期刊文献+
共找到87篇文章
< 1 2 5 >
每页显示 20 50 100
基于OLHS-IAOO-KELM的尾矿坝渗透系数反演模型及应用
1
作者 管子懿 沈振中 《水电能源科学》 北大核心 2026年第1期138-142,197,共6页
尾矿坝是由尾砂长期堆积而成的,分层复杂、渗透系数不均一,为获取能反映其整体渗透特性的代表性渗透系数,提出一种新的反演方法。采用最优拉丁超立方抽样(OLHS)获取均布的尾矿坝渗透系数组合样本,将其代入有限元模型进行正分析得到测点... 尾矿坝是由尾砂长期堆积而成的,分层复杂、渗透系数不均一,为获取能反映其整体渗透特性的代表性渗透系数,提出一种新的反演方法。采用最优拉丁超立方抽样(OLHS)获取均布的尾矿坝渗透系数组合样本,将其代入有限元模型进行正分析得到测点水头值样本,两者结合构成数据集,通过核极限学习机(KELM)建立从渗透系数到测点水头的非线性映射关系,利用融合拉丁超立方抽样初始化种群、重心反向学习和自适应趋优边界改进的不实野燕麦优化(IAOO)算法对KELM的超参数进行优化,建立了基于OLHS-IAOO-KELM的尾矿坝渗透系数反演模型,并将其应用于工程实例中。通过该模型反演得到的尾矿坝渗透系数值合理,7个测点经渗流正分析得到的计算水头和实测水头的相对误差不超过2.08%,满足工程精度要求,且尾矿坝典型断面的渗流场位势分布符合一般规律。与其他模型相比较,该模型的反演结果误差最小。该模型的准确性和鲁棒性高,在尾矿坝渗透系数反演中具有实用价值。 展开更多
关键词 尾矿坝 渗透系数 反演分析 改进不实野燕麦优化算法 核极限学习机
原文传递
Deep kernel extreme learning machine classifier based on the improved sparrow search algorithm
2
作者 Zhao Guangyuan Lei Yu 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2024年第3期15-29,共15页
In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classificat... In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classification accuracy of DKELM,a DKELM algorithm optimized by the improved sparrow search algorithm(ISSA),named as ISSA-DKELM,is proposed in this paper.Aiming at the parameter selection problem of DKELM,the DKELM classifier is constructed by using the optimal parameters obtained by ISSA optimization.In order to make up for the shortcomings of the basic sparrow search algorithm(SSA),the chaotic transformation is first applied to initialize the sparrow position.Then,the position of the discoverer sparrow population is dynamically adjusted.A learning operator in the teaching-learning-based algorithm is fused to improve the position update operation of the joiners.Finally,the Gaussian mutation strategy is added in the later iteration of the algorithm to make the sparrow jump out of local optimum.The experimental results show that the proposed DKELM classifier is feasible and effective,and compared with other classification algorithms,the proposed DKELM algorithm aciheves better test accuracy. 展开更多
