Variation in weather conditions during grain filling has substantial effects on maize kernel weight(KW). The objective of this work was to characterize variation in KW with sowing date-associated weather conditions an...Variation in weather conditions during grain filling has substantial effects on maize kernel weight(KW). The objective of this work was to characterize variation in KW with sowing date-associated weather conditions and examine the relationship between KW, grain filling parameters, and weather factors. Maize was sown on eight sowing dates(SD) at 15–20-day intervals from mid-March to mid-July during 2012 and 2013 in the North China Plain. With sowing date delay, KW increased initially and later declined, and the greatest KW was obtained at SD6 in both years. The increased KW at SD6 was attributed mainly to kernel growth rate(Gmean), and effective grain-filling period(P). Variations in temperature and radiation were the primary factors that influenced KW and grain-filling parameters. When the effective cumulative temperature(AT) and radiation(Ra)during grain filling were 950 °C and 1005.4 MJ m-2, respectively, P and KW were greatest. High temperatures(daily maximum temperature [Tmax] > 30.2 °C) during grain filling under early sowing conditions, or low temperatures(daily minimum temperature [Tmin] < 20.7 °C) under late sowing conditions combined with high diurnal temperature range(Tmax-min> 7.1 °C) decreased kernel growth rate and ultimately final KW. When sowing was performed from May 25 through June 27, higher KW and yield of maize were obtained. We conclude that variations in environmental conditions(temperature and radiation) during grain filling markedly affect growth rate and duration of grain filling and eventually affect kernel weight and yield of maize.展开更多
Wheat is one of the major food crops in the world.Functional validation of the genes in increasing the grain yield of wheat by genetic engineering is essential for feeding the ever-growing global population.This study...Wheat is one of the major food crops in the world.Functional validation of the genes in increasing the grain yield of wheat by genetic engineering is essential for feeding the ever-growing global population.This study investigated the role of ABP7,a bHLH transcription factor from maize involved in kernel development,in regulating grain yield-related traits in transgenic wheat.Molecular characterization showed that transgenic lines HB123 and HB287 contained multicopy integration of ABP7 in the genome with higher transgene expression.At the same time,QB205 was a transgenic event of single copy insertion with no significant difference in ABP7 expression compared to wild-type(WT) plants.Phenotyping under field conditions showed that ABP7 over-expressing transgenic lines HB123 and HB287 exhibited improved grain yield-related traits(e.g.,grain number per spike,grain weight per spike,thousand-grain weight,grain length,and grain width) and increased grain yield per plot,compared to WT plants,whereas line QB205 did not.In addition,total chlorophyll,chlorophyll a,chlorophyll b,and total soluble sugars were largely increased in the flag leaves of both HB123and HB287 transgenic lines compared to the WT.These results strongly suggest that ABP7 positively regulates yieldrelated traits and plot grain yield in transgenic wheat.Consequently,ABP7 can be utilized in wheat breeding for grain yield improvement.展开更多
RNA-binding proteins(RBPs)are components of the post-transcriptional regulatory system,but their regulatory effects on complex traits remain unknown.Using an integrated strategy involving map-based cloning,functional ...RNA-binding proteins(RBPs)are components of the post-transcriptional regulatory system,but their regulatory effects on complex traits remain unknown.Using an integrated strategy involving map-based cloning,functional characterizations,and transcriptomic and population genomic analyses,we revealed that RBP-K(LOC_Os08g23120),RBP-A(LOC_Os11g41890),and RBP-J(LOC_Os10g33230)encode proteins that form an RBP-A-J-K complex that negatively regulates rice yield-related traits.Examinations of the RBP-A-J-K complex indicated RBP-K functions as a relatively non-specific RBP chaperone that enables RBP-A and RBP-J to function normally.Additionally,RBP-J most likely affects GA pathways,resulting in considerable increases in grain and panicle lengths,but decreases in grain width and thickness.In contrast,RBP-A negatively regulates the expression of genes most likely involved in auxin-regulated pathways controlling cell wall elongation and carbohydrate transport,with substantial effects on the rice grain filling process as well as grain length and weight.Evolutionarily,RBP-K is relatively ancient and highly conserved,whereas RBP-J and RBP-A are more diverse.Thus,the RBP-A-J-K complex may represent a typical functional model for many RBPs and protein complexes that function at transcriptional and post-transcriptional levels in plants and animals for increased functional consistency,efficiency,and versatility,as well as increased evolutionary potential.Our results clearly demonstrate the importance of RBP-mediated post-transcriptional regulation for the diversity of complex traits.Furthermore,rice grain yield and quality may be enhanced by introducing various complete or partial loss-of-function mutations to specific RBP genes using clustered regularly interspaced palindromic repeats(CRISPR)/CRISPR-associated protein 9 technology and by exploiting desirable natural tri-genic allelic combinations at the loci encoding the components of the RBP-A-J-K complex through marker-assisted selection.展开更多
