期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Multi-View Dynamic Kernelized Evidential Clustering
1
作者 Jinyi Xu Zuowei Zhang +2 位作者 Ze Lin Yixiang Chen Weiping Ding 《IEEE/CAA Journal of Automatica Sinica》 CSCD 2024年第12期2435-2450,共16页
It is challenging to cluster multi-view data in which the clusters have overlapping areas.Existing multi-view clustering methods often misclassify the indistinguishable objects in overlapping areas by forcing them int... It is challenging to cluster multi-view data in which the clusters have overlapping areas.Existing multi-view clustering methods often misclassify the indistinguishable objects in overlapping areas by forcing them into single clusters,increasing clustering errors.Our solution,the multi-view dynamic kernelized evidential clustering method(MvDKE),addresses this by assigning these objects to meta-clusters,a union of several related singleton clusters,effectively capturing the local imprecision in overlapping areas.MvDKE offers two main advantages:firstly,it significantly reduces computational complexity through a dynamic framework for evidential clustering,and secondly,it adeptly handles non-spherical data using kernel techniques within its objective function.Experiments on various datasets confirm MvDKE's superior ability to accurately characterize the local imprecision in multi-view non-spherical data,achieving better efficiency and outperforming existing methods in overall performance. 展开更多
关键词 Evidential clustering imprecision characterizing kernel technique multi-view clustering
在线阅读 下载PDF
Supervised Kernel Uncorrelated Discriminant Neighborhood Preserving Projections
2
作者 罗磊 周晖 +1 位作者 徐晨 李丹美 《Journal of Donghua University(English Edition)》 EI CAS 2012年第5期446-449,共4页
To separate each pattern class more strongly and deal with nonlinear ease, a new nonlinear manifold learning algorithm named supervised kernel uneorrelated diseriminant neighborhood preserving projections (SKUDNPP) ... To separate each pattern class more strongly and deal with nonlinear ease, a new nonlinear manifold learning algorithm named supervised kernel uneorrelated diseriminant neighborhood preserving projections (SKUDNPP) is proposed. The algorithm utilizes supervised weight and kernel technique which makes the algorithm cope with classifying and nonlinear problems competently. The within-class geometric structure is preserved, while maximizing the between-class distance. And the features extracted are statistically uneorrelated by introducing an uneorrelated constraint. Experiment results on millimeter wave (MMW) radar target recognition show that the method can give competitive results in comparison with current papular algorithms. 展开更多
关键词 manifold learning dimensionality reduction kernel technique uncorrelated discriminant neighborhood preserving projections
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部