关键词 deep kernel extreme learning machine(DKELM) improved sparrow search algorithm(ISSA) CLASSIFIER parameters optimization
原文传递
基于改进蜣螂优化算法深度混合核极限学习机的高压断路器故障诊断 被引量:1
3
作者 范兴明 许洪华 +3 位作者 张思舜 李涛 蒋延军 张鑫 《电工技术学报》 北大核心 2025年第12期3994-4003,共10页
针对高压断路器机械故障诊断准确率偏低的问题,该文提出一种基于改进蜣螂优化算法(IDBO)优化深度混合核极限学习机(DHKELM)的故障诊断方法。首先,采用逐次变分模态分解(SVMD)对高压断路器合闸振动信号进行分解,得到若干个含本征频率的... 针对高压断路器机械故障诊断准确率偏低的问题,该文提出一种基于改进蜣螂优化算法(IDBO)优化深度混合核极限学习机(DHKELM)的故障诊断方法。首先,采用逐次变分模态分解(SVMD)对高压断路器合闸振动信号进行分解,得到若干个含本征频率的固有模态分量(IMF);其次,提取各IMF分量的功率谱熵构建特征向量矩阵,并利用t分布-随机邻域嵌入算法(t-SNE)对特征向量进行数据降维;然后,引入融合Tent混沌映射、黄金正弦策略、自适应t分布扰动策略对传统蜣螂优化算法(DBO)进行改进,并使用IDBO对DHKELM进行参数优化,完成IDBO-DHKELM高压断路器故障诊断模型的构建;最后,通过搭建模拟故障的实物断路器实验平台进行验证,结果表明,该文提出的方法在故障诊断上的准确率达到了98.33%,相较于其他故障诊断模型在多项分类评价指标上均有显著提升,为准确、可靠地诊断高压断路器机械故障提供了新方案。 展开更多
关键词 高压断路器 改进蜣螂优化算法 深度混合核极限学习机 故障诊断 逐次变分模 态分解
在线阅读 下载PDF
基于深度置信网络的旋转机械在线故障诊断 被引量:1
4
作者 郭俊杰 郭正红 《计算机测量与控制》 2025年第1期60-68,共9页
针对现有旋转机械在线故障诊断算法所存在的数据遍历耗时长,检测准确率低,故障分类准确率低等不足,提出一种基于深度置信网络的故障诊断算法;先基于受限的玻尔兹曼机搭建深度置信网络框架,利用数据标签在输入层和后端的受限玻尔兹曼机... 针对现有旋转机械在线故障诊断算法所存在的数据遍历耗时长,检测准确率低,故障分类准确率低等不足,提出一种基于深度置信网络的故障诊断算法;先基于受限的玻尔兹曼机搭建深度置信网络框架,利用数据标签在输入层和后端的受限玻尔兹曼机之间建立联系;然后利用k-means算法压缩聚类处理数据集降低数据集的规模和复杂度;最后在不同故障特征的分类诊断方面,引入加入核函数的SVM分类算法,提升对不同机械故障类型的分类精度;实验结果显示,提出的旋转机械故障在线诊断方案的迭代效率高,数据遍历耗时少,训练集和测试集F1指标的分别为97.9%和97.4%,优于传统故障诊断算法。 展开更多
关键词 深度置信网络 改进K-MEANS算法 受限的玻尔兹曼机 核函数 SVM
在线阅读 下载PDF
改进SSA-HKELM模型在海洋弯管剩余寿命预测中的应用 被引量:1
5
作者 骆正山 王良雨 +1 位作者 高懿琼 骆济豪 《安全与环境学报》 北大核心 2025年第5期1770-1779,共10页
