期刊文献+
共找到90篇文章
< 1 2 5 >
每页显示 20 50 100
Improved Kernel Possibilistic Fuzzy Clustering Algorithm Based on Invasive Weed Optimization 被引量:1
1
作者 赵小强 周金虎 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第2期164-170,共7页
Fuzzy c-means(FCM) clustering algorithm is sensitive to noise points and outlier data, and the possibilistic fuzzy c-means(PFCM) clustering algorithm overcomes the problem well, but PFCM clustering algorithm has some ... Fuzzy c-means(FCM) clustering algorithm is sensitive to noise points and outlier data, and the possibilistic fuzzy c-means(PFCM) clustering algorithm overcomes the problem well, but PFCM clustering algorithm has some problems: it is still sensitive to initial clustering centers and the clustering results are not good when the tested datasets with noise are very unequal. An improved kernel possibilistic fuzzy c-means algorithm based on invasive weed optimization(IWO-KPFCM) is proposed in this paper. This algorithm first uses invasive weed optimization(IWO) algorithm to seek the optimal solution as the initial clustering centers, and introduces kernel method to make the input data from the sample space map into the high-dimensional feature space. Then, the sample variance is introduced in the objection function to measure the compact degree of data. Finally, the improved algorithm is used to cluster data. The simulation results of the University of California-Irvine(UCI) data sets and artificial data sets show that the proposed algorithm has stronger ability to resist noise, higher cluster accuracy and faster convergence speed than the PFCM algorithm. 展开更多
关键词 data mining clustering algorithm possibilistic fuzzy c-means(PFCM) kernel possibilistic fuzzy c-means algorithm based on invasiv
原文传递
Substation clustering based on improved KFCM algorithm with adaptive optimal clustering number selection 被引量:1
2
作者 Yanhui Xu Yihao Gao +4 位作者 Yundan Cheng Yuhang Sun Xuesong Li Xianxian Pan Hao Yu 《Global Energy Interconnection》 EI CSCD 2023年第4期505-516,共12页
