期刊文献+
共找到1,802篇文章
< 1 2 91 >
每页显示 20 50 100
Stability analysis of distributed Kalman filtering algorithm for stochastic regression model
1
作者 Siyu Xie Die Gan Zhixin Liu 《Control Theory and Technology》 2025年第2期161-175,共15页
The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysi... The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysis of the proposed distributed KF algorithm without independent and stationary signal assumptions,which implies that the theoretical results are able to be applied to stochastic feedback systems.Note that the main difficulty of stability analysis lies in analyzing the properties of the product of non-independent and non-stationary random matrices involved in the error equation.We employ analysis techniques such as stochastic Lyapunov function,stability theory of stochastic systems,and algebraic graph theory to deal with the above issue.The stochastic spatio-temporal cooperative information condition shows the cooperative property of multiple sensors that even though any local sensor cannot track the time-varying unknown signal,the distributed KF algorithm can be utilized to finish the filtering task in a cooperative way.At last,we illustrate the property of the proposed distributed KF algorithm by a simulation example. 展开更多
关键词 Distributed kalman filtering algorithm Stochastic cooperative information condition Sensor networks (L_(p))-exponential stability Stochastic regression model
原文传递
Stability and performance analysis of the compressed Kalman filter algorithm for sparse stochastic systems 被引量:2
2
作者 LI RongJiang GAN Die +1 位作者 XIE SiYu LüJinHu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第2期380-394,共15页
This paper considers the problem of estimating unknown sparse time-varying signals for stochastic dynamic systems.To deal with the challenges of extensive sparsity,we resort to the compressed sensing method and propos... This paper considers the problem of estimating unknown sparse time-varying signals for stochastic dynamic systems.To deal with the challenges of extensive sparsity,we resort to the compressed sensing method and propose a compressed Kalman filter(KF)algorithm.Our algorithm first compresses the original high-dimensional sparse regression vector via the sensing matrix and then obtains a KF estimate in the compressed low-dimensional space.Subsequently,the original high-dimensional sparse signals can be well recovered by a reconstruction technique.To ensure stability and establish upper bounds on the estimation errors,we introduce a compressed excitation condition without imposing independence or stationarity on the system signal,and therefore suitable for feedback systems.We further present the performance of the compressed KF algorithm.Specifically,we show that the mean square compressed tracking error matrix can be approximately calculated by a linear deterministic difference matrix equation,which can be readily evaluated,analyzed,and optimized.Finally,a numerical example demonstrates that our algorithm outperforms the standard uncompressed KF algorithm and other compressed algorithms for estimating high-dimensional sparse signals. 展开更多