针对海洋油气弯管剩余寿命预测问题,建立了基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混合核极限学习机(Hybrid Kernel Extreme Learning Machine,HKELM)的腐蚀深度预测模型。通过最优拉丁超立方初始化种群分布... 针对海洋油气弯管剩余寿命预测问题,建立了基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混合核极限学习机(Hybrid Kernel Extreme Learning Machine,HKELM)的腐蚀深度预测模型。通过最优拉丁超立方初始化种群分布,采用黄金正弦、Tent混沌扰动和柯西变异提高麻雀搜索算法(Sparrow Search Algorithm,SSA)的收敛速度和搜索能力,运用ISSA算法优化HKELM的网络参数,构建海洋弯管腐蚀深度预测模型。依据改进的ASME B31G剩余强度评价准则,计算最大允许腐蚀深度,结合管道腐蚀发展趋势模型,对薄弱弯管进行腐蚀剩余寿命预测。以某海洋管道弯管试验数据为基础对模型进行验证,模型预测精度高达0.989 7,能较好地预测海洋弯管的最大腐蚀深度及未来腐蚀发展趋势。寿命预测结果表明,部分弯管剩余寿命未超过其预期服役时间,为海洋弯管的安全运维及维修更换提供了决策支持。 展开更多
关键词 安全工程 海洋弯管 剩余寿命 改进麻雀搜索算法 混合核极限学习机 腐蚀深度预测模型
原文传递
基于MIC特征提取与ICEEMD-RIME-DHKELM的建筑业碳排放预测模型 被引量:2
6
作者 张新生 聂达文 陈章政 《环境工程》 2025年第4期46-58,共13页
为解决建筑业碳排放研究中影响因素选取局限性、数据预处理不足、碳排放复杂动态变化及非线性问题,提出了一种基于最大信息系数(MIC)特征提取、改进互补集合经验模态分解(ICEEMD)、雾凇优化算法(RIME)与深度混合核极限学习机(DHKELM)的... 为解决建筑业碳排放研究中影响因素选取局限性、数据预处理不足、碳排放复杂动态变化及非线性问题,提出了一种基于最大信息系数(MIC)特征提取、改进互补集合经验模态分解(ICEEMD)、雾凇优化算法(RIME)与深度混合核极限学习机(DHKELM)的建筑业碳排放量预测模型。首先,根据IPCC计算方法,从直接和间接两个方面测算1992—2021年我国建筑业碳排放量,基于STIRPAT模型选取年末总人口数、国内生产总值、建筑业房屋竣工面积和能源结构等17个影响建筑业碳排放量的因素,然后利用灰色关联分析和MIC方法两阶段筛选出12个关键影响因素;其次,使用ICEEMD将建筑业碳排放量分解为多个平稳序列和一个残差项,并将其分别代入RIME算法优化关键参数后的DHKELM模型中。最后,将各分解序列的预测结果相加获得建筑业碳排放预测值,并对比分析多种基准模型的预测结果。结果显示:MIC-ICEEMD-RIME-DHKELM模型的预测性能最优,其均方根误差、平均绝对误差、平均绝对百分比误差和绝对相关系数分别为0.2782亿t、0.2672亿t、1.3783%和0.9576,均优于其他模型,证明该模型适用于建筑业碳排放量的预测。该研究成果为建筑业的低碳发展提供理论支持和技术参考。 展开更多
关键词 建筑业 碳排放 最大信息系数 改进互补集合经验模态分解 雾凇优化算法 深度混合核极限学习机
原文传递
二元混合气体成分检测的改进蒲公英算法研究
7
作者 李鹏 汤炼海 +2 位作者 林事力 纵彪 于涛 《传感器与微系统》 北大核心 2025年第2期15-20,共6页
针对阵列传感器检测二元混合气体时由于交叉敏感特性导致准确率低的问题,提出一种改进型蒲公英优化(IDO)算法优化核极限学习机(KELM)的二元混合气体检测方法。首先,引入Kent映射初始化种群提高初始种群分布的均匀性,后将精英反向学习策... 针对阵列传感器检测二元混合气体时由于交叉敏感特性导致准确率低的问题,提出一种改进型蒲公英优化(IDO)算法优化核极限学习机(KELM)的二元混合气体检测方法。首先,引入Kent映射初始化种群提高初始种群分布的均匀性,后将精英反向学习策略(EOBL)引入蒲公英种子位置更新,提高原算法寻优精度。将该算法用于KELM参数寻优,建立改进DO(IDO)算法优化KELM模型,实现对二元混合气体的成分识别。实验结果表明:IDO算法优化的KELM模型对二元混合气体成分识别准确率可达99.71%,比原始KELM模型提高4.28%。 展开更多