The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection an... The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection and its convergence to local optimal solutions.To overcome these limitations,an improved KFCM algorithm with adaptive optimal clustering number selection is proposed in this paper.This algorithm optimizes the KFCM algorithm by combining the powerful global search ability of genetic algorithm and the robust local search ability of simulated annealing algorithm.The improved KFCM algorithm adaptively determines the ideal number of clusters using the clustering evaluation index ratio.Compared with the traditional KFCM algorithm,the enhanced KFCM algorithm has robust clustering and comprehensive abilities,enabling the efficient convergence to the global optimal solution. 展开更多
关键词 Load substation clustering Simulated annealing genetic algorithm kernel fuzzy C-means algorithm clustering evaluation
在线阅读 下载PDF
基于VMD与KFCM的柴油机故障诊断算法 被引量:19
3
作者 毕凤荣 汤代杰 +3 位作者 张立鹏 李鑫 马腾 杨晓 《振动.测试与诊断》 EI CSCD 北大核心 2020年第5期853-858,1018,1019,共8页
针对柴油机的故障诊断问题,提出了一种基于变分模态分解(variational mode decomposition,简称VMD)与核模糊C均值聚类算法(kernel fuzzy C-means clustering,简称KFCM)联合的故障诊断方法。首先,针对VMD算法中分解层数K的选择问题进行... 针对柴油机的故障诊断问题,提出了一种基于变分模态分解(variational mode decomposition,简称VMD)与核模糊C均值聚类算法(kernel fuzzy C-means clustering,简称KFCM)联合的故障诊断方法。首先,针对VMD算法中分解层数K的选择问题进行了自适应优化;然后,从优化VMD算法的分解结果中选取3个关键分量计算最大奇异值,并将其作为3维的特征向量输入KFCM算法中进行分类识别;最后,对仿真信号以及某型柴油机的模拟故障实验信号使用优化VMD、传统VMD和经验模态分解(empirical mode decomposition,简称EMD)方法分别进行分解与识别。结果表明,笔者提出的方法明显改善了模态混叠现象,提高了模式识别的诊断正确率,提出的联合算法具有更好的应用前景。 展开更多
关键词 柴油机 振动信号 故障诊断 变分模态分解 核模糊C均值聚类算法
在线阅读 下载PDF
基于KFCM和改进分水岭算法的猪肉背最长肌分割技术 被引量:14
4
作者 伍学千 廖宜涛 +1 位作者 樊玉霞 成芳 《农业机械学报》 EI CAS CSCD 北大核心 2010年第1期172-176,共5页
