In this context, we mainly study the behavior in the neighborhood of finite singular points for k-regular functions in R1^n with values in R0、n. We get a Laurent expansion of them in an open set, prove its uniqueness...In this context, we mainly study the behavior in the neighborhood of finite singular points for k-regular functions in R1^n with values in R0、n. We get a Laurent expansion of them in an open set, prove its uniqueness, give the definitions of k-poles, isolated and essential singular points and removable singularity, discuss some properties, and further obtain the residue theorems.展开更多
We consider the following quasiconvex functional I(u)=∫ Gf(x,δu,D mu) d x where u is a vector valued function in W m,p (G),m>1 and p>2. The partial C m,a —regularity is proved fo...We consider the following quasiconvex functional I(u)=∫ Gf(x,δu,D mu) d x where u is a vector valued function in W m,p (G),m>1 and p>2. The partial C m,a —regularity is proved for minimizers of I(u) under weaker conditions.展开更多
Let and denote respectively the functionswhere λ≥1, The author discusses the similarity transformation of the regularizing functionals of these functions and the similar property of their Fourier transformation.
By defining fuzzy valued simple functions and giving L1(μ) approximations of fuzzy valued integrably bounded functions by such simple functions, the paper analyses by L1(μ)-norm the approximation capability of four-...By defining fuzzy valued simple functions and giving L1(μ) approximations of fuzzy valued integrably bounded functions by such simple functions, the paper analyses by L1(μ)-norm the approximation capability of four-layer feedforward regular fuzzy neural networks to the fuzzy valued integrably bounded function F : Rn → FcO(R). That is, if the transfer functionσ: R→R is non-polynomial and integrable function on each finite interval, F may be innorm approximated by fuzzy valued functions defined as to anydegree of accuracy. Finally some real examples demonstrate the conclusions.展开更多
Kernel-based methods work by embedding the data into a feature space and then searching linear hypothesis among the embedding data points. The performance is mostly affected by which kernel is used. A promising way is...Kernel-based methods work by embedding the data into a feature space and then searching linear hypothesis among the embedding data points. The performance is mostly affected by which kernel is used. A promising way is to learn the kernel from the data automatically. A general regularized risk functional (RRF) criterion for kernel matrix learning is proposed. Compared with the RRF criterion, general RRF criterion takes into account the geometric distributions of the embedding data points. It is proven that the distance between different geometric distdbutions can be estimated by their centroid distance in the reproducing kernel Hilbert space. Using this criterion for kernel matrix learning leads to a convex quadratically constrained quadratic programming (QCQP) problem. For several commonly used loss functions, their mathematical formulations are given. Experiment results on a collection of benchmark data sets demonstrate the effectiveness of the proposed method.展开更多
The application of Tikhonov regularization method dealing with the ill-conditioned problems in the regional gravity field modeling by Poisson wavelets is studied. In particular, the choices of the regularization matri...The application of Tikhonov regularization method dealing with the ill-conditioned problems in the regional gravity field modeling by Poisson wavelets is studied. In particular, the choices of the regularization matrices as well as the approaches for estimating the regularization parameters are investigated in details. The numerical results show that the regularized solutions derived from the first-order regularization are better than the ones obtained from zero-order regularization. For cross validation, the optimal regularization parameters are estimated from L-curve, variance component estimation(VCE) and minimum standard deviation(MSTD) approach, respectively, and the results show that the derived regularization parameters from different methods are consistent with each other. Together with the firstorder Tikhonov regularization and VCE method, the optimal network of Poisson wavelets is derived, based on which the local gravimetric geoid is computed. The accuracy of the corresponding gravimetric geoid reaches 1.1 cm in Netherlands, which validates the reliability of using Tikhonov regularization method in tackling the ill-conditioned problem for regional gravity field modeling.展开更多