关键词 改进蒲公英优化算法 核极限学习机 气体分类
在线阅读 下载PDF
基于数据增强和优化DHKELM的短期光伏功率预测
8
作者 郭利进 马粽阳 胡晓岩 《太阳能学报》 北大核心 2025年第8期463-471,共9页
针对不同气象条件数据质量差异较大且光伏功率呈高波动性难以预测等问题,提出添加随机噪声的数据增强方法(DA)和改进的神经网络组合模型。首先利用谱聚类算法将光伏数据按不同气象条件进行分类,随后通过添加与输入同形状的随机噪声方法... 针对不同气象条件数据质量差异较大且光伏功率呈高波动性难以预测等问题,提出添加随机噪声的数据增强方法(DA)和改进的神经网络组合模型。首先利用谱聚类算法将光伏数据按不同气象条件进行分类,随后通过添加与输入同形状的随机噪声方法提升数据集的规模与质量。针对深度混合核极限学习机(DHKELM)超参数多等问题,提出融合佳点集初始化、黄金正弦更新策略、非线性扰动和最优个体自适应扰动的改进鹈鹕优化算法(IPOA)对其超参数寻优。最后以青海共和县光伏园内某电站数据为例,结果表明基于数据增强的改进鹈鹕算法优化深度混合核极限学习机(DA-IPOA-DHKELM)模型在不同天气、季节条件下预测误差最小,拟合度均能达到90%以上,改进模型预测精度高、算法适用性强。 展开更多
关键词 光伏功率 预测 聚类分析 数据增强 深度混合核极限学习机 改进算法
原文传递
改进粒子群优化算法结合BP神经网络模型的水体透射光谱总磷浓度预测研究 被引量:4
9
作者 张国浩 王彩玲 +1 位作者 王洪伟 于涛 《光谱学与光谱分析》 北大核心 2025年第2期394-402,共9页
使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总... 使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总磷浓度含量的预测。具体而言,首先对测得的长江水质光谱数据进行最大最小归一化和均值中心化两种预处理操作,在消除不同数据量级差异的同时去除了噪声,确保了数据的一致性和可靠性。其次,为了解决光谱数据的高维度问题,采用了核主成分分析(KPCA)方法来降低数据维度并提取特征。KPCA方法通过在高维度的空间中找到一个分类平面,选出能代表原始数据99.42%信息量的前6个主成分,用于后续预测模型的训练。接着在原始粒子群算法的基础上引入了粒子初始化规则、多种群竞争策略、参数自适应更新策略、种群多样性引导策略和粒子变异机制,提高了粒子群的寻优能力,降低粒子陷入局部最优解的概率。并使用改进后的粒子群算法对BP神经网络(BPNN)中的初始化权重和参数大小进行寻优,从而加快网络的收敛效果,提高预测能力。最后,使用本研究所提出的预测模型对测试集中的样本进行总磷浓度的预测,实验结果得到R^(2)为0.975786,RMSE为0.002242,MAE为0.001612。将本模型与当前预测性能较好的其他基准模型进行预测效果的对比,本研究所提出的模型对长江水体总磷浓度预测拟合效果更好,精确度更高。在水资源保护和环境管理领域中使用光谱数据结合融合算法进行预测模型的研究和实践提供了新的思路和观点。 展开更多
关键词 光谱数据 改进粒子群优化算法 BP神经网络模型 核主成分分析(KPCA) 总磷浓度
在线阅读 下载PDF
基于多隐层极限学习机的产品质量预测方法 被引量:1
10
作者 丁鹏程 战洪飞 +2 位作者 林颖俊 余军合 王瑞 《计算机集成制造系统》 北大核心 2025年第11期4130-4143,共14页