提出一种利用核模糊C均值聚类(KFCM)和改进分水岭算法分割猪肉眼肌切面图像中背最长肌区域的方法。该算法对经中值滤波去噪后图像的R分量利用最大方差自适应阈值(OTSU)去除背景,再采用KFCM提取出肌肉组织,然后进行空洞填充,最后由改进... 提出一种利用核模糊C均值聚类(KFCM)和改进分水岭算法分割猪肉眼肌切面图像中背最长肌区域的方法。该算法对经中值滤波去噪后图像的R分量利用最大方差自适应阈值(OTSU)去除背景,再采用KFCM提取出肌肉组织,然后进行空洞填充,最后由改进的分水岭算法分割出背最长肌区域。利用该算法对采集的60幅猪肉眼肌图像进行处理,分割正确率为86.67%;与传统的形态学算法相比,该算法能真实、完整地恢复出背最长肌区域。结果表明:该算法能有效地分割出猪肉眼肌图像中的背最长肌区域,与改进前分水岭算法相比,能避免背最长肌区域出现欠分割。 展开更多
关键词 无损检测 图像分割 猪肉 背最长肌 核模糊C均值聚类 分水岭算法
在线阅读 下载PDF
基于样本密度KFCM新算法及其在故障诊断的应用 被引量:14
5
作者 陶新民 徐晶 +1 位作者 付强 刘兴丽 《振动与冲击》 EI CSCD 北大核心 2009年第8期61-64,83,共5页
针对传统核模糊聚类(KFCM)算法无法克服边界噪声数据影响且对初始聚类中心敏感的不足,提出一种基于样本密度和最大类间方差法相结合的KFCM算法。该算法在传统的KFCM算法中引入样本分布密度作为权重,克服噪声及边界数据对分类中心的影响... 针对传统核模糊聚类(KFCM)算法无法克服边界噪声数据影响且对初始聚类中心敏感的不足,提出一种基于样本密度和最大类间方差法相结合的KFCM算法。该算法在传统的KFCM算法中引入样本分布密度作为权重,克服噪声及边界数据对分类中心的影响,使样本的聚类效果更好,同时还可以分析各样本对聚类的贡献程度。此外利用最大类间方差法对样本密度进行分割,得到各类中心点并以此作为KFCM算法的初始聚类中心,克服了传统算法对初始值敏感的不足。对各种实际数据集的测试结果均显示出新算法的优良性能。最后利用新算法对轴承故障进行诊断,试验结果表明新算法的诊断率优于传统的聚类算法。 展开更多
关键词 核模糊聚类 样本密度 最大类间方差法 故障诊断
在线阅读 下载PDF
基于小波变换和KFCM的彩色图像分割 被引量:3
6
作者 李志梅 肖德贵 王丽丽 《计算机工程》 CAS CSCD 北大核心 2009年第19期203-205,共3页
提出一种将小波变换和核模糊C均值聚类算法相结合的快速彩色图像分割算法。利用小波变换的多分辨率特性,在分辨率最大尺度上的LL子带进行均值漂移聚类,快速获得初始粗分割结果,在其基础上进行模糊核聚类分割,将上一层的结果用于下一层... 提出一种将小波变换和核模糊C均值聚类算法相结合的快速彩色图像分割算法。利用小波变换的多分辨率特性,在分辨率最大尺度上的LL子带进行均值漂移聚类,快速获得初始粗分割结果,在其基础上进行模糊核聚类分割,将上一层的结果用于下一层的初始化,重复至最低分辨率后用最小分类器对原始图像进行最终分割。实验结果证明,该算法分割速度快,对自然彩色图像的分割结果优于模糊C均值算法和均值漂移算法。 展开更多
关键词 小波变换 图像分割 核模糊C均值聚类 均值漂移
在线阅读 下载PDF
基于局部空间信息KFCM的遥感图像聚类算法 被引量:9
7
作者 吴一全 沈毅 陶飞翔 《地球信息科学学报》 CSCD 北大核心 2014年第5期769-775,共7页
针对模糊C均值(Fuzzy C-Means,FCM)算法,不能有效地对夹杂噪声的遥感图像聚类的问题,本文提出了一种基于局部空间信息核模糊C均值(Kernel Fuzzy C-Means,KFCM)的遥感图像聚类算法。首先,运用核函数将遥感图像的所有像元映射到高维特征空... 针对模糊C均值(Fuzzy C-Means,FCM)算法,不能有效地对夹杂噪声的遥感图像聚类的问题,本文提出了一种基于局部空间信息核模糊C均值(Kernel Fuzzy C-Means,KFCM)的遥感图像聚类算法。首先,运用核函数将遥感图像的所有像元映射到高维特征空间,通过非线性映射优化遥感图像的有用特征;然后,根据相邻像元之间的相关性,利用一种空间函数重新定义像元的模糊隶属度,将像元的局部空间信息引入到FCM算法中,并在高维特征空间中使用这种基于局部空间信息的FCM算法对像元聚类。由于引入了像元的局部空间信息,算法可以直接应用于原始遥感图像,不需要滤波预处理。大量实验结果表明,本文提出的基于局部空间信息KFCM的遥感图像聚类算法具有较强的抗噪能力,可得到较好的同质区域,优于现有的FCM算法、模糊局部信息C均值(Fuzzy Local Information C-Means,FLICM)算法及KFCM算法。 展开更多
关键词 遥感图像 图像聚类 模糊C均值算法 核模糊C均值 局部空间信息
原文传递
基于改进磷虾群优化的中心极大化KFCM算法在IDS的应用 被引量:6
8