关键词 sparse signal compressed sensing kalman filter algorithm compressed excitation condition stochastic stability tracking performance
原文传递
融合改进的Camshift与Kalman滤波的复杂环境下隔震支座位移测量研究
3
作者 杜永峰 熊小桥 +2 位作者 范宁 韩博 李虎 《地震工程学报》 北大核心 2025年第4期767-780,共14页
为解决传统的Camshift算法在隔震工程应用时过度依赖颜色信息、易受周围环境干扰的问题,提出一种基于视觉的隔震支座位移测量方法。首先,对采集到的视频进行图像预处理。然后,通过调节由Canny算子获取的目标边缘信息和由Camshift算法得... 为解决传统的Camshift算法在隔震工程应用时过度依赖颜色信息、易受周围环境干扰的问题,提出一种基于视觉的隔震支座位移测量方法。首先,对采集到的视频进行图像预处理。然后,通过调节由Canny算子获取的目标边缘信息和由Camshift算法得到的颜色信息的权重,生成融合信息直方图,从而增强算法在目标跟踪时的稳定性。当目标未被遮挡时,直接使用改进的Camshift算法来获取目标位置;当目标发生遮挡时,通过目标被遮挡面积判断遮挡程度,引入Kalman增益来预测目标位置,将预测和观测结果融合后得到目标新的位置状态估计。随后,通过坐标转换获取真实位移信息。该方法准确性通过三层钢框架结构模型的振动台试验得以验证,结果表明,采用视觉方法测量与拉线式位移计测量的结果所得最大位移误差均小于6.84%,两者相关性也均在0.91之上。最后,将该视觉方法应用到某实际工程中,通过对比一个监测点视觉位移测量与拉线式位移计的数据,发现二者误差值仅为0.15 mm,精度达到了98.56%,进一步表明该方法能够适应光照变化、灰尘和遮挡等复杂的隔震层环境,具有良好的准确性和鲁棒性。 展开更多
关键词 隔震支座位移 CAMSHIFT算法 kalman滤波 复杂环境
在线阅读 下载PDF
Research on Kalman Filtering Algorithmfor Deformation Information Series ofSimilar Single-Difference Model 被引量:10
4
作者 吕伟才 徐绍铨 《Journal of China University of Mining and Technology》 2004年第2期189-194,199,共7页
Using similar single-difference methodology(SSDM) to solve the deformation values of the monitoring points, there is unstability of the deformation information series, at sometimes.In order to overcome this shortcomin... Using similar single-difference methodology(SSDM) to solve the deformation values of the monitoring points, there is unstability of the deformation information series, at sometimes.In order to overcome this shortcoming, Kalman filtering algorithm for this series is established,and its correctness and validity are verified with the test data obtained on the movable platform in plane. The results show that Kalman filtering can improve the correctness, reliability and stability of the deformation information series. 展开更多
关键词 similar single-difference methodology GPS deformation monitoring single epoch deformation information series kalman filtering algorithm
在线阅读 下载PDF
Multi-sensor Hybrid Fusion Algorithm Based on Adaptive Square-root Cubature Kalman Filter 被引量:6
5
作者 Xiaogong Lin Shusheng Xu Yehai Xie 《Journal of Marine Science and Application》 2013年第1期106-111,共6页
In the normal operation condition, a conventional square-root cubature Kalman filter (SRCKF) gives sufficiently good estimation results. However, if the measurements are not reliable, the SRCKF may give inaccurate r... In the normal operation condition, a conventional square-root cubature Kalman filter (SRCKF) gives sufficiently good estimation results. However, if the measurements are not reliable, the SRCKF may give inaccurate results and diverges by time. This study introduces an adaptive SRCKF algorithm with the filter gain correction for the case of measurement malfunctions. By proposing a switching criterion, an optimal filter is selected from the adaptive and conventional SRCKF according to the measurement quality. A subsystem soft fault