Possible bulk compositions of the super-Earth exoplanets CoRoT-7b, Kepler-9d, and Kepler-10b are investigated by applying a commonly used silicate model and a non-standard carbon model. Their internal structures are d...Possible bulk compositions of the super-Earth exoplanets CoRoT-7b, Kepler-9d, and Kepler-10b are investigated by applying a commonly used silicate model and a non-standard carbon model. Their internal structures are deduced using a suitable equation of state for the materials. The degeneracy problems of their compo- sitions can be partly overcome, based on the fact that all three planets are extremely close to their host stars. By analyzing the numerical results, we conclude: 1) the iron core of CoRoT-7b is not more than 27% of its total mass within lc~ mass-radius error bars, so an Earth-like composition is less likely, but its carbon rich model can be com- patible with an Earth-like core/mantle mass fraction; 2) Kepler-10b is more likely to have a Mercury-like composition, with its old age implying that its high iron content may be a result of strong solar wind or giant impact; 3) the transiting-only super-Earth Kepler-9d is also discussed. Combining its possible composition with the formation theory, we can place some constraints on its mass and bulk composition.展开更多
Beginning with a Lagrangian, we derived an approximate relativistic orbit equation which describes relativistic corrections to Keplerian orbits. The critical angular moment to guarantee the existence of periodic orbit...Beginning with a Lagrangian, we derived an approximate relativistic orbit equation which describes relativistic corrections to Keplerian orbits. The critical angular moment to guarantee the existence of periodic orbits is determined. An approximate relativistic Kepler’s elliptic orbit is illustrated by numerical simulation via a second-order perturbation method of averaging.展开更多
The present study deals with a traditional physical problem: the solution of the Kepler’s equation for all conics (ellipse, hyperbola or parabola). Solution of the universal Kepler’s equation in closed form is obtai...The present study deals with a traditional physical problem: the solution of the Kepler’s equation for all conics (ellipse, hyperbola or parabola). Solution of the universal Kepler’s equation in closed form is obtained with the help of the two-dimensional Laplace technique, expressing the universal functions as a function of the universal anomaly and the time. Combining these new expressions of the universal functions and their identities, we establish one biquadratic equation for universal anomaly (χ) for all conics;solving this new equation, we have a new exact solution of the present problem for the universal anomaly as a function of the time. The verifying of the universal Kepler’s equation and the traditional forms of Kepler’s equation from this new solution are discussed. The plots of the elliptic, hyperbolic or parabolic Keplerian orbits are also given, using this new solution.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 10833001 and 10925313)Ph.D traininggrant of China (20090091110002)+1 种基金Fundamental Research Funds for the Central Universities(No. 1112020102)support from the Shandong Provincial Natural Science Foundation,China (ZR2010AQ023)
文摘Possible bulk compositions of the super-Earth exoplanets CoRoT-7b, Kepler-9d, and Kepler-10b are investigated by applying a commonly used silicate model and a non-standard carbon model. Their internal structures are deduced using a suitable equation of state for the materials. The degeneracy problems of their compo- sitions can be partly overcome, based on the fact that all three planets are extremely close to their host stars. By analyzing the numerical results, we conclude: 1) the iron core of CoRoT-7b is not more than 27% of its total mass within lc~ mass-radius error bars, so an Earth-like composition is less likely, but its carbon rich model can be com- patible with an Earth-like core/mantle mass fraction; 2) Kepler-10b is more likely to have a Mercury-like composition, with its old age implying that its high iron content may be a result of strong solar wind or giant impact; 3) the transiting-only super-Earth Kepler-9d is also discussed. Combining its possible composition with the formation theory, we can place some constraints on its mass and bulk composition.
文摘Beginning with a Lagrangian, we derived an approximate relativistic orbit equation which describes relativistic corrections to Keplerian orbits. The critical angular moment to guarantee the existence of periodic orbits is determined. An approximate relativistic Kepler’s elliptic orbit is illustrated by numerical simulation via a second-order perturbation method of averaging.
文摘The present study deals with a traditional physical problem: the solution of the Kepler’s equation for all conics (ellipse, hyperbola or parabola). Solution of the universal Kepler’s equation in closed form is obtained with the help of the two-dimensional Laplace technique, expressing the universal functions as a function of the universal anomaly and the time. Combining these new expressions of the universal functions and their identities, we establish one biquadratic equation for universal anomaly (χ) for all conics;solving this new equation, we have a new exact solution of the present problem for the universal anomaly as a function of the time. The verifying of the universal Kepler’s equation and the traditional forms of Kepler’s equation from this new solution are discussed. The plots of the elliptic, hyperbolic or parabolic Keplerian orbits are also given, using this new solution.