基金supported by the Special Fund for Agro-scientific Research in the Public Interest(No.201203096)the National Key Technology R&D Program of China(Nos.2013BAD07B00 and 2013BAD08B00)the China Agriculture Research System(No.CARS-02)
文摘Variation in weather conditions during grain filling has substantial effects on maize kernel weight(KW). The objective of this work was to characterize variation in KW with sowing date-associated weather conditions and examine the relationship between KW, grain filling parameters, and weather factors. Maize was sown on eight sowing dates(SD) at 15–20-day intervals from mid-March to mid-July during 2012 and 2013 in the North China Plain. With sowing date delay, KW increased initially and later declined, and the greatest KW was obtained at SD6 in both years. The increased KW at SD6 was attributed mainly to kernel growth rate(Gmean), and effective grain-filling period(P). Variations in temperature and radiation were the primary factors that influenced KW and grain-filling parameters. When the effective cumulative temperature(AT) and radiation(Ra)during grain filling were 950 °C and 1005.4 MJ m-2, respectively, P and KW were greatest. High temperatures(daily maximum temperature [Tmax] > 30.2 °C) during grain filling under early sowing conditions, or low temperatures(daily minimum temperature [Tmin] < 20.7 °C) under late sowing conditions combined with high diurnal temperature range(Tmax-min> 7.1 °C) decreased kernel growth rate and ultimately final KW. When sowing was performed from May 25 through June 27, higher KW and yield of maize were obtained. We conclude that variations in environmental conditions(temperature and radiation) during grain filling markedly affect growth rate and duration of grain filling and eventually affect kernel weight and yield of maize.
文摘Wheat is one of the major food crops in the world.Functional validation of the genes in increasing the grain yield of wheat by genetic engineering is essential for feeding the ever-growing global population.This study investigated the role of ABP7,a bHLH transcription factor from maize involved in kernel development,in regulating grain yield-related traits in transgenic wheat.Molecular characterization showed that transgenic lines HB123 and HB287 contained multicopy integration of ABP7 in the genome with higher transgene expression.At the same time,QB205 was a transgenic event of single copy insertion with no significant difference in ABP7 expression compared to wild-type(WT) plants.Phenotyping under field conditions showed that ABP7 over-expressing transgenic lines HB123 and HB287 exhibited improved grain yield-related traits(e.g.,grain number per spike,grain weight per spike,thousand-grain weight,grain length,and grain width) and increased grain yield per plot,compared to WT plants,whereas line QB205 did not.In addition,total chlorophyll,chlorophyll a,chlorophyll b,and total soluble sugars were largely increased in the flag leaves of both HB123and HB287 transgenic lines compared to the WT.These results strongly suggest that ABP7 positively regulates yieldrelated traits and plot grain yield in transgenic wheat.Consequently,ABP7 can be utilized in wheat breeding for grain yield improvement.
基金supported by the Innovation Program of Shanghai Municipal Education Commission(2023ZKZD05)the National Natural Science Foundation of China(32172043,31971918 and 32170356)+2 种基金the Shanghai Science and Technology Innovation Action Plan Project(22N11900200)the Innovation Program of Chinese Academy of Agricultural Sciencesthe grant from the National Key Research and Development Program of China(2021YFA1300401).
文摘RNA-binding proteins(RBPs)are components of the post-transcriptional regulatory system,but their regulatory effects on complex traits remain unknown.Using an integrated strategy involving map-based cloning,functional characterizations,and transcriptomic and population genomic analyses,we revealed that RBP-K(LOC_Os08g23120),RBP-A(LOC_Os11g41890),and RBP-J(LOC_Os10g33230)encode proteins that form an RBP-A-J-K complex that negatively regulates rice yield-related traits.Examinations of the RBP-A-J-K complex indicated RBP-K functions as a relatively non-specific RBP chaperone that enables RBP-A and RBP-J to function normally.Additionally,RBP-J most likely affects GA pathways,resulting in considerable increases in grain and panicle lengths,but decreases in grain width and thickness.In contrast,RBP-A negatively regulates the expression of genes most likely involved in auxin-regulated pathways controlling cell wall elongation and carbohydrate transport,with substantial effects on the rice grain filling process as well as grain length and weight.Evolutionarily,RBP-K is relatively ancient and highly conserved,whereas RBP-J and RBP-A are more diverse.Thus,the RBP-A-J-K complex may represent a typical functional model for many RBPs and protein complexes that function at transcriptional and post-transcriptional levels in plants and animals for increased functional consistency,efficiency,and versatility,as well as increased evolutionary potential.Our results clearly demonstrate the importance of RBP-mediated post-transcriptional regulation for the diversity of complex traits.Furthermore,rice grain yield and quality may be enhanced by introducing various complete or partial loss-of-function mutations to specific RBP genes using clustered regularly interspaced palindromic repeats(CRISPR)/CRISPR-associated protein 9 technology and by exploiting desirable natural tri-genic allelic combinations at the loci encoding the components of the RBP-A-J-K complex through marker-assisted selection.