detection algorithm is built with the filter residual. Utilizing a clear subsystem fault coefficient, the faulty subsystem is isolated as a result of the system reconstruction. In order to improve the performance of the multi-sensor system, a hybrid fusion algorithm is presented based on the adaptive SRCKF. The state and error covariance matrix are also predicted by the priori fusion estimates, and are updated by the predicted and estimated information of subsystems. The proposed algorithms were applied to the vessel dynamic positioning system simulation. They were compared with normal SRCKF and local estimation weighted fusion algorithm. The simulation results show that the presented adaptive SRCKF improves the robustness of subsystem filtering, and the hybrid fusion algorithm has the better performance. The simulation verifies the effectiveness of the proposed algorithms. 展开更多
关键词 hybrid fusion algorithm square-root cubature kalman filter adaptive filter fault detection
在线阅读 下载PDF
TEC and Instrumental Bias Estimation of GAGAN Station Using Kalman Filter and SCORE Algorithm 被引量:1
6
作者 Dhiraj Sunehra 《Positioning》 2016年第1期41-50,共10页
The standalone Global Positioning System (GPS) does not meet the higher accuracy requirements needed for approach and landing phase of an aircraft. To meet the Category-I Precision Approach (CAT-I PA) requirements of ... The standalone Global Positioning System (GPS) does not meet the higher accuracy requirements needed for approach and landing phase of an aircraft. To meet the Category-I Precision Approach (CAT-I PA) requirements of civil aviation, satellite based augmentation system (SBAS) has been planned by various countries including USA, Europe, Japan and India. The Indian SBAS is named as GPS Aided Geo Augmented Navigation (GAGAN). The GAGAN network consists of several dual frequency GPS receivers located at various airports around the Indian subcontinent. The ionospheric delay, which is a function of the total electron content (TEC), is one of the main sources of error affecting GPS/SBAS accuracy. A dual frequency GPS receiver can be used to estimate the TEC. However, line-of-sight TEC derived from dual frequency GPS data is corrupted by the instrumental biases of the GPS receiver and satellites. The estimation of receiver instrumental bias is particularly important for obtaining accurate estimates of ionospheric delay. In this paper, two prominent techniques based on Kalman filter and Self-Calibration Of pseudo Range Error (SCORE) algorithm are used for estimation of instrumental biases. The estimated instrumental bias and TEC results for the GPS Aided Geo Augmented Navigation (GAGAN) station at Hyderabad (78.47°E, 17.45°N), India are presented. 展开更多
关键词 GPS Aided Geo Augmented Navigation Total Electron Content Instrumental Biases kalman filter Score algorithm
在线阅读 下载PDF
Assimilation of Remote Sensing and Crop Model for LAI Estimation Based on Ensemble Kalman Filter 被引量:4
7
作者 LI Rui LI Cun-jun +4 位作者 DONG Ying-ying LIU Feng WANG Ji-hua YANG Xiao-dong PAN Yu-chun 《Agricultural Sciences in China》 CAS CSCD 2011年第10期1595-1602,共8页