<strong>Objective:</strong> To evaluate the correlation between residual renal function and hypertension in regular haemodialysis patients. <strong>Background:</strong> Initiating chronic dialy...<strong>Objective:</strong> To evaluate the correlation between residual renal function and hypertension in regular haemodialysis patients. <strong>Background:</strong> Initiating chronic dialysis treatment gives end-stage renal disease patients a new lease on life. However, the annual mortality rate in dialysis patients is ~20% and quality of life is substantially reduced. <strong>Patients and Methods:</strong> This study was carried out on a reasonable number of subjects on regular haemodialysis divided into two groups. All were given informed consent and, the study was approved by the ethics committee of Menoufia University. <strong>Results:</strong> There was significant relation between presence of residual renal function and hypertension in patients with ESRD on regular haemodialysis, but the relation between residual renal function and control of hypertension is not statistically significant. 40% of group 1 were hypertensive, 66.7% of group 2 patients were hypertensive, the interdialytic weight gain mean was 1.42 in group 1 and 2.37 in group 2. Control of hypertension was achieved in 63.6% of group 1 patients by one drug, 27.3% patients by 2 drugs;however 9.1% of patients need 3 drugs to control their blood pressure, while in group 2 40% of patients were controlled by one drug, 45% with 2 drugs and 15% need 3 drugs to control blood pressure. <strong>Conclusion:</strong> There is significant relation between presence of residual renal function and hypertension in patients with ESRD on regular haemodialysis, but the relation between residual renal function and control of hypertension is not statistically significant.展开更多
Currently,functional connectomes constructed from neuroimaging data have emerged as a powerful tool in identifying brain disorders.If one brain disease just manifests as some cognitive dysfunction,it means that the di...Currently,functional connectomes constructed from neuroimaging data have emerged as a powerful tool in identifying brain disorders.If one brain disease just manifests as some cognitive dysfunction,it means that the disease may affect some local connectivity in the brain functional network.That is,there are functional abnormalities in the sub-network.Therefore,it is crucial to accurately identify them in pathological diagnosis.To solve these problems,we proposed a sub-network extraction method based on graph regularization nonnegative matrix factorization(GNMF).The dynamic functional networks of normal subjects and early mild cognitive impairment(eMCI)subjects were vectorized and the functional connection vectors(FCV)were assembled to aggregation matrices.Then GNMF was applied to factorize the aggregation matrix to get the base matrix,in which the column vectors were restored to a common sub-network and a distinctive sub-network,and visualization and statistical analysis were conducted on the two sub-networks,respectively.Experimental results demonstrated that,compared with other matrix factorization methods,the proposed method can more obviously reflect the similarity between the common subnetwork of eMCI subjects and normal subjects,as well as the difference between the distinctive sub-network of eMCI subjects and normal subjects,Therefore,the high-dimensional features in brain functional networks can be best represented locally in the lowdimensional space,which provides a new idea for studying brain functional connectomes.展开更多
The classical elastic impedance (EI) inversion method, however, is based on the L2-norm misfit function and considerably sensitive to outliers, assuming the noise of the seismic data to be the Guassian-distribution....The classical elastic impedance (EI) inversion method, however, is based on the L2-norm misfit function and considerably sensitive to outliers, assuming the noise of the seismic data to be the Guassian-distribution. So we have developed a more robust elastic impedance inversion based on the Ll-norm misfit function, and the noise is assumed to be non-Gaussian. Meanwhile, some regularization methods including the sparse constraint regularization and elastic impedance point constraint regularization are incorporated to improve the ill-posed characteristics of the seismic inversion problem. Firstly, we create the Ll-norm misfit objective function of pre-stack inversion problem based on the Bayesian scheme within the sparse constraint regularization and elastic impedance point constraint regularization. And then, we obtain more robust elastic impedances of different angles which are less sensitive to outliers in seismic data by using the IRLS strategy. Finally, we extract the P-wave and S-wave velocity and density by using the more stable parameter extraction method. Tests on synthetic data show that the P-wave and S-wave velocity and density parameters are still estimated reasonable with moderate noise. A test on the real data set shows that compared to the results of the classical elastic impedance inversion method, the estimated results using the proposed method can get better lateral continuity and more distinct show of the gas, verifying the feasibility and stability of the method.展开更多
In this paper, we mainly discuss the problem of estimating the n-th derivative for bounded regular vanishing functions. The estimation of the n-th derivative for the function is deduced by the 1-th and 2-th derivative.