作者 李丛 胡文军 +1 位作者 丁勇 曹红根 《计算机应用研究》 CSCD 北大核心 2016年第2期507-512,共6页
针对核模糊C-均值算法(kernel fuzzy C-means,KFCM)随机选择初始聚类中心而不能获得全局最优且在聚类中心较近或重合时易产生一致性聚类等问题,提出一种改进算法。改进算法在原目标函数中引入中心极大化约束项来调控簇间分离度,从而避... 针对核模糊C-均值算法(kernel fuzzy C-means,KFCM)随机选择初始聚类中心而不能获得全局最优且在聚类中心较近或重合时易产生一致性聚类等问题,提出一种改进算法。改进算法在原目标函数中引入中心极大化约束项来调控簇间分离度,从而避免算法出现一致性聚类结果。利用磷虾群算法对基于新目标函数的KFCM算法进行优化,使算法不再依赖初始聚类中心,提高算法的稳定性。基于距离最大最小原则产生多组较优的聚类中心作为初始磷虾群体并在算法迭代过程中融合一种新的精英保留策略,从而确保算法收敛到全局极值;通过对个体随机扩散活动进行分段式Logistic混沌扰动,提高算法全局寻优能力。使用KDD Cup 99入侵检测数据进行仿真实验表明,改进算法具有更好的检测性能,解决了传统的聚类算法在入侵检测中稳定性差、检测准确率低的问题。 展开更多
关键词 核模糊C-均值算法 磷虾群算法 中心极大化约束项 距离最大最小原则 精英保留策略 混沌扰动 入侵检测
在线阅读 下载PDF
模糊隶属度加权的KFCM脑MRI的组织分割方法 被引量:7
9
作者 赵海峰 陈书海 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2018年第11期2055-2062,共8页
医学图像受成像机制的影响不可避免地会引入噪声.为解决传统医学图像分割算法对噪声敏感的问题,提出一种模糊隶属度加权的KFCM分割方法.该方法在传统KFCM算法基础上引入局部空间信息,定义了局部隶属度函数,并结合传统KFCM算法得到的全... 医学图像受成像机制的影响不可避免地会引入噪声.为解决传统医学图像分割算法对噪声敏感的问题,提出一种模糊隶属度加权的KFCM分割方法.该方法在传统KFCM算法基础上引入局部空间信息,定义了局部隶属度函数,并结合传统KFCM算法得到的全局隶属度函数构造加权隶属度函数,为每个像素计算隶属度值;进一步地,结合邻域信息,使用迭代聚合方法为每个像素重新分配隶属度值.选取Simulated Brain Database数据集,对加入不同噪声的图像进行实验的结果表明,该方法在保证对噪声鲁棒的同时,能够提高分割精度. 展开更多
关键词 基于核函数的模糊C均值聚类 脑MRI 图像分割 核函数
在线阅读 下载PDF
一种基于改进混合蛙跳的KFCM算法 被引量:2
10
作者 赵小强 刘悦婷 《计算机工程与应用》 CSCD 2013年第4期141-145,共5页
针对核模糊C-均值(KFCM)聚类算法存在易陷入局部极小值,对初始值敏感的缺点。将混合蛙跳算法(shuffled fro gleaping algorithm,SFLA)用于KFCM中,但在聚类数较大和维数较高时,聚类效果不理想,为此提出将自适应惯性权重引入混合蛙跳算法... 针对核模糊C-均值(KFCM)聚类算法存在易陷入局部极小值,对初始值敏感的缺点。将混合蛙跳算法(shuffled fro gleaping algorithm,SFLA)用于KFCM中,但在聚类数较大和维数较高时,聚类效果不理想,为此提出将自适应惯性权重引入混合蛙跳算法的更新策略中,再用改进后的混合蛙跳算法求得最优解作为KFCM算法的初始聚类中心,利用KFCM算法优化初始聚类中心,求得全局最优解,从而有效克服了KFCM算法的缺点。人造数据和经典数据集的实验结果表明,新算法与KFCM和FCM聚类算法相比,寻优能力更强,迭代次数更少,聚类效果更好。 展开更多
关键词 核模糊C-均值聚类 改进的混合蛙跳算法 聚类分析 数据挖掘
在线阅读 下载PDF
基于Boltzmann选择的人工蜂群KFCM算法 被引量:3
11
作者 赵小强 张守明 《兰州理工大学学报》 CAS 北大核心 2011年第1期71-75,共5页
为提高算法的搜索效率、减少搜索过程中陷入局部最优的现象,将人工蜂群算法用于核模糊C-均值聚类,但在聚类数比较大和维度较高时效果不太好,为此引入Boltzmann选择机制代替轮盘赌的选择方式,并采用小区间生成法使初始群体均匀化,使得该... 为提高算法的搜索效率、减少搜索过程中陷入局部最优的现象,将人工蜂群算法用于核模糊C-均值聚类,但在聚类数比较大和维度较高时效果不太好,为此引入Boltzmann选择机制代替轮盘赌的选择方式,并采用小区间生成法使初始群体均匀化,使得该算法的全局寻优能力更强,有效克服了KFCM算法易陷入局部最优的缺点.实验结果表明,对于聚类数比较大、维度较高的数据样本,新算法与FCM和KFCM聚类算法相比,聚类效果更准确,效率更高,迭代次数更少. 展开更多