Data assimilation in agricultural remote sensing research is of great significance to integrate with remote sensing observations and model simulations for parameters estimation. The present investigation not only desi... Data assimilation in agricultural remote sensing research is of great significance to integrate with remote sensing observations and model simulations for parameters estimation. The present investigation not only designed and realized the Ensemble Kalman Filtering algorithm (EnKF) assimilation by combing the crop growth model (CERES-Wheat) with remote sensing data, but also optimized and updated the key parameters (LAI) of winter wheat by using remote sensing data. Results showed that the assimilation LAI and the observation ones agreed with each other, and the R2 reached 0.8315. So assimilation remote sensing and crop model could provide reference data for the agricultural production. 展开更多
关键词 crop model ASSIMILATION Ensemble kalman filter algorithm leaf area index
在线阅读 下载PDF
NONLINEAR FILTER METHOD OF GPS DYNAMIC POSITIONING BASED ON BANCROFT ALGORITHM 被引量:3
8
作者 ZHANG Qin TAO Ben-zao +1 位作者 ZHAO Chao-ying WANG Li 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2005年第2期170-176,共7页
Because of the ignored items after linearization,the extended Kalman filter(EKF)becomes a form of suboptimal gradient descent algorithm.The emanative tendency exists in GPS solution when the filter equations are ill-p... Because of the ignored items after linearization,the extended Kalman filter(EKF)becomes a form of suboptimal gradient descent algorithm.The emanative tendency exists in GPS solution when the filter equations are ill-posed.The deviation in the estimation cannot be avoided.Furthermore,the true solution may be lost in pseudorange positioning because the linearized pseudorange equations are partial solutions.To solve the above problems in GPS dynamic positioning by using EKF,a closed-form Kalman filter method called the two-stage algorithm is presented for the nonlinear algebraic solution of GPS dynamic positioning based on the global nonlinear least squares closed algorithm--Bancroft numerical algorithm of American.The method separates the spatial parts from temporal parts during processing the GPS filter problems,and solves the nonlinear GPS dynamic positioning,thus getting stable and reliable dynamic positioning solutions. 展开更多
关键词 GPS dynamic positioning Bancroft algorithm extended kalman filter algorithm
在线阅读 下载PDF
基于FSMC-Kalman的带式高速导种装置控制系统研究 被引量:3
9
作者 王淞 衣淑娟 +4 位作者 赵斌 李衣菲 王光宇 李帅霏 孙文胜 《农业机械学报》 CSCD 北大核心 2024年第12期169-179,332,共12页
为解决带式高速导种装置导种过程中导种电机与排种器驱动电机转速同步率低、稳定性差,造成播种株距变异系数升高,播种均匀度差的问题,提出一种基于模糊滑模卡尔曼(Fuzzy sliding mode control-Kalman,FSMCKalman)算法的带式高速导种装... 为解决带式高速导种装置导种过程中导种电机与排种器驱动电机转速同步率低、稳定性差,造成播种株距变异系数升高,播种均匀度差的问题,提出一种基于模糊滑模卡尔曼(Fuzzy sliding mode control-Kalman,FSMCKalman)算法的带式高速导种装置控制系统。通过对系统运动过程分析建立了排种电机、导种电机与作业速度的关系,为研究系统控制策略,对两个电机建立了数学模型。提出的FSMC-Kalman算法利用模糊算法动态整定滑模控制器中的逼近系数与速率系数,并在反馈环节加入卡尔曼滤波算法,从而增强控制系统的鲁棒性与自适应能力。仿真试验表明:基于FSMC-Kalman算法的导种电机转速无超调,调节时间为0.22 s,稳态误差为4.68 r/min;基于FSMC-Kalman算法的排种电机转速也无超调,调节时间为0.23 s,稳态误差为1.96 r/min。台架试验表明:FSMCKalman算法4种作业速度的平均合格株距变异系数为7.98%。FSMC-Kalman算法相较于SMC算法平均合格株距变异系数降低4.67个百分点,相较于FSMC算法平均合格株距变异系数降低3.36个百分点,相较于SMCKalman算法平均合格株距变异系数降低2.06个百分点。基于FSMC-Kalman的带式高速导种装置控制系统能够使导种电机与排种器驱动电机高同步率稳定工作,从而提高播种均匀度。 展开更多
