Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal ke...Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal kernel function parameter. We first comprehensively considered within-class scatter and between-class scatter of the sample features. Then, the fitness function of an optimized kernel function parameter is constructed, and the particle swarm optimization algorithm with adaptive acceleration (CPSO) is applied to optimizing it. It is used for gearbox condi- tion recognition, and the result is compared with the recognized results based on principal component analysis (PCA). The results show that KPCA optimized by CPSO can effectively recognize fault conditions of the gearbox by reducing bind set-up of the kernel function parameter, and its results of fault recognition outperform those of PCA. We draw the conclusion that KPCA based on CPSO has an advantage in nonlinear feature extraction of mechanical failure, and is helpful for fault condition recognition of complicated machines.展开更多
A SVMs (Support Vector Machines) based method to identify Chinese place names is presented. In our approach, place name candidate is located according to a rational forming assumption, then SVMs based identification s...A SVMs (Support Vector Machines) based method to identify Chinese place names is presented. In our approach, place name candidate is located according to a rational forming assumption, then SVMs based identification strategy is used to distinguish whether one candidate is true place name or not. Referring to linguistic knowledge, basic semanteme of a contextual word and frequency information of words inside place name candidate are selected as features in our methodology. So dimension in the feature space is reduced dramatically and processing procedure is performed more efficiently. Result of open testing on unregistered place names achieves F-measure 83.25 in 8.17 million words news based on this project.展开更多
基金supported by National Natural Science Foundation under Grant No.50875247Shanxi Province Natural Science Foundation under Grant No.2009011026-1
文摘Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal kernel function parameter. We first comprehensively considered within-class scatter and between-class scatter of the sample features. Then, the fitness function of an optimized kernel function parameter is constructed, and the particle swarm optimization algorithm with adaptive acceleration (CPSO) is applied to optimizing it. It is used for gearbox condi- tion recognition, and the result is compared with the recognized results based on principal component analysis (PCA). The results show that KPCA optimized by CPSO can effectively recognize fault conditions of the gearbox by reducing bind set-up of the kernel function parameter, and its results of fault recognition outperform those of PCA. We draw the conclusion that KPCA based on CPSO has an advantage in nonlinear feature extraction of mechanical failure, and is helpful for fault condition recognition of complicated machines.
基金Foundation of China(Grant No.60175020and60673037) and the National High Technology Research and Development Program of China (Grant No.2002AA117010-09).
文摘A SVMs (Support Vector Machines) based method to identify Chinese place names is presented. In our approach, place name candidate is located according to a rational forming assumption, then SVMs based identification strategy is used to distinguish whether one candidate is true place name or not. Referring to linguistic knowledge, basic semanteme of a contextual word and frequency information of words inside place name candidate are selected as features in our methodology. So dimension in the feature space is reduced dramatically and processing procedure is performed more efficiently. Result of open testing on unregistered place names achieves F-measure 83.25 in 8.17 million words news based on this project.