期刊文献+
共找到917篇文章
< 1 2 46 >
每页显示 20 50 100
An Upper Bound for the Transversal Number of Connected k-Uniform Hypergraphs
1
作者 Zi-An Chen Bin Chen 《Journal of the Operations Research Society of China》 EI CSCD 2024年第3期829-835,共7页
Let H be a hypergraph with vertex set V(H)and hyperedge set E(H).We call a vertex set R ■V(H)a transversal if it has a nonempty intersection with every hyperedge of H.The transversal number,denoted by τ(H),is the mi... Let H be a hypergraph with vertex set V(H)and hyperedge set E(H).We call a vertex set R ■V(H)a transversal if it has a nonempty intersection with every hyperedge of H.The transversal number,denoted by τ(H),is the minimum cardinality of transversals.In 2021,Diao verified that the upper bound of transversal number for any connected 3-uniform hypergraph H is at most 2m+1/3,that is,τ(H)≤2m+1/3, where m is the size of H.Moreover,they gave the necessary and sufficient conditions to reachthe upper bound,namely τ(H)≤2m+1/3,if and only if H is a hypertreewitha 3 perfect matching.In this paper,we investigate the transversal number of connected kunifom hypergraphs for k≥3.We confrm that τ(H)≤(k-1)m+1/k for any k-unifom hypegraphH with size m.Furthermore,we show that τ(H)≤(k-1)m+1/k if and only if H is a hypertree with a perfect matching,which generalizes the results of Diao. 展开更多
关键词 Transversal number k-uniform hypergraph Perfect matching
原文传递
THE SPECTRAL RADIUS OF UNIFORM HYPERGRAPH DETERMINED BY THE SIGNLESS LAPLACIAN MATRIX
2
作者 HE Fang-guo 《数学杂志》 2025年第1期1-12,共12页
This paper studies the problem of the spectral radius of the uniform hypergraph determined by the signless Laplacian matrix.The upper bound of the spectral radius of a uniform hypergraph is obtained by using Rayleigh ... This paper studies the problem of the spectral radius of the uniform hypergraph determined by the signless Laplacian matrix.The upper bound of the spectral radius of a uniform hypergraph is obtained by using Rayleigh principle and the perturbation of the spectral radius under moving the edge operation,and the extremal hypergraphs are characterized for both supertree and unicyclic hypergraphs.The spectral radius of the graph is generalized. 展开更多
关键词 spectral radius uniform hypergraph Signless Laplasian matrix
在线阅读 下载PDF
On the Coprime Labelings of Hypergraph
3
作者 ZHANG Zizhou ZHANG Shaohua 《Wuhan University Journal of Natural Sciences》 2025年第1期57-59,共3页
Graph labeling is the assignment of integers to the vertices,edges,or both,subject to certain conditions.Accordingly,hypergraph labeling is also the assignment of integers to the vertices,edges,or both,subject to cert... Graph labeling is the assignment of integers to the vertices,edges,or both,subject to certain conditions.Accordingly,hypergraph labeling is also the assignment of integers to the vertices,edges,or both,subject to certain conditions.This paper is to generalize the coprime labelings of graph to hypergraph.We give the definition of coprime labelings of hypergraph.By using Rosser-Schoenfeld's inequality and the coprime mapping theorem of Pomerance and Selfridge,we prove that some linear hypergraphs are prime. 展开更多
关键词 coprime mapping theorem of Pomerance and Selfridge linear hypergraphs prime hypergraphs