关键词 带式高速导种装置 控制系统 模糊算法 滑模控制 卡尔曼滤波
在线阅读 下载PDF
基于CamShift与Kalman相结合的目标跟踪算法研究 被引量:2
10
作者 李俊松 刘光宇 +4 位作者 王帅 程远 周豹 赵恩铭 杨春丽 《山东商业职业技术学院学报》 2024年第3期116-120,共5页
目标跟踪是机器视觉领域的一项重要技术。传统的CamShift目标跟踪算法具有时间复杂度低、运算速度快的优点,在简单背景下具有良好的跟踪效果。但当跟踪目标处于部分遮挡的复杂情况下时,容易出现目标丢失的情况,从而影响后续的跟踪。Kal... 目标跟踪是机器视觉领域的一项重要技术。传统的CamShift目标跟踪算法具有时间复杂度低、运算速度快的优点,在简单背景下具有良好的跟踪效果。但当跟踪目标处于部分遮挡的复杂情况下时,容易出现目标丢失的情况,从而影响后续的跟踪。Kalman滤波算法在目标跟踪任务中,能够有效地预测跟踪目标下一时刻可能出现的位置,且算法简单方便。现将CamShift算法与Kalman滤波算法相结合来优化传统的CamShift算法,实验结果表明:优化后的算法不但保留了传统CamShift算法的优点,而且在一定程度上可以预测跟踪目标的行动轨迹,更好地实现目标跟踪任务,解决了传统CamShift算法在目标被部分遮挡的情况下容易出现的目标丢失的情况;同时,运算结果准确,基本没有预测误差。 展开更多
关键词 目标跟踪 MEANSHIFT算法 CAMSHIFT算法 kalman滤波
在线阅读 下载PDF
A novel strong tracking cubature Kalman filter and its application in maneuvering target tracking 被引量:28
11
作者 An ZHANG Shuida BAO +1 位作者 Fei GAO Wenhao BI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第11期2489-2502,共14页
The fading factor exerts a significant role in the strong tracking idea. However, traditional fading factor introduction method hinders the accuracy and robustness advantages of current strong-tracking-based nonlinear... The fading factor exerts a significant role in the strong tracking idea. However, traditional fading factor introduction method hinders the accuracy and robustness advantages of current strong-tracking-based nonlinear filtering algorithms such as Cubature Kalman Filter(CKF) since traditional fading factor introduction method only considers the first-order Taylor expansion. To this end, a new fading factor idea is suggested and introduced into the strong tracking CKF method.The new fading factor introduction method expanded the number of fading factors from one to two with reselected introduction positions. The relationship between the two fading factors as well as the general calculation method can be derived based on Taylor expansion. Obvious superiority of the newly suggested fading factor introduction method is demonstrated according to different nonlinearity of the measurement function. Equivalent calculation method can also be established while applied to CKF. Theoretical analysis shows that the strong tracking CKF can extract the thirdorder term information from the residual and thus realize second-order accuracy. After optimizing the strong tracking algorithm process, a Fast Strong Tracking CKF(FSTCKF) is finally established. Two simulation examples show that the novel FSTCKF improves the robustness of traditional CKF while minimizing the algorithm time complexity under various conditions. 展开更多
关键词 algorithm time complexity Cubature kalman filter Nonlinear filtering ROBUSTNESS Strong tracking filter
原文传递
基于卡尔曼(Kalman)滤波算法的体育训练视频中的运动目标检测 被引量:1
12
作者 柳磊 汤攀 《上饶师范学院学报》 2024年第3期84-95,共12页
