This paper explores the development of interpretable data elements from raw data using Kolmogorov-Arnold Networks(KAN).With the exponential growth of data in contemporary society,there is an urgent need for effective ...This paper explores the development of interpretable data elements from raw data using Kolmogorov-Arnold Networks(KAN).With the exponential growth of data in contemporary society,there is an urgent need for effective data processing methods to unlock the full potential of this resource.The study focuses on the application of KAN in the transportation sector to transform raw traffic data into meaningful data elements.The core of the research is the KANT-GCN model,which synergizes Kolmogorov-Arnold Networks with Temporal Graph Convolutional Networks(T-GCN).This innovative model demonstrates superior performance in predicting traffic speeds,outperforming existing methods in terms of accuracy,reliability,and interpretability.The model was evaluated using real-world datasets from Shenzhen,Los Angeles,and the San Francisco Bay Area,showing significant improvements in different metrics.The paper highlights the potential of KAN-T-GCN to revolutionize data-driven decision-making in traffic management and other sectors,underscoring its ability to handle dynamic updates and maintain data integrity.展开更多
基金supported by the EU H2020 Research and Innovation Program under the Marie Sklodowska-Curie Grant Agreement(Project-DEEP,Grant No.101109045)the National Natural Science Foundation of China(No.NSFC 61925105 and 62171257)the Tsinghua University-China Mobile Communications Group Co.,Ltd.Joint Institute,and the Fundamental Research Funds for the Central Universities,China(No.FRF-NP-20-03).
文摘This paper explores the development of interpretable data elements from raw data using Kolmogorov-Arnold Networks(KAN).With the exponential growth of data in contemporary society,there is an urgent need for effective data processing methods to unlock the full potential of this resource.The study focuses on the application of KAN in the transportation sector to transform raw traffic data into meaningful data elements.The core of the research is the KANT-GCN model,which synergizes Kolmogorov-Arnold Networks with Temporal Graph Convolutional Networks(T-GCN).This innovative model demonstrates superior performance in predicting traffic speeds,outperforming existing methods in terms of accuracy,reliability,and interpretability.The model was evaluated using real-world datasets from Shenzhen,Los Angeles,and the San Francisco Bay Area,showing significant improvements in different metrics.The paper highlights the potential of KAN-T-GCN to revolutionize data-driven decision-making in traffic management and other sectors,underscoring its ability to handle dynamic updates and maintain data integrity.