原文传递
Optimal synchronization of higher-order Kuramoto model on hypergraphs
4
作者 Chong-Yang Wang Bi-Yun Ji Linyuan Lu 《Chinese Physics B》 2025年第7期231-238,共8页
Complex networks play a crucial role in the study of collective behavior,encompassing the analysis of dynamical properties and network topology.In real-world systems,higher-order interactions among multiple entities a... Complex networks play a crucial role in the study of collective behavior,encompassing the analysis of dynamical properties and network topology.In real-world systems,higher-order interactions among multiple entities are widespread and significantly influence collective dynamics.Here,we extend the synchronization alignment function framework to hypergraphs of arbitrary order by leveraging the multi-order Laplacian matrix to encode higher-order interactions.Our findings reveal that the upper bound of synchronous behavior is determined by the maximum eigenvalue of the multi-order Laplacian matrix.Furthermore,we decompose the contribution of each hyperedge to this eigenvalue and utilize it as a basis for designing an eigenvalue-based topology modification algorithm.This algorithm effectively enhances the upper bound of synchronous behavior without altering the total number of higher-order interactions.Our study provides new insights into dynamical optimization and topology tuning in hypergraphs,advancing the understanding of the interplay between higher-order interactions and collective dynamics. 展开更多
关键词 synchronization optimization hypergraph complex network
原文传递
Identifying important nodes of hypergraph:An improved PageRank algorithm
5
作者 Yu-Hao Piao Jun-Yi Wang Ke-Zan Li 《Chinese Physics B》 2025年第4期162-171,共10页
Hypergraphs can accurately capture complex higher-order relationships,but it is challenging to identify their important nodes.In this paper,an improved PageRank(ImPageRank)algorithm is designed to identify important n... Hypergraphs can accurately capture complex higher-order relationships,but it is challenging to identify their important nodes.In this paper,an improved PageRank(ImPageRank)algorithm is designed to identify important nodes in a directed hypergraph.The algorithm introduces the Jaccard similarity of directed hypergraphs.By comparing the numbers of common neighbors between nodes with the total number of their neighbors,the Jaccard similarity measure takes into account the similarity between nodes that are not directly connected,and can reflect the potential correlation between nodes.An improved susceptible–infected(SI)model in directed hypergraph is proposed,which considers nonlinear propagation mode and more realistic propagation mechanism.In addition,some important node evaluation methods are transferred from undirected hypergraphs and applied to directed hypergraphs.Finally,the ImPageRank algorithm is used to evaluate the performance of the SI model,network robustness and monotonicity.Simulations of real networks demonstrate the excellent performance of the proposed algorithm and provide a powerful framework for identifying important nodes in directed hypergraphs. 展开更多
关键词 hypergraph important node PAGERANK susceptible-infected(SI)model centrality index
原文传递