在产品生产过程中,准确快速地预测产品质量有助于企业及时调整制造工艺,降低损失。针对实际生产过程中,现场采集的工艺数据存在维度高、相关性复杂且用传统方法难以准确预测的问题,提出一种基于改进多隐层极限学习机(LCGWO-DMKEA-BLSTM... 在产品生产过程中,准确快速地预测产品质量有助于企业及时调整制造工艺,降低损失。针对实际生产过程中,现场采集的工艺数据存在维度高、相关性复杂且用传统方法难以准确预测的问题,提出一种基于改进多隐层极限学习机(LCGWO-DMKEA-BLSTM)的方法。首先,通过互信息法(MI)对采集的生产工艺特征参数进行筛选,组成模型输入初始特征集。其次,将高斯核函数与反余弦核函数加权结合,构造出新的混合核函数,并引入自动编码器对极限学习机进行改进,建立深度多内核极限学习机自编码器(DMKEA)特征挖掘模型,从高维复杂工艺特征集中提取最能反映产品质量的关键特征信息,输入决策层双向长短时神经网络(BLSTM)中进行质量预测。在DMKEA学习训练中,采用基于Circle混沌映射和Levy飞行策略改进的灰狼算法(LCGWO),优化惩罚系数、核参数以及核函数组合权重,提高DMKEA的特征挖掘能力。最后用半导体薄膜晶体管液晶显示器生产线的工艺数据实验验证了所提方法的有效性。研究成果有助于企业实现准确地产品质量预测,也为企业生产的数据赋能提供参考。 展开更多
关键词 质量预测 互信息法 改进多隐层极限学习机 混合核函数 双向长短时神经网络 Circle混沌映射 Levy飞行 改进灰狼算法
在线阅读 下载PDF
基于改进北方苍鹰算法与混合核极限学习机的齿轮箱故障诊断 被引量:2
11
作者 杜董生 王梦姣 +1 位作者 冒泽慧 赵环宇 《控制理论与应用》 北大核心 2025年第4期796-804,共9页
针对行星齿轮箱故障诊断问题,本文提出了一种基于改进北方苍鹰优化(INGO)算法与混合核极限学习机(HKELM)的行星齿轮箱故障诊断方法.首先,引入Savitzky-Golay(SG)滤波对齿轮箱原始信号进行去噪.利用时变滤波经验模态分解(TVF-EMD)将去噪... 针对行星齿轮箱故障诊断问题,本文提出了一种基于改进北方苍鹰优化(INGO)算法与混合核极限学习机(HKELM)的行星齿轮箱故障诊断方法.首先,引入Savitzky-Golay(SG)滤波对齿轮箱原始信号进行去噪.利用时变滤波经验模态分解(TVF-EMD)将去噪后的信号分解成多个本征模态函数(IMF),使用方差贡献率、相关系数和信息熵筛选出最优的IMF.将最优IMF重构后,对重构信号进行时间同步平均(TSA)去噪以减少故障诊断模型的数据计算量.将Tent混沌映射、混合正弦余弦算法和Levy飞行策略用于改进北方苍鹰优化(NGO)算法,得到一种新的INGO算法.同时,引入余弦因子以平衡正弦余弦算法的全局和局部开发能力.最后,利用INGO算法对HKELM进行优化,用以提高HKELM模型的故障诊断准确率.将所提方法应用于两个案例对模型进行检验,实验结果表明,本文所提方法具有可行性和优越性. 展开更多
关键词 混合核极限学习机 改进北方苍鹰优化算法 时变滤波经验模态分解 故障诊断
在线阅读 下载PDF
改进蛇优化算法及其在短期风电功率预测中的应用 被引量:1
12
作者 周璇 赵梦玲 殷新宇 《云南大学学报(自然科学版)》 北大核心 2025年第2期255-265,共11页
为了对风电功率进行精确预测,基于互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)、改进蛇优化算法(improved snake optimization,ISO)和核极限学习机(kernel extreme learning machine,KELM),提出... 为了对风电功率进行精确预测,基于互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)、改进蛇优化算法(improved snake optimization,ISO)和核极限学习机(kernel extreme learning machine,KELM),提出了一种混合短期风电功率预测模型.首先,利用CEEMD将非平稳的风电功率数据分解为若干相对平稳的分量,以降低原始数据的不稳定性;然后,引入改进蛇优化算法对KELM参数进行优化,并对各平稳分量和残差构建CEEMD-ISO-KELM预测模型;最后,将各分量和残差的预测结果进行重构,得到最终的风电功率预测结果.仿真结果表明,与现有预测模型相比,提出的预测模型能够很好地预测风电功率的变化趋势,在短期风电功率预测中取得了较好的精度. 展开更多