关键词 数据挖掘 核模糊C-均值聚类 人工蜂群算法 Boltzmann选择机制
在线阅读 下载PDF
基于KFCM-MNN并联式混合动力汽车能量管理策略 被引量:2
12
作者 孔慧芳 朱翔 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2018年第4期485-489,共5页
为了提高并联式混合动力汽车的燃油经济性,文章提出了一种基于核模糊c聚类(kernel fuzzy cmeans clustering,KFCM)的多神经网络(multi-neural network,MNN)能量管理设计方法。采用动态规划全局优化离线仿真得到全局最优解,使用KFCM算法... 为了提高并联式混合动力汽车的燃油经济性,文章提出了一种基于核模糊c聚类(kernel fuzzy cmeans clustering,KFCM)的多神经网络(multi-neural network,MNN)能量管理设计方法。采用动态规划全局优化离线仿真得到全局最优解,使用KFCM算法对全局最优解数据集合按照车辆运行模式作聚类划分,针对每一个聚类建立局部神经网络。训练后的MNN模型结构根据实时工况,将多个局部神经网络的输出联结作为能量管理策略的输出,以实现发动机和电机转矩的实时优化分配。仿真结果表明,基于KFCM-MNN的能量管理策略,具有对动态规划能量管理策略很好的学习模拟能力,是一种准最优的控制策略。 展开更多
关键词 并联式混合动力汽车 动态规划 多神经网络(MNN) 核模糊c聚类(kfcm) 能量管理策略
在线阅读 下载PDF
基于改进MRF-KFCM有效区域分割的储能系统三维温度场重构方法 被引量:1
13
作者 潘国兵 王杰 欧阳静 《电工技术学报》 EI CSCD 北大核心 2020年第19期4019-4027,共9页
储能系统是微电网的核心组成部分,其热管理对于微电网的安全与稳定具有重要意义。相对于表面温度,电池堆内部温度场更有意义,针对红外热像仪无法监测电池堆内部温度场的问题,提出一种基于表面温度场与虚拟热源的三维温度场重构方法。通... 储能系统是微电网的核心组成部分,其热管理对于微电网的安全与稳定具有重要意义。相对于表面温度,电池堆内部温度场更有意义,针对红外热像仪无法监测电池堆内部温度场的问题,提出一种基于表面温度场与虚拟热源的三维温度场重构方法。通过分割算法将有效区域分离,利用定标将其映射为表面温度场,进而初步重构三维温度场,然后以虚拟热源对立体子单元温度进行修正。为了避免电池堆红外图像有效区域分割不准确对三维重构造成的影响,对马尔可夫随机场约束下的模糊核C均值聚类(MRF-KFCM)算法进行改进,通过Otsu算法在可见光图像中初步获得有效区域,赋予像元以不同的目标信息权重进行聚类,最后经配准得到电池堆在红外图像中的准确位置。实验结果表明,该方法能够反映电池堆内部温度变化趋势和局部差异,精度满足实际应用需求。 展开更多
关键词 储能系统热管理 三维温度场重构 MRF-kfcm 先验框目标信息 辐射定标
在线阅读 下载PDF
相对变换KFCM的变压器油击穿电压预测 被引量:2
14
作者 熊印国 《控制工程》 CSCD 北大核心 2018年第11期2035-2040,共6页
针对变压器油击穿电压在线测量困难,基于多模型结构可以提高预测精度和鲁棒性的思想,提出基于相对变换核模糊C均值聚类(Kernel Fuzzy C-means, KFCM)算法的变压器油击穿电压预测建模方法。首先,采用相对变换将原始数据空间变换到相对... 针对变压器油击穿电压在线测量困难,基于多模型结构可以提高预测精度和鲁棒性的思想,提出基于相对变换核模糊C均值聚类(Kernel Fuzzy C-means, KFCM)算法的变压器油击穿电压预测建模方法。首先,采用相对变换将原始数据空间变换到相对空间,抑制数据噪音,提高数据之间的可区分性;在相对空间中利用KFCM算法将样本划分成不同的子类,同时,对KFCM核参数和聚类数采用差分进化算法进行优化;然后,利用核主元分析(Kernel Principal Component Analysis, KPCA)对相对空间进行特征提取,降低数据维数、提取数据非线性主元作为各子类构建的最小二乘支持向量机(Least Squares SVM, LSSVM)模型的输入;最后,对子类LSSVM综合加权得到最终输出。将所提出的方法与KFCMLSSVM方法进行比较,实验结果表明所提方法具有良好的预测精度和泛化性能。 展开更多