A local-global dynamic hypergraph convolution with multi-head flow attention for traffic flow forecasting
6
作者 ZHANG Hong LI Yang +3 位作者 LUO Shengjun ZHANG Pengcheng ZHANG Xijun YI Min 《High Technology Letters》 2025年第3期246-256,共11页
Traffic flow prediction is a crucial element of intelligent transportation systems.However,accu-rate traffic flow prediction is quite challenging because of its highly nonlinear,complex,and dynam-ic characteristics.To... Traffic flow prediction is a crucial element of intelligent transportation systems.However,accu-rate traffic flow prediction is quite challenging because of its highly nonlinear,complex,and dynam-ic characteristics.To address the difficulties in simultaneously capturing local and global dynamic spatiotemporal correlations in traffic flow,as well as the high time complexity of existing models,a multi-head flow attention-based local-global dynamic hypergraph convolution(MFA-LGDHC)pre-diction model is proposed.which consists of multi-head flow attention(MHFA)mechanism,graph convolution network(GCN),and local-global dynamic hypergraph convolution(LGHC).MHFA is utilized to extract the time dependency of traffic flow and reduce the time complexity of the model.GCN is employed to catch the spatial dependency of traffic flow.LGHC utilizes down-sampling con-volution and isometric convolution to capture the local and global spatial dependencies of traffic flow.And dynamic hypergraph convolution is used to model the dynamic higher-order relationships of the traffic road network.Experimental results indicate that the MFA-LGDHC model outperforms current popular baseline models and exhibits good prediction performance. 展开更多
关键词 traffic flow prediction multi-head flow attention graph convolution hypergraph learning dynamic spatio-temporal properties
在线阅读 下载PDF
基于Hypergraph的突发事件情景案例表示与检索方法研究 被引量:3
7
作者 王兴鹏 桂莉 王灿 《情报杂志》 CSSCI 北大核心 2024年第1期121-126,共6页
[研究目的]突发事件具有情景演化特征,突发事件案例不仅要对单个情景特征进行描述,也要描述不同情景之间的演化关系。[研究方法]在对突发事件情景演化机理和情景案例特征分析基础上,引入超图理论,将其应用于突发事件情景案例表示,建立... [研究目的]突发事件具有情景演化特征,突发事件案例不仅要对单个情景特征进行描述,也要描述不同情景之间的演化关系。[研究方法]在对突发事件情景演化机理和情景案例特征分析基础上,引入超图理论,将其应用于突发事件情景案例表示,建立了突发事件情景链超图模型,并基于该模型提出了包括情景链检索和情景特征检索的两阶段检索策略和相应的相似度计算方法。[研究结论]该模型能够有效描述突发事件情景案例的复杂演化特征,并能提高案例检索的质量和效果。 展开更多
关键词 突发事件 超图 突发事件情景 案例表示 情景案例检索 情景演化机理
在线阅读 下载PDF
Some Ore-type Results for Matching and Perfect Matching in k-uniform Hypergraphs
8
作者 Yi ZHANG Mei LU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2018年第12期1795-1803,共9页
Let SI and S2 be two (k- 1)-subsets in a k-uniform hypergraph H. We call S1 and S2 strongly or middle or weakly independent if H does not contain an edge e ∈ E(H) such that S1 ∩ e≠ 0 and S2 ∩ e ≠0 or e S1 ∪... Let SI and S2 be two (k- 1)-subsets in a k-uniform hypergraph H. We call S1 and S2 strongly or middle or weakly independent if H does not contain an edge e ∈ E(H) such that S1 ∩ e≠ 0 and S2 ∩ e ≠0 or e S1 ∪ S2 or e S1 ∪ S2, respectively. In this paper, we obtain the following results concerning these three independence. (1) For any n ≥ 2k2 - k and k ≥ 3, there exists an n-vertex k-uniform hypergraph, which has degree sum of any two strongly independent (k - 1)-sets equal to 2n - 4(k - 1), contains no perfect matching; (2) Let d ≥ 1 be an integer and H be a k-uniform hypergraph of order n ≥ kd+ (k- 2)k. If the degree sum of any two middle independent (k- 1)-subsets is larger than 2(d- 1), then H contains a d-matching; (3) For all k ≥ 3 and sufficiently large n divisible by k, we completely determine the minimum degree sum of two weakly independent (k - 1)-subsets that ensures a perfect matching in a k-uniform hypergraph H of order n. 展开更多