关键词 短期风电功率 改进蛇优化算法 核极限学习机
在线阅读 下载PDF
基于改进DBSCAN算法的道路障碍物点云聚类
13
作者 吴超凡 黄鹤 +3 位作者 贾睿 杨澜 王会峰 高涛 《南京大学学报(自然科学版)》 北大核心 2025年第5期738-751,共14页
道路点云数据的障碍物检测技术在智能交通系统和自动驾驶中至关重要.传统的基于密度的空间聚类(DensityBased Spatial Clustering of Applications with Noise,DBSCAN)算法在处理高维或不同密度区域数据时,由于距离度量低效、参数组合... 道路点云数据的障碍物检测技术在智能交通系统和自动驾驶中至关重要.传统的基于密度的空间聚类(DensityBased Spatial Clustering of Applications with Noise,DBSCAN)算法在处理高维或不同密度区域数据时,由于距离度量低效、参数组合确定困难导致聚类效果欠佳,因此,提出了一种基于改进DBSCAN的道路障碍物点云聚类方法 .首先,在确定Eps领域时利用孤立核函数来改进传统的距离度量方式,提高了DBSCAN聚类对不同密度区域的适应性和准确性.其次,针对猎豹优化算法(Cheetah Optimizer,CO)在信息共享和迭代更新方面的不足,提出了一种基于及时更新机制与兼容度量策略的CO优化算法(Timely Updating Mechanisms and Compatible Metric Strategies for CO Algorithms,TCCO),通过实时更新操作确保每次迭代的优秀信息得到及时沟通共享,并在全局更新时基于非支配排序与拥挤距离优化淘汰机制,平衡全局搜索和局部开发能力,提高了收敛速度和收敛精度.最后,利用孤立度量改进Eps领域,并利用TCCO优化DBSCAN聚类,自适应确定参数,提高了聚类精度和效率.在八个UCI数据集上进行测试,仿真结果表明,提出的TCCO-DBSCAN算法与CO-DBSCAN,SSA-DBSCAN,DBSCAN,KMC方法相比,F-Measure,ARI,NMI指标均有明显提升,且聚类精度更优.通过激光雷达点云数据障碍物聚类的实验验证,证明TCCO-DBSCAN能够有效地适应点云数据密度变化,获得更好的道路障碍物聚类效果,为辅助驾驶中障碍物检测提供支持. 展开更多
关键词 DBSCAN聚类 孤立核函数 改进猎豹优化算法 障碍物点云聚类
在线阅读 下载PDF
多策略改进SSA优化KELM的边坡稳定性预测模型 被引量:13
14
作者 祁云 薛凯隆 +3 位作者 李绪萍 汪伟 白晨浩 吉准泽 《中国安全科学学报》 北大核心 2025年第3期92-98,共7页
为了能够更加精准地预测边坡稳定状态,从而有效预防边坡失稳事故,提出改进麻雀搜索算法(ISSA)与核极限学习机(KELM)相结合的ISSA-KELM边坡稳定性预测模型。首先,将边坡失稳特征中的容重、黏聚力等6个主要影响因素作为预测指标,建立边坡... 为了能够更加精准地预测边坡稳定状态,从而有效预防边坡失稳事故,提出改进麻雀搜索算法(ISSA)与核极限学习机(KELM)相结合的ISSA-KELM边坡稳定性预测模型。首先,将边坡失稳特征中的容重、黏聚力等6个主要影响因素作为预测指标,建立边坡稳定性评价数据集;其次,引入Sine混沌映射、Levy飞行策略、动态自适应权重以及融合最优爆炸策略和反向学习改进麻雀搜索算法(SSA),以提高其全局搜索能力和稳定性;而后利用ISSA优化KELM中的核参数ψ和正则化系数C,提升其预测精度,同时避免KELM出现过拟合现象;最后,对比分析ISSA-KELM模型与SSA-KELM、粒子群优化算法(PSO)-KELM以及PSO-支持向量机(SVM)模型的预测结果,并将ISSA-KELM模型应用于山西某露天煤矿。结果表明:ISSA-KELM模型的准确率、精确率、召回率和F 1分数分别达到了0.9459、1、0.8667和0.929,均优于SSA-KELM、PSO-KELM和PSO-SVM模型,模型的预测结果与实际值最为接近,表明所建ISSA-KELM模型具有较强的泛化能力。 展开更多