Let Z(λ,G)denote the zeta function of a graph G.In this paper the complement G^Cand the G^(xyz)-transformation G^(xyz)of an r-regular graph G with n vertices and m edges for x,y,z∈{0,1,+,-},are considerd.The relatio...Let Z(λ,G)denote the zeta function of a graph G.In this paper the complement G^Cand the G^(xyz)-transformation G^(xyz)of an r-regular graph G with n vertices and m edges for x,y,z∈{0,1,+,-},are considerd.The relationship between Z(λ,G)and Z(λ,G^C)is obtained.For all x,y,z∈{0,1,+,-},the explicit formulas for the reciprocal of Z(λ,G^(xyz))in terms of r,m,n and the characteristic polynomial of G are obtained.Due to limited space,only the expressions for G^(xyz)with z=0,and xyz∈{0++,+++,1+-}are presented here.展开更多
The functions studied in the paper are the quaternion-valued functions of a quaternionic variable.It is shown that the left slice regular functions and right slice regular functions are related by a particular involut...The functions studied in the paper are the quaternion-valued functions of a quaternionic variable.It is shown that the left slice regular functions and right slice regular functions are related by a particular involution,and that the intrinsic slice regular functions play a central role in the theory of slice regular functions.The relation between left slice regular functions,right slice regular functions and intrinsic slice regular functions is revealed.As an application,the classical Laplace transform is generalized naturally to quaternions in two different ways,which transform a quaternion-valued function of a real variable to a left or right slice regular function.The usual properties of the classical Laplace transforms are generalized to quaternionic Laplace transforms.展开更多
There is little work concerning the properties of quaternionic operators acting on slice regular function spaces defined on quaternions.In this paper,we present an equivalent characterization for the boundedness of th...There is little work concerning the properties of quaternionic operators acting on slice regular function spaces defined on quaternions.In this paper,we present an equivalent characterization for the boundedness of the product operator C_(φ)D^(m) acting on Bloch-type spaces of slice regular functions.After that,an equivalent estimation for its essential norm is established,which can imply several existing results on holomorphic spaces.展开更多
In this paper, the ill-posedness of derivative interpolation is discussed, and a regularized derivative interpolation for non-bandlimited signals is presented. The convergence of the regularized derivative interpolati...In this paper, the ill-posedness of derivative interpolation is discussed, and a regularized derivative interpolation for non-bandlimited signals is presented. The convergence of the regularized derivative interpolation is studied. The numerical results are given and compared with derivative interpolation using the Tikhonov regularization method. The regularized derivative interpolation in this paper is more accurate in computation.展开更多
In this paper, α-times integrated C-regularized cosine functions and mild α-times integrated C-existence families of second order are introduced. Equivalences are proved among α-times integrated C-regularized cosin...In this paper, α-times integrated C-regularized cosine functions and mild α-times integrated C-existence families of second order are introduced. Equivalences are proved among α-times integrated C-regularized cosine function for a linear operator A, C-wellposed of (α+1)-times abstract Cauchy problem and mild a -times integrated C-existence family of second order for A when the commutable condition is satisfied. In addition, if A = C-1AC, they are also equivalent to A generating the α -times integrated C-regularized cosine function. The characterization of an exponentially bounded mild α -times integrated C-existence family of second order is given out in terms of a Laplace transform.展开更多
The structure and function of brain networks have been altered in patients with end-stage renal disease(ESRD).Manifold regularization(MR)only considers the pairing relationship between two brain regions and cannot rep...The structure and function of brain networks have been altered in patients with end-stage renal disease(ESRD).Manifold regularization(MR)only considers the pairing relationship between two brain regions and cannot represent functional interactions or higher-order relationships between multiple brain regions.To solve this issue,we developed a method to construct a dynamic brain functional network(DBFN)based on dynamic hypergraph MR(DHMR)and applied it to the classification of ESRD associated with mild cognitive impairment(ESRDaMCI).The construction of DBFN with Pearson’s correlation(PC)was transformed into an optimization model.Node convolution and hyperedge convolution superposition were adopted to dynamically modify the hypergraph structure,and then got the dynamic hypergraph to form the manifold regular terms of the dynamic hypergraph.The DHMR and L_(1) norm regularization were introduced into the PC-based optimization model to obtain the final DHMR-based DBFN(DDBFN).Experiment results demonstrated the validity of the DDBFN method by comparing the classification results with several related brain functional network construction methods.Our work not only improves better classification performance but also reveals the discriminative regions of ESRDaMCI,providing a reference for clinical research and auxiliary diagnosis of concomitant cognitive impairments.展开更多
The existing multi-view subspace clustering algorithms based on tensor singular value decomposition(t-SVD)predominantly utilize tensor nuclear norm to explore the intra view correlation between views of the same sampl...The existing multi-view subspace clustering algorithms based on tensor singular value decomposition(t-SVD)predominantly utilize tensor nuclear norm to explore the intra view correlation between views of the same samples,while neglecting the correlation among the samples within different views.Moreover,the tensor nuclear norm is not fully considered as a convex approximation of the tensor rank function.Treating different singular values equally may result in suboptimal tensor representation.A hypergraph regularized multi-view subspace clustering algorithm with dual tensor log-determinant(HRMSC-DTL)was proposed.The algorithm used subspace learning in each view to learn a specific set of affinity matrices,and introduced a non-convex tensor log-determinant function to replace the tensor nuclear norm to better improve global low-rankness.It also introduced hyper-Laplacian regularization to preserve the local geometric structure embedded in the high-dimensional space.Furthermore,it rotated the original tensor and incorporated a dual tensor mechanism to fully exploit the intra view correlation of the original tensor and the inter view correlation of the rotated tensor.At the same time,an alternating direction of multipliers method(ADMM)was also designed to solve non-convex optimization model.Experimental evaluations on seven widely used datasets,along with comparisons to several state-of-the-art algorithms,demonstrated the superiority and effectiveness of the HRMSC-DTL algorithm in terms of clustering performance.展开更多
