Aiming at the large cost of calculating variable bandwidth kernel particle filter and the high complexity of its algorithm,a self-adjusting kernel function particle filter is presented. Kernel density estimation is fa...Aiming at the large cost of calculating variable bandwidth kernel particle filter and the high complexity of its algorithm,a self-adjusting kernel function particle filter is presented. Kernel density estimation is facilitated to iterate and obtain new particle set. And the standard deviation of particle is introduced in the kernel bandwidth. According to the characteristics of particle distribution,the bandwidth is dynamically adjusted,and the particle distribution can thus be more close to the posterior probability density model of the system. Meanwhile,the kernel density is used to estimate the weight of updating particle and the system state. The simulation results show the feasibility and effectiveness of the proposed algorithm.展开更多
A novel particle filter bandwidth adaption for kernel particle filter (BAKPF) is proposed. Selection of the kernel bandwidth is a critical issue in kernel density estimation (KDE). The plug-in method is adopted to...A novel particle filter bandwidth adaption for kernel particle filter (BAKPF) is proposed. Selection of the kernel bandwidth is a critical issue in kernel density estimation (KDE). The plug-in method is adopted to get the global fixed bandwidth by optimizing the asymptotic mean integrated squared error (AMISE) firstly. Then, particle-driven bandwidth selection is invoked in the KDE. To get a more effective allocation of the particles, the KDE with adap- tive bandwidth in the BAKPF is used to approximate the posterior probability density function (PDF) by moving particles toward the posterior. A closed-form expression of the true distribution is given. The simulation results show that the proposed BAKPF performs better than the standard particle filter (PF), unscented particle filter (UPF) and the kernel particle filter (KPF) both in efficiency and estimation precision.展开更多
It is a common practice to evaluate probability density function or matter spatial density function from statistical samples. Kernel density estimation is a frequently used method, but to select an optimal bandwidth o...It is a common practice to evaluate probability density function or matter spatial density function from statistical samples. Kernel density estimation is a frequently used method, but to select an optimal bandwidth of kernel estimation, which is completely based on data samples, is a long-term issue that has not been well settled so far. There exist analytic formulae of optimal kernel bandwidth, but they cannot be applied directly to data samples,since they depend on the unknown underlying density functions from which the samples are drawn. In this work, we devise an approach to pick out the totally data-based optimal bandwidth. First, we derive correction formulae for the analytic formulae of optimal bandwidth to compute the roughness of the sample's density function. Then substitute the correction formulae into the analytic formulae for optimal bandwidth, and through iteration we obtain the sample's optimal bandwidth. Compared with analytic formulae, our approach gives very good results, with relative differences from the analytic formulae being only 2%~3% for sample size larger than 10~4. This approach can also be generalized easily to cases of variable kernel estimations.展开更多
Upscaling of primary geological models with huge cells, especially in porous media, is the first step in fluid flow simulation. Numerical methods are often used to solve the models. The upscaling method must preserve ...Upscaling of primary geological models with huge cells, especially in porous media, is the first step in fluid flow simulation. Numerical methods are often used to solve the models. The upscaling method must preserve the important properties of the spatial distribution of the reservoir properties. An grid upscaling method based on adaptive bandwidth in kernel function is proposed according to the spatial distribution of property. This type of upscaling reduces the number of cells, while preserves the main heterogeneity features of the original fine model. The key point of the paper is upscaling two reservoir properties simultaneously. For each reservoir feature, the amount of bandwidth or optimal threshold is calculated and the results of the upscaling are obtained. Then two approaches are used to upscaling two properties simultaneously based on maximum bandwidth and minimum bandwidth. In fact, we now have a finalized upscaled model for both reservoir properties for each approach in which not only the number of their cells, but also the locations of the cells are equal. The upscaling error of the minimum bandwidth approach is less than that of the maximum bandwidth approach.展开更多
Mechanical properties are critical to the quality of hot-rolled steel pipe products.Accurately understanding the relationship between rolling parameters and mechanical properties is crucial for effective prediction an...Mechanical properties are critical to the quality of hot-rolled steel pipe products.Accurately understanding the relationship between rolling parameters and mechanical properties is crucial for effective prediction and control.To address this,an industrial big data platform was developed to collect and process multi-source heterogeneous data from the entire production process,providing a complete dataset for mechanical property prediction.The adaptive bandwidth kernel density estimation(ABKDE)method was proposed to adjust bandwidth dynamically based on data density.Combining long short-term memory neural networks with ABKDE offers robust prediction interval capabilities for mechanical properties.The proposed method was deployed in a large-scale steel plant,which demonstrated superior prediction interval performance compared to lower upper bound estimation,mean variance estimation,and extreme learning machine-adaptive bandwidth kernel density estimation,achieving a prediction interval normalized average width of 0.37,a prediction interval coverage probability of 0.94,and the lowest coverage width-based criterion of 1.35.Notably,shapley additive explanations-based explanations significantly improved the proposed model’s credibility by providing a clear analysis of feature impacts.展开更多