关键词 Ore-type condition MATCHING perfect matching hypergraph
原文传递
Hypergraph Computation
9
作者 Yue Gao Shuyi Ji +1 位作者 Xiangmin Han Qionghai Dai 《Engineering》 SCIE EI CAS CSCD 2024年第9期188-201,共14页
Practical real-world scenarios such as the Internet,social networks,and biological networks present the challenges of data scarcity and complex correlations,which limit the applications of artificial intelligence.The ... Practical real-world scenarios such as the Internet,social networks,and biological networks present the challenges of data scarcity and complex correlations,which limit the applications of artificial intelligence.The graph structure is a typical tool used to formulate such correlations,it is incapable of modeling highorder correlations among different objects in systems;thus,the graph structure cannot fully convey the intricate correlations among objects.Confronted with the aforementioned two challenges,hypergraph computation models high-order correlations among data,knowledge,and rules through hyperedges and leverages these high-order correlations to enhance the data.Additionally,hypergraph computation achieves collaborative computation using data and high-order correlations,thereby offering greater modeling flexibility.In particular,we introduce three types of hypergraph computation methods:①hypergraph structure modeling,②hypergraph semantic computing,and③efficient hypergraph computing.We then specify how to adopt hypergraph computation in practice by focusing on specific tasks such as three-dimensional(3D)object recognition,revealing that hypergraph computation can reduce the data requirement by 80%while achieving comparable performance or improve the performance by 52%given the same data,compared with a traditional data-based method.A comprehensive overview of the applications of hypergraph computation in diverse domains,such as intelligent medicine and computer vision,is also provided.Finally,we introduce an open-source deep learning library,DeepHypergraph(DHG),which can serve as a tool for the practical usage of hypergraph computation. 展开更多
关键词 High-order correlation hypergraph structure modeling hypergraph semantic computing Efficient hypergraph computing hypergraph computation framework
在线阅读 下载PDF
Influencer Identification of Threshold Models in Hypergraphs
10
作者 Xiaojuan SONG Xilong QU +2 位作者 Ting WEI Jilei TAI Renquan ZHANG 《Journal of Mathematical Research with Applications》 CSCD 2024年第5期569-582,共14页