关键词 边坡稳定性 预测模型 改进麻雀搜索算法(ISSA) 核极限学习机(KELM) 预测指标 混淆矩阵
原文传递
基于KPCA-ISSA-SVM的控制图模式识别 被引量:2
15
作者 梁旭 张朝阳 +1 位作者 吉卫喜 张文博 《组合机床与自动化加工技术》 北大核心 2025年第7期128-134,140,共8页
针对制造企业产品生产过程中质量监控智能化程度不足的问题,提出一种基于核主成分分析法(KPCA)与改进麻雀搜索算法(ISSA)优化支持向量机(SVM)的控制图模式识别方法。首先通过KPCA对控制图原始数据进行降维;其次,引入Logistic-Tent(LT)... 针对制造企业产品生产过程中质量监控智能化程度不足的问题,提出一种基于核主成分分析法(KPCA)与改进麻雀搜索算法(ISSA)优化支持向量机(SVM)的控制图模式识别方法。首先通过KPCA对控制图原始数据进行降维;其次,引入Logistic-Tent(LT)复合映射和高斯变异来改进麻雀搜索算法对SVM的关键参数进行寻优;接着建立KPCA-ISSA-SVM模型对控制图模式进行识别;最后通过仿真实验,将所提模型与RF、CNN、SVM、KPCA-SVM、KPCA-SSA-SVM、KPCA-PSO-SVM模型进行对比,并以某电梯零部件企业的机加工车间为例,验证了该方法的可行性和有效性。仿真与实例结果表明,所提方法是一种更有效的控制图模式识别方法。 展开更多
关键词 控制图 模式识别 核主成分分析 改进麻雀搜索算法 支持向量机
在线阅读 下载PDF
面向工业冷水机组的监控及诊断系统设计
16
作者 陈贻渲 何家峰 +1 位作者 郑魏 夏霖沨 《仪表技术与传感器》 北大核心 2025年第9期53-60,共8页
为提高工业冷水机组的智能监控水平和故障诊断准确性,设计了一种工业冷水机组监控及诊断系统。系统构建了基于i.MX RT1052的冷水机控制器,结合阿里云物联网平台,实现了对冷水机组的数据采集、控制和远程管理;提出了一种基于改进麻雀搜... 为提高工业冷水机组的智能监控水平和故障诊断准确性,设计了一种工业冷水机组监控及诊断系统。系统构建了基于i.MX RT1052的冷水机控制器,结合阿里云物联网平台,实现了对冷水机组的数据采集、控制和远程管理;提出了一种基于改进麻雀搜索算法(ISSA)、多尺度卷积神经网络(MSCNN)与核极限学习机(KELM)相结合的冷水机组故障诊断模型,能够有效识别故障特征。该系统提升了冷水机组的智能化监控与故障诊断能力,所提出的ISSA-MSCNN-KELM模型的诊断准确率达到了99.17%,优于传统诊断方法。 展开更多
关键词 冷水机组 故障诊断 i.MX RT1052 改进麻雀搜索算法 多尺度卷积神经网络 核极限学习机
在线阅读 下载PDF
阵列传感器气体浓度检测的改进型海鸥算法研究
17
作者 李鹏 纵彪 +2 位作者 林事力 张立豪 刘轩宇 《电子器件》 2025年第1期31-37,共7页
针对阵列传感器对二元混合气体定量检测时由于交叉敏感特性导致检测精度低的问题,提出一种改进型的海鸥算法优化核极限学习机算法。该方法首先使用核主成分分析(KPCA)对数据进行降维处理以及特征提取,选择贡献率大的主成分作为输入向量... 针对阵列传感器对二元混合气体定量检测时由于交叉敏感特性导致检测精度低的问题,提出一种改进型的海鸥算法优化核极限学习机算法。该方法首先使用核主成分分析(KPCA)对数据进行降维处理以及特征提取,选择贡献率大的主成分作为输入向量,其次改进了海鸥算法(SOA)中的非线性收敛因子B和螺旋形状系数u、v,再使用改进型海鸥算法优化核极限学习机(KELM)的关键参数,即正则化系数C和核参数σ,组成SOA-KELM定量检测模型,最终计算分析后输出结果。实验结果表明改进型海鸥算法搜索能力更好,改进型海鸥算法优化核极限学习机(SOA-KELM)的回归能力更强,检测误差更小,相关系数检测在0.9916以上,为阵列传感器气体浓度检测提供了一种新方法。 展开更多
关键词 浓度检测 核主成分分析 核极限学习机 改进型海鸥算法
在线阅读 下载PDF
基于IMTBO算法优化HKELM的短期风功率预测