Given that vascular calcification is inversely correlated with the clinical intake of menaquinone, a rat model of warfarin-induced calcification may be useful for testing menaquinone and vitamin K-1 potential effects ...Given that vascular calcification is inversely correlated with the clinical intake of menaquinone, a rat model of warfarin-induced calcification may be useful for testing menaquinone and vitamin K-1 potential effects on vascular function. The aim of the present study was to investigate effects of vitamin K-1 and menaquinone-7 treatments on blood pressure and vascular function in warfarin-induced vascular calcification model during five-week intervention in normotensive Wistar-Kyoto rats. Blood pressure was measured weekly, and at the end of the intervention in vitro vascular reactivity measurements were done. Alizarin Red S and von Kossa stainings were used to record possible calcification of aortic sections. Routine clinical chemistry was done from serum and urine samples. Vascular calcification was seen only in a few warfarin-treated animals in histological staining. Warfarin-treatment did not change significantly blood pressure of the rats. Warfarin-treatment increased slightly the endothelium-dependent relaxation of aorta after the L-type calcium channels were blocked. Also the vascular relaxation improved after NOS inhibition in the aorta of the healthy controls and menaquinone-7 treated animals, indicating that the relaxation in those groups was not totally dependent on NO. Clinical chemistry from serum showed some differences in urea, creatinine as well as lipid and glucose metabolism between the healthy controls and warfarin-treated rats.展开更多
基金Supported by the National Natural Science Foundation of China (10471107)the Specialized Research Fund for the Doctoral Program of Higher Education of China (20060486001)
文摘In this context, we mainly study the behavior in the neighborhood of finite singular points for k-regular functions in R1^n with values in R0、n. We get a Laurent expansion of them in an open set, prove its uniqueness, give the definitions of k-poles, isolated and essential singular points and removable singularity, discuss some properties, and further obtain the residue theorems.
文摘We consider the following quasiconvex functional I(u)=∫ Gf(x,δu,D mu) d x where u is a vector valued function in W m,p (G),m>1 and p>2. The partial C m,a —regularity is proved for minimizers of I(u) under weaker conditions.
文摘Let and denote respectively the functionswhere λ≥1, The author discusses the similarity transformation of the regularizing functionals of these functions and the similar property of their Fourier transformation.
基金Supported by the National Natural Science Foundation of China(No:69872039)
文摘By defining fuzzy valued simple functions and giving L1(μ) approximations of fuzzy valued integrably bounded functions by such simple functions, the paper analyses by L1(μ)-norm the approximation capability of four-layer feedforward regular fuzzy neural networks to the fuzzy valued integrably bounded function F : Rn → FcO(R). That is, if the transfer functionσ: R→R is non-polynomial and integrable function on each finite interval, F may be innorm approximated by fuzzy valued functions defined as to anydegree of accuracy. Finally some real examples demonstrate the conclusions.
基金supported by the National Natural Science Fundation of China (60736021)the Joint Funds of NSFC-Guangdong Province(U0735003)
文摘Kernel-based methods work by embedding the data into a feature space and then searching linear hypothesis among the embedding data points. The performance is mostly affected by which kernel is used. A promising way is to learn the kernel from the data automatically. A general regularized risk functional (RRF) criterion for kernel matrix learning is proposed. Compared with the RRF criterion, general RRF criterion takes into account the geometric distributions of the embedding data points. It is proven that the distance between different geometric distdbutions can be estimated by their centroid distance in the reproducing kernel Hilbert space. Using this criterion for kernel matrix learning leads to a convex quadratically constrained quadratic programming (QCQP) problem. For several commonly used loss functions, their mathematical formulations are given. Experiment results on a collection of benchmark data sets demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (Nos.41374023,41131067,41474019)the National 973 Project of China (No.2013CB733302)+2 种基金the China Postdoctoral Science Foundation (No.2016M602301)the Key Laboratory of Geospace Envi-ronment and Geodesy,Ministry of Education,Wuhan University (No.15-02-08)the State Scholarship Fund from Chinese Scholarship Council (No.201306270014)
文摘The application of Tikhonov regularization method dealing with the ill-conditioned problems in the regional gravity field modeling by Poisson wavelets is studied. In particular, the choices of the regularization matrices as well as the approaches for estimating the regularization parameters are investigated in details. The numerical results show that the regularized solutions derived from the first-order regularization are better than the ones obtained from zero-order regularization. For cross validation, the optimal regularization parameters are estimated from L-curve, variance component estimation(VCE) and minimum standard deviation(MSTD) approach, respectively, and the results show that the derived regularization parameters from different methods are consistent with each other. Together with the firstorder Tikhonov regularization and VCE method, the optimal network of Poisson wavelets is derived, based on which the local gravimetric geoid is computed. The accuracy of the corresponding gravimetric geoid reaches 1.1 cm in Netherlands, which validates the reliability of using Tikhonov regularization method in tackling the ill-conditioned problem for regional gravity field modeling.