关键词 击穿电压 相对变换 核模糊C均值聚类算法 核主元分析 最小二乘支持向量机 预测
原文传递
基于KFCM算法对MRI图像分割的研究
15
作者 蒙建军 靳艳红 《湖北民族学院学报(自然科学版)》 CAS 2011年第1期108-111,共4页
医学图像分割在医学图像处理,尤其是临床诊断的MRI图像分析中起着重要作用,提出一种基于核模糊C均值聚类算法(KFCM)的MRI脑图像分割,讨论KFCM算法中隶属度m参数和聚类数目k的选取对图像分割的效果影响,通过仿真实验表明,对于MRI脑图像... 医学图像分割在医学图像处理,尤其是临床诊断的MRI图像分析中起着重要作用,提出一种基于核模糊C均值聚类算法(KFCM)的MRI脑图像分割,讨论KFCM算法中隶属度m参数和聚类数目k的选取对图像分割的效果影响,通过仿真实验表明,对于MRI脑图像隶属度函数值在2≤m≤11整数时,图像能取得较好效果,对于聚类数目k选取不易超过8. 展开更多
关键词 核模糊C均值聚类算法 图像分割
在线阅读 下载PDF
基于KFCM和AMDE-LSSVM的软测量建模方法 被引量:4
16
作者 姜哲宇 刘元清 +1 位作者 朱湘临 王博 《计算机测量与控制》 2018年第8期46-50,92,共6页
针对软测量建模过程中模型存在失效问题,提出了一种基于KFCM和AMDE-LSSVM多模型的软测量建模方法;首先,采用核模糊C均值聚类(Kernel-based fuzzy c-means algorithm,KFCM)对训练样本数据进行划分,然后利用最小二乘支持向量机(least squa... 针对软测量建模过程中模型存在失效问题,提出了一种基于KFCM和AMDE-LSSVM多模型的软测量建模方法;首先,采用核模糊C均值聚类(Kernel-based fuzzy c-means algorithm,KFCM)对训练样本数据进行划分,然后利用最小二乘支持向量机(least squares vector machina,LS-SVM)对每个聚类建立子模型,并使用自适应变异差分进化算法(Adaptive Mutation different evolution,AMDE)对最小二乘向量机中的径向基宽度和惩罚系数进行寻优;将提出的算法用于秸秆发酵关键参数乙醇浓度、基质浓度(总糖浓度)、菌体浓度检测中,通过软测量建模得到的预测值与离线化验值进行对比,证明方法的有效性;实验结果表明,改进后的算法克服了差分进化算法中容易陷入局部最优,早熟收敛的现象;建立的新模型相比单一模型,乙醇浓度、基质浓度(总糖浓度)、菌体浓度测量误差分别为0.64%,1.85%和0.75%,具有更好地适应秸秆发酵过程、提高测量精度的优势。 展开更多
关键词 自适应变异差分进化算法 核模糊C均值聚类 最小二乘向量机 秸秆发酵
在线阅读 下载PDF
岩心颗粒彩色图像的多维特征KFCM聚类分割算法 被引量:1
17
作者 邓文晶 周骛 蔡小舒 《中国粉体技术》 CAS CSCD 2019年第6期12-18,共7页
岩心颗粒的彩色图像包含的信息具有复杂性和多样性,除了人眼视觉系统容易感知的颜色与空间形状特征之外,还隐含着更深层次的纹理特征信息。提出一种多维特征核模糊C均值(Kernel Fuzzy C-Means,KFCM)聚类分割算法:首先使用Gabor滤波器组... 岩心颗粒的彩色图像包含的信息具有复杂性和多样性,除了人眼视觉系统容易感知的颜色与空间形状特征之外,还隐含着更深层次的纹理特征信息。提出一种多维特征核模糊C均值(Kernel Fuzzy C-Means,KFCM)聚类分割算法:首先使用Gabor滤波器组在频域的不同尺度和方向上对岩心颗粒彩色图像进行卷积滤波处理,并将Gabor滤波结果作为频谱的局部纹理特征;然后将纹理特征、颜色特征以及图像像素点空间位置信息合并到核模糊C均值聚类算法中,从而实现岩心颗粒彩色图像的分割。结果表明:与其他算法的分割结果相比,多维特征KFCM聚类分割算法能更准确地识别不同类型的岩心颗粒的彩色图像,获得了良好的分割结果。 展开更多
关键词 岩心颗粒 彩色图像分割 GABOR纹理特征 核模糊C均值聚类算法 多维特征
在线阅读 下载PDF
无监督机器学习驱动的飞机备件分类方法
18
作者 朱臣 何定养 崔崇立 《信息工程大学学报》 2025年第6期706-714,共9页
