Upscaling of primary geological models with huge cells, especially in porous media, is the first step in fluid flow simulation. Numerical methods are often used to solve the models. The upscaling method must preserve ...Upscaling of primary geological models with huge cells, especially in porous media, is the first step in fluid flow simulation. Numerical methods are often used to solve the models. The upscaling method must preserve the important properties of the spatial distribution of the reservoir properties. An grid upscaling method based on adaptive bandwidth in kernel function is proposed according to the spatial distribution of property. This type of upscaling reduces the number of cells, while preserves the main heterogeneity features of the original fine model. The key point of the paper is upscaling two reservoir properties simultaneously. For each reservoir feature, the amount of bandwidth or optimal threshold is calculated and the results of the upscaling are obtained. Then two approaches are used to upscaling two properties simultaneously based on maximum bandwidth and minimum bandwidth. In fact, we now have a finalized upscaled model for both reservoir properties for each approach in which not only the number of their cells, but also the locations of the cells are equal. The upscaling error of the minimum bandwidth approach is less than that of the maximum bandwidth approach.展开更多
Mean Shift是一种基于特征的对目标实现快速跟踪的算法,传统的Mean Shift算法由于跟踪中物体的尺度变化会使跟踪偏离目标乃至跟踪失败,并且原有的自适应地对跟踪窗宽的调整,是基于对核窗宽的改变来得到的。在"固定跟踪窗宽—改变...Mean Shift是一种基于特征的对目标实现快速跟踪的算法,传统的Mean Shift算法由于跟踪中物体的尺度变化会使跟踪偏离目标乃至跟踪失败,并且原有的自适应地对跟踪窗宽的调整,是基于对核窗宽的改变来得到的。在"固定跟踪窗宽—改变核窗宽"的基础上对目标进行跟踪,对目标空间定位精度进行了评估与分析,通过实验结果表明改变核函数参数能改善目标跟踪的精度。展开更多
文摘Upscaling of primary geological models with huge cells, especially in porous media, is the first step in fluid flow simulation. Numerical methods are often used to solve the models. The upscaling method must preserve the important properties of the spatial distribution of the reservoir properties. An grid upscaling method based on adaptive bandwidth in kernel function is proposed according to the spatial distribution of property. This type of upscaling reduces the number of cells, while preserves the main heterogeneity features of the original fine model. The key point of the paper is upscaling two reservoir properties simultaneously. For each reservoir feature, the amount of bandwidth or optimal threshold is calculated and the results of the upscaling are obtained. Then two approaches are used to upscaling two properties simultaneously based on maximum bandwidth and minimum bandwidth. In fact, we now have a finalized upscaled model for both reservoir properties for each approach in which not only the number of their cells, but also the locations of the cells are equal. The upscaling error of the minimum bandwidth approach is less than that of the maximum bandwidth approach.