精确定位地面街景或无人机影像所观测目标的地理位置。现有方法多聚焦于图像级匹配,通过对整张影像全局处理实现跨视角关联,缺乏对特定目标的位置编码研究,导致无法将模型的注意力引导到感兴趣目标。并且由于参考图像覆盖范围的变化,查询目标在对应卫星图像中的像素占比极低,精确定位较为困难。【方法】针对以上问题,本文提出了一种基于高斯核函数与异构空间对比损失的跨视角对象级地理定位方法(Cross-View Object-Level Geo-Localization Method with Gaussian Kernel Function and Heterogeneous Spatial Contrastive Loss,GHGeo),用于精确定位感兴趣目标位置。该方法首先通过高斯核函数对查询目标进行精确位置编码,实现了对目标中心点及其分布特征的精细化建模;此外还提出了动态注意力精细化融合模块来动态加权交叉感知全局上下文与局部几何特征的空间相似性,以概率密度预测查询目标在卫星影像中的精确位置;最后通过异构空间对比损失函数来约束其训练过程,缓解跨视角特征差异。【结果】本文在CVOGL数据集进行了实验,实验结果显示:GHGeo在该数据集的“无人机-卫星”任务中,当交并比(IoU)≥25%和≥50%时定位准确率分别达到67.73%和63.00%,相较于基准方法DetGeo分别提升了5.76%和5.34%;在“街景-卫星”定位任务中,对应IoU阈值下的定位准确率分别为48.41%和45.43%的定位准确率,相较于基准方法DetGeo分别提升了2.98%和3.19%。同时与TransGeo,SAFA和VAGeo等方法在CVOGL数据集上进行对比,GHGeo则展现出了更高的定位准确性。【结论】本文方法有效提升了跨视角对象级地理定位方法的精度,为城市规划监测,应急救援调度等应用领域提供关键技术支持和精确位置信息支撑。
文摘为提高自然环境中玉米害虫识别的准确性,开发一种基于优化YOLOv8的深度学习模型YOLOv8-LAP。该模型将大型可分离卷积核注意力(LSKA)机制引入特征融合模块空间快速金字塔池化(SPPF),增强多尺度特征提取能力,提升检测性能。针对玉米害虫图像检测中小目标难以捕捉、背景复杂和光照变化等挑战,在主干网络中加入AFGC(Attention for Fine-Grained Categorization)层,以进一步增强图像特征提取的效果,提升模型的泛化能力和鲁棒性。为保证实时检测和模型轻量化,引入可编程梯度信息(PGI)技术,通过辅助监督优化训练过程,减少参数并加速推理。在9种常见玉米害虫的检测中,YOLOv8-LAP模型的平均精度均值(mAP0.5)达到了95.7%,相较于原始YOLOv8模型提高了4.9个百分点。此外,为验证YOLOv8-LAP模型的效果,开发一款基于PySide6的应用程序,该应用拥有用户友好的图形用户界面(GUI),具有实时图像处理和视频分析功能,并支持静态图像、动态视频和摄像头实时目标检测。可见,YOLOv8-LAP模型在降低漏检率和误检率方面表现突出,目标定位更精准,适用于自然环境下的玉米害虫识别,并为精准施药提供技术支持。