In this paper, regression function estimation from independent and identically distributed data is considered. We establish strong pointwise consistency of the famous Nadaraya-Watson estimator under weaker conditions ...In this paper, regression function estimation from independent and identically distributed data is considered. We establish strong pointwise consistency of the famous Nadaraya-Watson estimator under weaker conditions which permit to apply kernels with unbounded support and even not integrable ones and provide a general approach for constructing strongly consistent kernel estimates of regression functions.展开更多
基金Supported by the National Natural Science Foundation of China(60972059)the General Project of Science and Technology of Xuzhou City(XM12B002)
文摘Aiming at the large cost of calculating variable bandwidth kernel particle filter and the high complexity of its algorithm,a self-adjusting kernel function particle filter is presented. Kernel density estimation is facilitated to iterate and obtain new particle set. And the standard deviation of particle is introduced in the kernel bandwidth. According to the characteristics of particle distribution,the bandwidth is dynamically adjusted,and the particle distribution can thus be more close to the posterior probability density model of the system. Meanwhile,the kernel density is used to estimate the weight of updating particle and the system state. The simulation results show the feasibility and effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China (60736043 60805012)the Fundamental Research Funds for the Central Universities (K50510020032)
文摘A novel particle filter bandwidth adaption for kernel particle filter (BAKPF) is proposed. Selection of the kernel bandwidth is a critical issue in kernel density estimation (KDE). The plug-in method is adopted to get the global fixed bandwidth by optimizing the asymptotic mean integrated squared error (AMISE) firstly. Then, particle-driven bandwidth selection is invoked in the KDE. To get a more effective allocation of the particles, the KDE with adap- tive bandwidth in the BAKPF is used to approximate the posterior probability density function (PDF) by moving particles toward the posterior. A closed-form expression of the true distribution is given. The simulation results show that the proposed BAKPF performs better than the standard particle filter (PF), unscented particle filter (UPF) and the kernel particle filter (KPF) both in efficiency and estimation precision.
基金Supported by the National Science Foundation of China under Grant No.11273013by the Natural Science Foundation of Jilin Province under Grant No.20180101228JC
文摘It is a common practice to evaluate probability density function or matter spatial density function from statistical samples. Kernel density estimation is a frequently used method, but to select an optimal bandwidth of kernel estimation, which is completely based on data samples, is a long-term issue that has not been well settled so far. There exist analytic formulae of optimal kernel bandwidth, but they cannot be applied directly to data samples,since they depend on the unknown underlying density functions from which the samples are drawn. In this work, we devise an approach to pick out the totally data-based optimal bandwidth. First, we derive correction formulae for the analytic formulae of optimal bandwidth to compute the roughness of the sample's density function. Then substitute the correction formulae into the analytic formulae for optimal bandwidth, and through iteration we obtain the sample's optimal bandwidth. Compared with analytic formulae, our approach gives very good results, with relative differences from the analytic formulae being only 2%~3% for sample size larger than 10~4. This approach can also be generalized easily to cases of variable kernel estimations.
文摘Upscaling of primary geological models with huge cells, especially in porous media, is the first step in fluid flow simulation. Numerical methods are often used to solve the models. The upscaling method must preserve the important properties of the spatial distribution of the reservoir properties. An grid upscaling method based on adaptive bandwidth in kernel function is proposed according to the spatial distribution of property. This type of upscaling reduces the number of cells, while preserves the main heterogeneity features of the original fine model. The key point of the paper is upscaling two reservoir properties simultaneously. For each reservoir feature, the amount of bandwidth or optimal threshold is calculated and the results of the upscaling are obtained. Then two approaches are used to upscaling two properties simultaneously based on maximum bandwidth and minimum bandwidth. In fact, we now have a finalized upscaled model for both reservoir properties for each approach in which not only the number of their cells, but also the locations of the cells are equal. The upscaling error of the minimum bandwidth approach is less than that of the maximum bandwidth approach.
基金supported by the National Key Research and Development Plan(Grant No.2023YFB3712400)the National Key Research and Development Plan(Grant No.2020YFB1713600).
文摘Mechanical properties are critical to the quality of hot-rolled steel pipe products.Accurately understanding the relationship between rolling parameters and mechanical properties is crucial for effective prediction and control.To address this,an industrial big data platform was developed to collect and process multi-source heterogeneous data from the entire production process,providing a complete dataset for mechanical property prediction.The adaptive bandwidth kernel density estimation(ABKDE)method was proposed to adjust bandwidth dynamically based on data density.Combining long short-term memory neural networks with ABKDE offers robust prediction interval capabilities for mechanical properties.The proposed method was deployed in a large-scale steel plant,which demonstrated superior prediction interval performance compared to lower upper bound estimation,mean variance estimation,and extreme learning machine-adaptive bandwidth kernel density estimation,achieving a prediction interval normalized average width of 0.37,a prediction interval coverage probability of 0.94,and the lowest coverage width-based criterion of 1.35.Notably,shapley additive explanations-based explanations significantly improved the proposed model’s credibility by providing a clear analysis of feature impacts.
文摘In this paper, regression function estimation from independent and identically distributed data is considered. We establish strong pointwise consistency of the famous Nadaraya-Watson estimator under weaker conditions which permit to apply kernels with unbounded support and even not integrable ones and provide a general approach for constructing strongly consistent kernel estimates of regression functions.