This paper mainly studies the influence maximization problem of threshold models in hypergraphs,which aims to identify the most influential nodes in hypergraphs.Firstly,we introduce a novel information diffusion rule ... This paper mainly studies the influence maximization problem of threshold models in hypergraphs,which aims to identify the most influential nodes in hypergraphs.Firstly,we introduce a novel information diffusion rule in hypergraphs based on Threshold Models and conduct the stability analysis.Then we extend the CI-TM algorithm,originally designed for complex networks,to hypergraphs,denoted as the H-CI-TM algorithm.Secondly,we use an iterative approach to get the globally optimal solutions.The analysis reveals that our algorithm ultimately identifies the most influential set of nodes.Based on the numerical simulations,HCI-TM algorithm outperforms several competing algorithms in both synthetic and real-world hypergraphs.Essentially,when provided with the same number of initial seeds,our algorithm can achieve a larger activation size.Our method not only accurately assesses the influence of individual nodes but also identifies a set of nodes with greater impact.Furthermore,our results demonstrate good scalability when handling intricate relationships and large-scale hypergraphs.The outcomes of our research provide substantial support for the applications of the threshold models across diverse fields,including social network analysis and marketing strategies. 展开更多
关键词 hypergraph threshold model influence maximization information diffusion sub-critical path
原文传递
Hypergraph regularized multi-view subspace clustering with dual tensor log-determinant
11
作者 HU Keyin LI Ting GE Hongwei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第4期466-476,共11页
The existing multi-view subspace clustering algorithms based on tensor singular value decomposition(t-SVD)predominantly utilize tensor nuclear norm to explore the intra view correlation between views of the same sampl... The existing multi-view subspace clustering algorithms based on tensor singular value decomposition(t-SVD)predominantly utilize tensor nuclear norm to explore the intra view correlation between views of the same samples,while neglecting the correlation among the samples within different views.Moreover,the tensor nuclear norm is not fully considered as a convex approximation of the tensor rank function.Treating different singular values equally may result in suboptimal tensor representation.A hypergraph regularized multi-view subspace clustering algorithm with dual tensor log-determinant(HRMSC-DTL)was proposed.The algorithm used subspace learning in each view to learn a specific set of affinity matrices,and introduced a non-convex tensor log-determinant function to replace the tensor nuclear norm to better improve global low-rankness.It also introduced hyper-Laplacian regularization to preserve the local geometric structure embedded in the high-dimensional space.Furthermore,it rotated the original tensor and incorporated a dual tensor mechanism to fully exploit the intra view correlation of the original tensor and the inter view correlation of the rotated tensor.At the same time,an alternating direction of multipliers method(ADMM)was also designed to solve non-convex optimization model.Experimental evaluations on seven widely used datasets,along with comparisons to several state-of-the-art algorithms,demonstrated the superiority and effectiveness of the HRMSC-DTL algorithm in terms of clustering performance. 展开更多
关键词 multi-view clustering tensor log-determinant function subspace learning hypergraph regularization