为挖掘飞机备件保障规律,提出一种无监督机器学习驱动的飞机备件分类方法。通过最大信息系数检测飞机备件保障数据各维度相关性,采用基于高斯核函数的核主成分分析(KPCA)预处理相关性低的飞机备件保障数据,应用牛顿-拉夫逊优化算法(NRBO... 为挖掘飞机备件保障规律,提出一种无监督机器学习驱动的飞机备件分类方法。通过最大信息系数检测飞机备件保障数据各维度相关性,采用基于高斯核函数的核主成分分析(KPCA)预处理相关性低的飞机备件保障数据,应用牛顿-拉夫逊优化算法(NRBO)和动态模糊参数寻找飞机备件模糊C均值(FCM)聚类质心最佳位置,自适应迭代生成飞机备件分类最优结果。实验结果表明,在相同飞机备件保障主成分数据条件下,相较于传统模糊C均值聚类、遗传算法优化模糊C均值聚类、粒子群优化模糊C均值聚类3种方法,该方法拥有更优越的快速探寻收敛性能和跳出局部最优解能力,可实现更佳效果的飞机备件分类,为飞机备件采购、库存、修理等保障决策提供科学依据。 展开更多
关键词 无监督机器学习 飞机备件分类 核主成分分析 牛顿-拉夫逊优化算法 模糊C均值聚类
在线阅读 下载PDF
基于MFO-BP的磨床主轴热误差预测模型
19
作者 刘禄勇 吴双峰 +1 位作者 李萌 于千博 《机电工程》 北大核心 2025年第12期2444-2452,共9页
针对现有主轴热误差预测模型精度不足、易陷入局部最优这一问题,提出了一种融合飞蛾扑火优化算法(MFO)的反向传播(BP)神经网络的热误差预测改进模型。首先,以数控外螺纹磨床砂轮主轴为研究对象,进行了热误差实验以获取不同工况下的温度... 针对现有主轴热误差预测模型精度不足、易陷入局部最优这一问题,提出了一种融合飞蛾扑火优化算法(MFO)的反向传播(BP)神经网络的热误差预测改进模型。首先,以数控外螺纹磨床砂轮主轴为研究对象,进行了热误差实验以获取不同工况下的温度场数据与轴向位移数据;然后,基于核模糊C均值聚类方法(KFCM)结合皮尔逊相关系数分析方法,比较了各测点与热误差之间的相关性,筛选了3个关键温度测点;接着,运用MFO优化算法对BP神经网络权值阈值进行了全局优化,构建了以关键温度测点温升数据为输入、轴向热位移为输出的热误差预测模型;最后,建立了BP基准模型、BP遗传算法优化模型(GA-BP)和BP粒子群优化模型(PSO-BP)三类对比组,系统评估了改进模型在预测精度与泛化性能方面的提升效果,并对模型在单一工况下的适应能力与稳定性进行了局部鲁棒性验证。研究结果表明:在均方根误差和决定系数方面,基于MFO-BP算法的热误差预测模型均优于其他对比模型,且预测精度达到99.44%;相比于其他对比模型,MFO-BP模型的平均准确率提高了7.87%。该模型的预测准确率高,稳定性好,对于实际机床热误差补偿具有一定的参考意义。 展开更多
关键词 主轴热误差 热误差预测 温度测点优化 飞蛾扑火优化算法 反向传播 神经网络 核模糊C均值聚类
在线阅读 下载PDF
改进RHGSO-FC算法的RGB-D图像GMM聚类分割
20
作者 郭培岩 范九伦 刘恒 《计算机工程与应用》 北大核心 2025年第2期234-246,共13页
随着低成本深度图像传感器的引入,在RGB-D图像中进行可靠的图像分割是计算机视觉的一个目标,而如何对杂乱的场景进行图像分割具有挑战性。基于随机亨利气体溶解度优化算法的模糊聚类(RHGSO-FC),提出一种新的RGB-D图像分割方法。对亨利... 随着低成本深度图像传感器的引入,在RGB-D图像中进行可靠的图像分割是计算机视觉的一个目标,而如何对杂乱的场景进行图像分割具有挑战性。基于随机亨利气体溶解度优化算法的模糊聚类(RHGSO-FC),提出一种新的RGB-D图像分割方法。对亨利气体溶解度优化算法(HGSO)进行改进,提出改进的亨利气体溶解度优化算法(LRHGSO),并利用基于改进亨利气体溶解度优化算法的核模糊聚类(LRHGSO-KFC)生成初始化标签。将初始化标签传入到高斯混合(GMM)聚类中,得到多个聚类结果。最后对这些聚类结果通过聚集超像素方法进行分割合并,得到最终分割结果。实验数据集采用NYU depth V2室内图像,与现有的一些分割方法:阈值分割算法、硬C-均值、模糊C-均值、高斯混合聚类、核模糊聚类、模糊子空间聚类、混沌Kbest引力搜索算法和随机亨利气体溶解度优化算法进行比较,结果表明提出的RGB-D分割算法优于其他比较的算法。 展开更多
关键词 RGB-D图像分割 核模糊聚类 亨利气体溶解度优化算法 高斯混合模型 聚集超像素
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部