The real-time identification of dynamic parameters is importantfor the control system of spacecraft. The eigensystme realizationalgorithm (ERA) is currently the typical method for such applica-tion. In order to identi...The real-time identification of dynamic parameters is importantfor the control system of spacecraft. The eigensystme realizationalgorithm (ERA) is currently the typical method for such applica-tion. In order to identify the dynamic parameter of spacecraftrapidly and accurately, an accelerated ERA with a partial singularvalues decomposition (PSVD) algorithm is presented. In the PSVD, theHankel matrix is reduced to dual diagonal form first, and thentransformed into a tridiagonal matrix.展开更多
In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are co...In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are considered for identification. In the case of state measurement, an identification algorithm based on the singular value decomposition(SVD) is developed to estimate the model parameter matrices by using the least-squares fitting. In the case of output measurement only, another identification algorithm is given by combining the SVD approach with a hierarchical identification strategy. An example is used to demonstrate the effectiveness of the proposed identification method.展开更多
The generalized singular value decomposition(GSVD)of two matrices with the same number of columns is a very useful tool in many practical applications.However,the GSVD may suffer from heavy computational time and memo...The generalized singular value decomposition(GSVD)of two matrices with the same number of columns is a very useful tool in many practical applications.However,the GSVD may suffer from heavy computational time and memory requirement when the scale of the matrices is quite large.In this paper,we use random projections to capture the most of the action of the matrices and propose randomized algorithms for computing a low-rank approximation of the GSVD.Serval error bounds of the approximation are also presented for the proposed randomized algorithms.Finally,some experimental results show that the proposed randomized algorithms can achieve a good accuracy with less computational cost and storage requirement.展开更多
A new method, SVD-TLS extending Prony algorithm, is introduced for extracting UWB radar target features. The method is a modified classical Prony method based on singular value decomposition and total least squares th...A new method, SVD-TLS extending Prony algorithm, is introduced for extracting UWB radar target features. The method is a modified classical Prony method based on singular value decomposition and total least squares that can improve robust for spectrum estimation. Simulation results show that poles and residuum of target echo can be extracted effectively using this method, and at the same time, random noises can be restrained to some degree. It is applicable for target feature extraction such as UWB radar or other high resolution range radars.展开更多
This paper presents a new digital image blind watermarking algorithm based on combination of discrete wavelet transform (DWT) and singular value decomposition (SVD). First of all, we make wavelet decomposition for...This paper presents a new digital image blind watermarking algorithm based on combination of discrete wavelet transform (DWT) and singular value decomposition (SVD). First of all, we make wavelet decomposition for the original image and divide the acquired low frequency sub-band into blocks. Then we make singular value decomposition for each block and embed the watermark information in the largest singular value by quantitative method. The watermark can be extracted without the original image. The experimental results show that the algorithm has a good imperceptibility and robustness.展开更多
To avoid drawbacks of classic discrete Fourier transform(DFT)method,modern spectral estimation theory was introduced into harmonics and inter-harmonics analysis in electric power system.Idea of the subspace-based root...To avoid drawbacks of classic discrete Fourier transform(DFT)method,modern spectral estimation theory was introduced into harmonics and inter-harmonics analysis in electric power system.Idea of the subspace-based root-min-norm algorithm was described,but it is susceptive to noises with unstable performance in different SNRs.So the modified root-min-norm algorithm based on cross-spectral estimation was proposed,utilizing cross-correlation matrix and independence of different Gaussian noise series.Lots of simulation experiments were carried out to test performance of the algorithm in different conditions,and its statistical characteristics was presented.Simulation results show that the modified algorithm can efficiently suppress influence of the noises,and has high frequency resolution,high precision and high stability,and it is much superior to the classic DFT method.展开更多
文摘The real-time identification of dynamic parameters is importantfor the control system of spacecraft. The eigensystme realizationalgorithm (ERA) is currently the typical method for such applica-tion. In order to identify the dynamic parameter of spacecraftrapidly and accurately, an accelerated ERA with a partial singularvalues decomposition (PSVD) algorithm is presented. In the PSVD, theHankel matrix is reduced to dual diagonal form first, and thentransformed into a tridiagonal matrix.
基金Supported in part by the National Thousand Talents Program of Chinathe National Natural Science Foundation of China(61473054)the Fundamental Research Funds for the Central Universities of China
文摘In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are considered for identification. In the case of state measurement, an identification algorithm based on the singular value decomposition(SVD) is developed to estimate the model parameter matrices by using the least-squares fitting. In the case of output measurement only, another identification algorithm is given by combining the SVD approach with a hierarchical identification strategy. An example is used to demonstrate the effectiveness of the proposed identification method.
基金supported by the National Natural Science Foundation of China under Grant nos.11701409 and 11571171the Natural Science Foundation of Jiangsu Province of China under Grant BK20170591the Natural Science Foundation of Jiangsu Higher Education Institutions of China under Grant 17KJB110018.
文摘The generalized singular value decomposition(GSVD)of two matrices with the same number of columns is a very useful tool in many practical applications.However,the GSVD may suffer from heavy computational time and memory requirement when the scale of the matrices is quite large.In this paper,we use random projections to capture the most of the action of the matrices and propose randomized algorithms for computing a low-rank approximation of the GSVD.Serval error bounds of the approximation are also presented for the proposed randomized algorithms.Finally,some experimental results show that the proposed randomized algorithms can achieve a good accuracy with less computational cost and storage requirement.
文摘A new method, SVD-TLS extending Prony algorithm, is introduced for extracting UWB radar target features. The method is a modified classical Prony method based on singular value decomposition and total least squares that can improve robust for spectrum estimation. Simulation results show that poles and residuum of target echo can be extracted effectively using this method, and at the same time, random noises can be restrained to some degree. It is applicable for target feature extraction such as UWB radar or other high resolution range radars.
基金Science and Technology Agency of Henan Province(No.132102210516)
文摘This paper presents a new digital image blind watermarking algorithm based on combination of discrete wavelet transform (DWT) and singular value decomposition (SVD). First of all, we make wavelet decomposition for the original image and divide the acquired low frequency sub-band into blocks. Then we make singular value decomposition for each block and embed the watermark information in the largest singular value by quantitative method. The watermark can be extracted without the original image. The experimental results show that the algorithm has a good imperceptibility and robustness.
基金Shandong University of Science and Technology Research Fund(No.2010KYTD101)
文摘To avoid drawbacks of classic discrete Fourier transform(DFT)method,modern spectral estimation theory was introduced into harmonics and inter-harmonics analysis in electric power system.Idea of the subspace-based root-min-norm algorithm was described,but it is susceptive to noises with unstable performance in different SNRs.So the modified root-min-norm algorithm based on cross-spectral estimation was proposed,utilizing cross-correlation matrix and independence of different Gaussian noise series.Lots of simulation experiments were carried out to test performance of the algorithm in different conditions,and its statistical characteristics was presented.Simulation results show that the modified algorithm can efficiently suppress influence of the noises,and has high frequency resolution,high precision and high stability,and it is much superior to the classic DFT method.