18
作者 康玲慧 谢源 敬巧稚 《上海电机学院学报》 2025年第3期125-130,共6页
为了提高风功率预测精度,构建了一种基于改进登山优化(IMTBO)算法优化混合核极限学习机(HKELM)的风功率预测模型。对登山优化算法引入折射反向学习和柯西变异策略,解决其搜索范围小且易陷入局部最优解的问题。利用IMTBO算法寻找HKELM模... 为了提高风功率预测精度,构建了一种基于改进登山优化(IMTBO)算法优化混合核极限学习机(HKELM)的风功率预测模型。对登山优化算法引入折射反向学习和柯西变异策略,解决其搜索范围小且易陷入局部最优解的问题。利用IMTBO算法寻找HKELM模型中最优核函数参数,以均方根误差(RMSE)、平均绝对误差(MAE)、均方误差(MSE)和拟合优度(R2)作为精度评估指标。实际算例仿真结果表明:IMTBO-HKELM模型的R2相较于其他方法平均提升了11.9%,其RMSE、MAE和MSE分别平均下降了48.64%、41.18%和79.04%,显示出该模型具有较高的预测精度。 展开更多
关键词 风功率预测 改进登山优化算法 混合核极限学习机 核函数
在线阅读 下载PDF
基于KPCA-ISOA-KELM的冷缝检测分类研究 被引量:1
19
作者 朱洪谷 吴佳晔 《四川轻化工大学学报(自然科学版)》 2025年第2期91-99,共9页
针对现有的冷缝检测手段存在检测效率较低、对数据解析要求高、波形信息不能进一步深入挖掘等问题,提出了基于核主成分分析(Kernel Principal Component Analysis,KPCA)、改进海鸥优化算法(Improve Seagull optimization algorithm,ISOA... 针对现有的冷缝检测手段存在检测效率较低、对数据解析要求高、波形信息不能进一步深入挖掘等问题,提出了基于核主成分分析(Kernel Principal Component Analysis,KPCA)、改进海鸥优化算法(Improve Seagull optimization algorithm,ISOA)、核极限学习机(Kernel Extremel Learing Machine,KELM)相结合的冷缝检测分类方法(KPCA-ISOA-KELM)。首先,采用冲击弹性波法在隧道疑似冷缝区域中采集数据构成数据集,并利用KPCA对数据进行降维操作;然后,利用ISOA对KELM的参数进行优化;最后,利用含最优参数的KELM实现对检测数据分类。通过与KPCA-SOA-KELM、KPCA-FOA-KELM、KPCA-CNN-LSTM进行对比验证,结果表明,KPCA-ISOA-KELM模型对现场检测具有一定的指导意义,并且相较于其他3种模型,该模型能达到96.00%的准确率和0.9598的加权F1-score。 展开更多
关键词 冷缝 冲击弹性波 核主成分分析 改进海鸥优化算法 核极限学习机 数据分类
在线阅读 下载PDF
基于机器视觉的卷烟滤棒缺陷识别与分类方法研究
20
作者 董友文 童一飞 《机械设计与制造工程》 2025年第7期88-94,共7页
为克服传统滤棒视觉检测功能单一、精度低且误报率高等问题,提出一种多阶段卷烟滤棒缺陷分类识别方法。第一阶段根据阈值进行筛选,实现对滤棒段数的检测;第二阶段根据滤棒表面纹理不一致的特点,提出了基于聚合特征的滤棒图像分类识别算... 为克服传统滤棒视觉检测功能单一、精度低且误报率高等问题,提出一种多阶段卷烟滤棒缺陷分类识别方法。第一阶段根据阈值进行筛选,实现对滤棒段数的检测;第二阶段根据滤棒表面纹理不一致的特点,提出了基于聚合特征的滤棒图像分类识别算法,并对分类器LS-SVM算法模型进行改进,提高求解速度和准确率,实现对滤棒排列顺序的检测;第三阶段根据形状尺寸与模板匹配提取滤棒的表面特征,基于CART决策树进行特征选择,通过超参数优化后的核改进LS-SVM模型,实现对滤棒长度、拼接间隙、相位偏移等整体缺陷的检测。 展开更多
关键词 机器视觉 图像分类 特征选择 缺陷识别 核改进ls-svm算法
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部