体育训练视频中的运动目标检测往往存在目标快速移动、目标遮挡和场景变化等问题,导致运动目标检测的难度增大。为了解决这些问题,提出了基于卡尔曼(Kalman)滤波算法的体育训练视频中运动目标检测的方法。为了提升体育训练视频图像的质... 体育训练视频中的运动目标检测往往存在目标快速移动、目标遮挡和场景变化等问题,导致运动目标检测的难度增大。为了解决这些问题,提出了基于卡尔曼(Kalman)滤波算法的体育训练视频中运动目标检测的方法。为了提升体育训练视频图像的质量,首先对体育训练视频的图像进行一系列预处理(包括灰度变换、轮廓对比增强和噪声抑制等);然后借助混合高斯模型(Gaussian mixture module,GMM)有效提取体育训练视频的前景信息;为了精准捕捉体育训练视频中的运动目标,运用三帧差分法设定Kalman滤波器的初始状态,利用高效检测算法准确获取每一帧图像中运动目标的观测位置;随后将初始状态和观测位置的数据输入Kalman滤波器;最后在Kalman滤波器中,结合上一帧的预估值和当前帧的监测值,对体育训练视频中运动目标的当前状态进行精确估算和优化,并对下一帧的状态进行预测,从而实现了对运动目标的持续跟踪与精准预测。实验结果表明,与基于特征融合的全卷积孪生网络(siamese full convolution,Siamfc)目标追踪算法和基于连续自适应均值漂移(continuously adapting mean shift,Camshift)的均值漂移(mean shift,Meanshift)改进算法相比,采用基于Kalman滤波算法的运动目标检测方法对运动目标的重叠精度(overlap precision,OP)和中心位置误差(center location error,CLE)进行检测,不仅能够有效检测到体育训练视频中的运动目标,还可表现出较高的准确性和实时性。 展开更多
关键词 kalman滤波算法 体育训练视频 运动目标检测 视图预处理 三帧差分法 混合高斯模型
在线阅读 下载PDF
模糊自适应Kalman滤波算法在SINS/DR组合导航的应用 被引量:1
13
作者 许建国 周源 王少蕾 《兵工自动化》 北大核心 2024年第9期1-6,共6页
针对里程仪测量误差导致组合导航精度降低的问题,提出基于系统工作状态和滤波器新息状态相结合的模糊自适应算法。根据新息的变化确定模糊规则,修正里程仪输出增益,使新息始终保持在零均值附近,利用修正后的新息修正观测噪声方差,降低... 针对里程仪测量误差导致组合导航精度降低的问题,提出基于系统工作状态和滤波器新息状态相结合的模糊自适应算法。根据新息的变化确定模糊规则,修正里程仪输出增益,使新息始终保持在零均值附近,利用修正后的新息修正观测噪声方差,降低导航定位的偏差。仿真实验结果证明,该算法能够很好地提高组合导航定位的精度。 展开更多
关键词 SINS/DR组合导航 里程仪 模糊自适应算法 kalman滤波
在线阅读 下载PDF
Real-time localization estimator of mobile node in wireless sensor networks based on extended Kalman filter
14
作者 田金鹏 郑国莘 《Journal of Shanghai University(English Edition)》 CAS 2011年第2期128-131,共4页
Localization of the sensor nodes is a key supporting technology in wireless sensor networks (WSNs). In this paper, a real-time localization estimator of mobile node in WSNs based on extended Kalman filter (KF) is ... Localization of the sensor nodes is a key supporting technology in wireless sensor networks (WSNs). In this paper, a real-time localization estimator of mobile node in WSNs based on extended Kalman filter (KF) is proposed. Mobile node movement model is analyzed and online sequential iterative method is used to compute location result. The detailed steps of mobile sensor node self-localization adopting extended Kalman filter (EKF) is designed. The simulation results show that the accuracy of the localization estimator scheme designed is better than those of maximum likelihood estimation (MLE) and traditional KF algorithm. 展开更多
关键词 wireless sensor networks (WSNs) node location localization algorithm kalman filter (KF)
在线阅读 下载PDF
基于和积算法的舰艇编队协同导航 被引量:1
15
作者 王苏 周红进 +1 位作者 黄鸿殿 徐贵鹏 《舰船科学技术》 北大核心 2025年第12期134-140,共7页
针对舰艇强导航干扰背景下,导航能力偏弱的单舰难以保证自身导航精度的问题,本文提出基于和积算法的舰艇编队主从式惯性基协同导航方法。利用编队各舰搭载的不同精度惯性导航基准,开展协同导航技术研究。构建了2艘舰艇组成的一主一从式... 针对舰艇强导航干扰背景下,导航能力偏弱的单舰难以保证自身导航精度的问题,本文提出基于和积算法的舰艇编队主从式惯性基协同导航方法。利用编队各舰搭载的不同精度惯性导航基准,开展协同导航技术研究。构建了2艘舰艇组成的一主一从式惯性基协同导航数学模型,并将惯性导航信息参量与因子图融合,设计了基于因子图的和积协同导航算法;通过分析因子图中节点消息传递过程,获取了各节点之间的导航消息传递概率密度函数;以时间更新和测量更新为基础,建立2次消息传递过程,最终获得更新校正的从舰导航信息。试验结果表明,相较于传统的基于扩展卡尔曼滤波的惯性基协同导航算法,基于因子图的和积算法位置解算精度提高16.69%,北向速度精度提高34.94%,东向速度精度提高48.90%,可有效提高卫导拒止环境下的从舰惯性基导航精度。 展开更多
关键词 协同导航 和积算法 卡尔曼滤波 舰艇编队
在线阅读 下载PDF
多策略改进麻雀搜索算法优化无迹卡尔曼滤波方法 被引量:2
16