在线阅读 下载PDF
The Erdös-Faber-Lovász Conjecture for Gap-Restricted Hypergraphs
12
作者 Zhimin Wang 《Engineering(科研)》 2024年第2期47-59,共13页
An edge coloring of hypergraph H is a function   such that  holds for any pair of intersecting edges . The minimum number of colors in edge colorings of H is called the chromatic index of H and is ... An edge coloring of hypergraph H is a function   such that  holds for any pair of intersecting edges . The minimum number of colors in edge colorings of H is called the chromatic index of H and is denoted by . Erdös, Faber and Lovász proposed a famous conjecture that  holds for any loopless linear hypergraph H with n vertices. In this paper, we show that  is true for gap-restricted hypergraphs. Our result extends a result of Alesandroni in 2021. 展开更多
关键词 Linear hypergraph Chromatic Index Erdös-Faber-Lovász Conjecture Edge Cardinality
在线阅读 下载PDF
融合超图理论的语义知识图谱知识表示研究 被引量:1
13
作者 宋雪雁 张伟民 张祥青 《情报理论与实践》 北大核心 2025年第3期160-168,共9页
[目的/意义]现有语义知识图谱三元组的知识表示方式对复杂知识表示能力较弱,文章在现有知识图谱语义标准基础上,探索提高知识图谱对复杂知识的表示能力以及知识聚合能力的途径。[方法/过程]分析图、超图、知识图谱以及知识超图之间的联... [目的/意义]现有语义知识图谱三元组的知识表示方式对复杂知识表示能力较弱,文章在现有知识图谱语义标准基础上,探索提高知识图谱对复杂知识的表示能力以及知识聚合能力的途径。[方法/过程]分析图、超图、知识图谱以及知识超图之间的联系,探讨知识表示领域,知识图谱的局限性以及融合超图理论后知识超图在复杂知识表示能力方面的优势。[结果/结论]提出知识超图模型,根据该模型讨论其对复杂知识的表示方式:通过加入空节点或具有实际含义实体的方式,描述实体在某一时刻的属性或状态;将超边具象化为特殊的超边实体,为其连接的实体提供语义环境。足够多的空节点或超边实体即可描述实体或关系从产生到现在(或消亡)的全部状态,从而展现动态、复杂的现实世界。 展开更多
关键词 超图理论 语义知识图谱 知识表示 知识超图
原文传递
建成环境影响下的城市轨道交通客流多步短时预测 被引量:4
14
作者 李之红 郄堃 +2 位作者 王健宇 许晗 陈金政 《交通运输系统工程与信息》 北大核心 2025年第1期160-172,共13页
为挖掘客流的复杂时空耦合关系,解析建成环境影响下的轨道交通客流出行规律,本文提出一种考虑城市建成环境的时空双层超图神经网络模型(Spatial Temporal-Double Hypergraph Neural Network,STDHGNN)。模型分为双层超图神经网络和时间... 为挖掘客流的复杂时空耦合关系,解析建成环境影响下的轨道交通客流出行规律,本文提出一种考虑城市建成环境的时空双层超图神经网络模型(Spatial Temporal-Double Hypergraph Neural Network,STDHGNN)。模型分为双层超图神经网络和时间序列模块,双层超图神经网络模块用于挖掘轨道交通线路站点间的高阶连通关系和相邻同类建成区域站点的集群关系,时间序列模块用于表征历史客流数据的时间依赖关系。同时,以建成环境和线路作为变量构造新的损失函数,旨在剖析建成环境的影响,提高模型的预测性能。最后,以武汉轨道交通数据为例开展实证研究。研究结果显示:考虑建成环境和轨道站点高阶连通关系对客流预测精度的提升效果显著,本模型均方根误差(RMSE)和平均绝对误差(MAE)值分别为52.04和29.32,比基线模型降低了22%以上,性能显著优于基线模型;通过消融实验验证了融合轨道高阶联通关系和建成环境对模型性能的贡献,其中,单步预测任务中,考虑这两种因素使模型性能分别提升了6%和9%,多步预测任务中,分别提升了4%和12%;构造的融合建成环境因素的可解释损失函数,提高了模型的预测性能,同时,使模型具备更好的科学性和可解释性。研究成果为城市轨道交通的客流管理和列车调度提供了技术支持。 展开更多
关键词 智能交通 客流多步预测 超图时空网络 城市轨道交通 建成环境影响 可解释损失函数
在线阅读 下载PDF
基于项目级和类别级双混合超图的会话推荐
15
作者 李建伏 张丹 《计算机工程与设计》 北大核心 2025年第6期1758-1765,共8页
为捕获项目间和类别间复杂的顺序、高阶依赖关系,提出一种基于项目级和类别级双混合超图融合的会话推荐方法DF-MHCN。分别从项目和类别转换角度构建一个项目级混合超图和一个类别级混合超图;提出混合超图卷积网络更新两个混合超图中节... 为捕获项目间和类别间复杂的顺序、高阶依赖关系,提出一种基于项目级和类别级双混合超图融合的会话推荐方法DF-MHCN。分别从项目和类别转换角度构建一个项目级混合超图和一个类别级混合超图;提出混合超图卷积网络更新两个混合超图中节点的表示;引入引导注意力机制融合两种节点表示;用更新后的节点嵌入学习会话表示,计算每个节点的点击概率并推荐概率最大的k个项目。实验结果表明,DF-MHCN方法相对于现有的会话推荐方法具有较高的精度。 展开更多
关键词 基于会话的推荐 混合超图 项目级混合超图 类别级混合超图 超图卷积网络 混合超图卷积网络 引导注意力机制
在线阅读 下载PDF
考虑非邻近节点空间相关性的交通流预测模型
16
作者 闫光辉 李鸿涛 +1 位作者 张斌 常文文 《计算机应用研究》 北大核心 2025年第3期825-833,共9页
针对现有的交通流预测模型存在难以对非邻近节点之间的时空相关性显式建模的问题,提出一种新的利用超图表征空间相关性的超图卷积神经网络模型(double attention hypergraph convolution neural network,A2HGCN)。首先,通过寻找节点之... 针对现有的交通流预测模型存在难以对非邻近节点之间的时空相关性显式建模的问题,提出一种新的利用超图表征空间相关性的超图卷积神经网络模型(double attention hypergraph convolution neural network,A2HGCN)。首先,通过寻找节点之间的相似关系构造超边,利用节点之间的连接关系构造超图;然后提出一个超图卷积模型,其中利用超图卷积和将超图线扩展为图后利用线图卷积来捕获潜在的空间相关性;再利用融合双层注意力机制的卷积长短时记忆网络捕获时间相关性,最后得出预测结果。在数据集PEMS-BAY中,A2HGCN方法的评价指标MAE、MAPE和RMSE在预测步长为15 min时为1.223、2.617%、2.547,30 min时为1.554、3.541%、3.420,60 min时为1.867、4.578%、4.224。在数据集PEMSM中,该方法的评价指标MAE、MAPE和RMSE在预测步长为15 min时为1.858、4.385%、3.339,30 min时为2.374、5.775%、4.362,60 min时为3.046、7.713%、5.479。结果表明,该方法在不同预测步长下均优于基线模型,验证了考虑非邻近节点之间的时空相关性对于提高交通预测准确性的有效性。由此可得,超图卷积神经网络在捕获时空相关性方面具有优势。 展开更多
关键词 交通流预测 超图理论 图卷积网络
在线阅读 下载PDF
基于双超图神经网络特征融合的文本分类
17
作者 郑诚 李鹏飞 《计算机工程》 北大核心 2025年第6期127-135,共9页
近年来,图神经网络(GNN)在文本分类任务中受到广泛应用。当前基于GNN的文本分类模型首先将文本建模为图,然后使用GNN对文本图进行特征传播与聚合,但是此类方法有两点不足:一是现有模型由于图结构的限制无法捕获单词之间的高阶语义关系;... 近年来,图神经网络(GNN)在文本分类任务中受到广泛应用。当前基于GNN的文本分类模型首先将文本建模为图,然后使用GNN对文本图进行特征传播与聚合,但是此类方法有两点不足:一是现有模型由于图结构的限制无法捕获单词之间的高阶语义关系;二是现有模型无法捕获文本中的关键语义信息。为了解决上述问题,提出一种基于双超图卷积网络特征融合的文本分类模型。一方面,使用原始文本建立文本超图;另一方面,为短文本引入外部知识,使用基于SenticNet词库的外部知识对文本进行语义增强,构建语义超图。经过超图卷积后通过注意力机制对双超图特征进行融合,实现短文本分类。在4个文本分类数据集上的实验结果表明,该模型优于基线模型,具有优越的文本分类性能。 展开更多
关键词 文本分类 超图 特征融合 SenticNet词库 自然语言处理
在线阅读 下载PDF
融合超图的演化博弈网络谣言传播模型研究
18
作者 朱鹏 陈晓天 +1 位作者 王有建 徐车 《情报理论与实践》 北大核心 2025年第8期11-20,共10页
[目的/意义]在线社交网络中谣言的大规模传播极易引发公众恐慌与决策偏差,明晰其网络拓扑结构与传播机制对于舆情控制具有重要理论和实践意义。[方法/过程]提出融合超图结构的演化博弈网络谣言传播模型。首先,通过超图刻画在线社交网络... [目的/意义]在线社交网络中谣言的大规模传播极易引发公众恐慌与决策偏差,明晰其网络拓扑结构与传播机制对于舆情控制具有重要理论和实践意义。[方法/过程]提出融合超图结构的演化博弈网络谣言传播模型。首先,通过超图刻画在线社交网络中好友及社群关系;其次,将传统的传染病SIR模型中的感染者细分为谣言传播者(I态)与谣言驳斥者(T态),以更精细地模拟信息传播过程;再次,综合考虑个体内部与外部因素,构建其面对谣言传播时的演化博弈收益函数,刻画I态与T态间的动态博弈机制;最后,通过“核污水排海影响我国食盐安全”事件的案例分析与蒙特卡罗仿真模拟,验证该模型适用性与有效性。[结果/结论]网络社群规模、数量的增大会显著扩大网络谣言传播规模;网络社群影响力的增加则会加剧谣言传播过程中的群体极化现象;个体谣言辨识能力对抑制谣言传播态势具有显著影响。融合超图的演化博弈网络谣言传播模型不仅能有效表征现实社交网络的复杂交互关系,还可较为准确地模拟信息传播与演化过程。[创新/局限]超图理论更好地刻画了社交网络拓扑结构,提出了基于传统SIR模型改进的SITR谣言传播模型,引入演化博弈理论来描述网络用户在舆情事件中的博弈过程。当前模型未充分考虑社群中角色异质性及节点关系的动态演化特征,简化了社群对个体博弈行为的影响。未来研究可引入节点连边断联与重构机制,构建动态超图社交网络,以更真实刻画信息传播过程。 展开更多
关键词 超图 谣言传播 演化博弈 SIR模型 社交网络
原文传递
基于超图神经网络的多尺度信息传播预测模型
19
作者 赵敬华 张柱 +1 位作者 吕锡婷 林慧丹 《计算机应用》 北大核心 2025年第11期3529-3539,共11页
针对现有多尺度信息传播预测模型忽略了级联传播的动态性,以及独立进行微观信息预测时性能有待提高的问题,提出基于超图神经网络的多尺度信息传播预测模型(MIDHGNN)。首先,使用图卷积网络(GCN)提取社交网络图中蕴含的用户社交关系特征,... 针对现有多尺度信息传播预测模型忽略了级联传播的动态性,以及独立进行微观信息预测时性能有待提高的问题,提出基于超图神经网络的多尺度信息传播预测模型(MIDHGNN)。首先,使用图卷积网络(GCN)提取社交网络图中蕴含的用户社交关系特征,使用超图神经网络(HGNN)提取传播级联图中蕴含的用户全局偏好特征,并融合这2类特征进行微观信息传播预测;其次,利用门控循环单元(GRU)连续预测传播用户,直至虚拟用户;再次,将每次预测所得用户总数作为级联的最终规模,完成宏观信息传播预测;最后,在模型中嵌入强化学习(RL)框架,采用策略梯度方法优化参数,提升宏观信息传播预测性能。在微观信息传播预测方面,相较于次优模型,MIDHGNN在Twitter、Douban、Android数据集上的Hits@k指标分别平均提升12.01%、11.64%、9.74%,mAP@k指标分别平均提升31.31%、14.85%、13.24%;在宏观预测方面,MIDHGNN在这3个数据集上的均方对数误差(MSLE)指标分别最少降低8.10%、12.61%、3.24%,各项指标均显著优于对比模型,验证了它的有效性。 展开更多
关键词 信息传播预测 图卷积网络 超图神经网络 强化学习 多尺度
在线阅读 下载PDF
基于超图卷积和多角度拓扑细化的骨骼行为识别方法
20
作者 黄倩 苏新凯 +1 位作者 李畅 巫义锐 《计算机科学》 北大核心 2025年第5期220-226,共7页
由于人体骨架是一个天然存在的拓扑结构,因此图卷积网络(GCNs)被广泛地应用于基于骨骼的人体行为识别。然而,目前的基于GCN的方法只关注关节点对之间的低阶关系,而忽略了潜在的关节点在关节点群中的高阶关系。同时,现有的方法忽略了空... 由于人体骨架是一个天然存在的拓扑结构,因此图卷积网络(GCNs)被广泛地应用于基于骨骼的人体行为识别。然而,目前的基于GCN的方法只关注关节点对之间的低阶关系,而忽略了潜在的关节点在关节点群中的高阶关系。同时,现有的方法忽略了空间拓扑随时间的动态变化。这些不足影响了模型的表现。为此,利用K-NN计算出相关性高的关节点构成超边,提出了超图构建方法和超边图卷积来动态地学习关节点间的高阶关系。此外,设计了一个从时间和通道角度细化的拓扑图来学习帧级的和通道级的关节点对之间的相关性。最后,开发了一个多角度拓扑细化的超图卷积网络(HyperMTR-GCN)用于骨骼行为识别,其在NTU RGB+D和NTU RGB+D 120数据集上具有显著优势。具体地,所提方法在NTU RGB+D的X-sub基准上比2s-AGCN提高了3.7%,在NTU RGB+D 120的X-sub基准上比2s-AGCN提高了5.7%。 展开更多
关键词 行为识别 图卷积网络 超图神经网络 骨架建模 拓扑细化
在线阅读 下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部