作者 刘建娟 李志伟 +2 位作者 姬淼鑫 吴豪然 许强伟 《科学技术与工程》 北大核心 2025年第1期227-237,共11页
针对无迹卡尔曼滤波(unscented Kalman filter,UKF)中无迹变换(unscented transform,UT)在状态估计时采样点分布状态控制参数异常对滤波性能的影响问题,提出了一种利用多策略改进麻雀搜索算法(improved sparrow search algorithm,ISSA)... 针对无迹卡尔曼滤波(unscented Kalman filter,UKF)中无迹变换(unscented transform,UT)在状态估计时采样点分布状态控制参数异常对滤波性能的影响问题,提出了一种利用多策略改进麻雀搜索算法(improved sparrow search algorithm,ISSA)对UT中采样点分布状态控制参数进行寻优调整的方法,从而优化Sigma点分布以提高非线性近似效果,改善滤波估计性能。同时针对传统麻雀搜索算法面临的易陷入局部最优和收敛速度慢等问题,首先利用Cubic混沌映射改善初始种群的多样性;其次在发现者阶段引入非线性自适应收敛因子,提高平衡算法在全局探索和局部开发方面的能力;同时在追随者阶段利用小波变异策略,以避免追随者盲目追随而导致算法陷入局部最优;最后利用自适应t分布的扰动能力增强算法的全局搜索能力。通过测试函数对ISSA算法进行仿真实验,结果表明ISSA算法具有更好的收敛性和求解精度,同时验证ISSA优化UKF算法后的仿真结果,表明了ISSA-UKF算法相比于UKF算法的位置均方根误差降低了52.2%,速度均方根误差降低了21.9%,证明了改进方法的有效性和可行性。 展开更多
关键词 无迹卡尔曼滤波 麻雀搜索算法 Cubic混沌映射 非线性自适应收敛因子 小波变异策略
在线阅读 下载PDF
复杂环境下无线传感器节点集群动态调度算法设计
17
作者 刘张榕 许力 《传感技术学报》 北大核心 2025年第6期1127-1132,共6页
在复杂环境下无线传感器节点调度目标选择混乱,导致传感器节点接收到的目标信息存在误差,影响无线传感器节点动态调度精度和网络能耗,为此提出复杂环境下无线传感器节点集群动态调度算法。计算异构集群系统中的计算节点和通信能耗,将总... 在复杂环境下无线传感器节点调度目标选择混乱,导致传感器节点接收到的目标信息存在误差,影响无线传感器节点动态调度精度和网络能耗,为此提出复杂环境下无线传感器节点集群动态调度算法。计算异构集群系统中的计算节点和通信能耗,将总能量损耗作为约束条件。通过应用反转镜技术、Kalman滤波、模糊C均值聚类算法,对传感网络节点的空间环境进行重组和优化。计算节点集群调度的最优化函数,选择合适的集群头节点和数量,考虑节点的距离、速度等重要性因素,确定节点调度任务分配策略,定期调整集群头节点、节点位置,动态调整集群调度策略。仿真结果表明,所提方法集群调度的负载均衡度数值为18.5,节点动态调度精度平均值为85.6%,调度耗时平均值为0.17 ms。 展开更多
关键词 无线传感器 节点动态调度 模糊C均值聚类算法 协同kalman滤波 集群调度算法
在线阅读 下载PDF
应用于发电机动态状态估计的鲁棒EKF算法
18
作者 靳越 李桢森 +1 位作者 李岩 孙娜 《机械设计与制造》 北大核心 2025年第10期183-187,193,共6页
鉴于现有的滤波算法在处理非线性同步发电机系统的动态状态估计问题时难有满意的滤波效果,这里提出了一种鲁棒扩展卡尔曼滤波(EKF)算法。该算法保留了非线性模型泰勒级数展开式的高阶项,并将其等效为满足范数有界的不确定线性矩阵形式... 鉴于现有的滤波算法在处理非线性同步发电机系统的动态状态估计问题时难有满意的滤波效果,这里提出了一种鲁棒扩展卡尔曼滤波(EKF)算法。该算法保留了非线性模型泰勒级数展开式的高阶项,并将其等效为满足范数有界的不确定线性矩阵形式。基于传统的EKF估计器框架,并使用一系列引理,逐步推导了误差协方差的上界,同时优化设计了合适的滤波器增益使得这样的上界最小以保证最优的滤波性能。提出的鲁棒EKF是一种递推算法,因此可在线应用,计算简便。最后,同步发电机的二阶和三阶模型作为例子以测试提出的估计方法,仿真结果表明,提出的鲁棒EKF算法的估计精度要优于传统的EKF。 展开更多
关键词 同步发电机 非线性系统 动态状态估计 扩展卡尔曼滤波 鲁棒算法
在线阅读 下载PDF
一种片上电离层TEC准实时卡尔曼滤波算法
19
作者 李婧华 马冠一 +1 位作者 万庆涛 范江涛 《空间科学学报》 北大核心 2025年第5期1265-1271,共7页
提出一种适用于片上的电离层总电子含量(Total Electron Content,TEC)准实时算法,可降低电离层TEC监测设备的成本、体积、功耗和待传数据量,并在ARM芯片上进行了验证.为降低数据存储量和计算复杂度,该算法收集和缓存20 min的GNSS双频伪... 提出一种适用于片上的电离层总电子含量(Total Electron Content,TEC)准实时算法,可降低电离层TEC监测设备的成本、体积、功耗和待传数据量,并在ARM芯片上进行了验证.为降低数据存储量和计算复杂度,该算法收集和缓存20 min的GNSS双频伪距和相位观测值,用载波相位平滑伪距的方法得到20 min内卫星至接收机视线路径上的斜向TEC(Slant TEC,STEC),采用5 min的滑动步长进行下一组STEC的数据处理.利用映射函数和多项式模型构建卡尔曼滤波的量测方程,通过卡尔曼滤波迭代,准实时给出测站上空的电离层垂直TEC(Vertical TEC,VTEC),并与积累一天数据得到的STEC作为观测量进行卡尔曼滤波得到的VTEC进行了对比,结果表明,采用20 min的数据长度和5 min的步长对STEC进行准实时处理的方法是可行的. 展开更多
关键词 电离层TEC 卡尔曼滤波 准实时算法 电离层监测仪
在线阅读 下载PDF
基于SRCKF算法的锂离子电池荷电状态估计
20
作者 肜瑶 张洋洋 吕运朋 《电池》 北大核心 2025年第2期273-278,共6页
为提高荷电状态(SOC)估计的精度,以磷酸铁锂锂离子电池为研究对象,在双极化等效电路模型的基础上,分析容积卡尔曼滤波器(CKF)的SOC估计过程。针对CKF算法发散的问题,采用平方根容积卡尔曼滤波(SRCKF)算法进行电池SOC估计。SRCKF算法通... 为提高荷电状态(SOC)估计的精度,以磷酸铁锂锂离子电池为研究对象,在双极化等效电路模型的基础上,分析容积卡尔曼滤波器(CKF)的SOC估计过程。针对CKF算法发散的问题,采用平方根容积卡尔曼滤波(SRCKF)算法进行电池SOC估计。SRCKF算法通过引入正交三角(QR)分解,误差协方差矩阵在计算过程中以平方根的形式传播,从而确保矩阵的正定和对称。与CKF算法对比发现,SRCKF算法的估计误差为2.0534×10-4 V,说明可以提高SOC估计的精度。 展开更多
关键词 磷酸铁锂锂离子电池 双极化模型 平方根容积卡尔曼滤波(SRCKF)算法 荷电状态(SOC)估计
在线阅读 下载PDF
上一页 1 2 91 下一页 到第
使用帮助 返回顶部