文摘<strong>Objective:</strong> To evaluate the correlation between residual renal function and hypertension in regular haemodialysis patients. <strong>Background:</strong> Initiating chronic dialysis treatment gives end-stage renal disease patients a new lease on life. However, the annual mortality rate in dialysis patients is ~20% and quality of life is substantially reduced. <strong>Patients and Methods:</strong> This study was carried out on a reasonable number of subjects on regular haemodialysis divided into two groups. All were given informed consent and, the study was approved by the ethics committee of Menoufia University. <strong>Results:</strong> There was significant relation between presence of residual renal function and hypertension in patients with ESRD on regular haemodialysis, but the relation between residual renal function and control of hypertension is not statistically significant. 40% of group 1 were hypertensive, 66.7% of group 2 patients were hypertensive, the interdialytic weight gain mean was 1.42 in group 1 and 2.37 in group 2. Control of hypertension was achieved in 63.6% of group 1 patients by one drug, 27.3% patients by 2 drugs;however 9.1% of patients need 3 drugs to control their blood pressure, while in group 2 40% of patients were controlled by one drug, 45% with 2 drugs and 15% need 3 drugs to control blood pressure. <strong>Conclusion:</strong> There is significant relation between presence of residual renal function and hypertension in patients with ESRD on regular haemodialysis, but the relation between residual renal function and control of hypertension is not statistically significant.
基金supported by the National Natural Science Foundation of China(No.51877013),(ZJ),(http://www.nsfc.gov.cn/)the Natural Science Foundation of Jiangsu Province(No.BK20181463),(ZJ),(http://kxjst.jiangsu.gov.cn/)sponsored by Qing Lan Project of Jiangsu Province(no specific grant number),(ZJ),(http://jyt.jiangsu.gov.cn/).
文摘Currently,functional connectomes constructed from neuroimaging data have emerged as a powerful tool in identifying brain disorders.If one brain disease just manifests as some cognitive dysfunction,it means that the disease may affect some local connectivity in the brain functional network.That is,there are functional abnormalities in the sub-network.Therefore,it is crucial to accurately identify them in pathological diagnosis.To solve these problems,we proposed a sub-network extraction method based on graph regularization nonnegative matrix factorization(GNMF).The dynamic functional networks of normal subjects and early mild cognitive impairment(eMCI)subjects were vectorized and the functional connection vectors(FCV)were assembled to aggregation matrices.Then GNMF was applied to factorize the aggregation matrix to get the base matrix,in which the column vectors were restored to a common sub-network and a distinctive sub-network,and visualization and statistical analysis were conducted on the two sub-networks,respectively.Experimental results demonstrated that,compared with other matrix factorization methods,the proposed method can more obviously reflect the similarity between the common subnetwork of eMCI subjects and normal subjects,as well as the difference between the distinctive sub-network of eMCI subjects and normal subjects,Therefore,the high-dimensional features in brain functional networks can be best represented locally in the lowdimensional space,which provides a new idea for studying brain functional connectomes.
基金Projects(U1562215,41674130,41404088)supported by the National Natural Science Foundation of ChinaProjects(2013CB228604,2014CB239201)supported by the National Basic Research Program of China+1 种基金Projects(2016ZX05027004-001,2016ZX05002006-009)supported by the National Oil and Gas Major Projects of ChinaProject(15CX08002A)supported by the Fundamental Research Funds for the Central Universities,China
文摘The classical elastic impedance (EI) inversion method, however, is based on the L2-norm misfit function and considerably sensitive to outliers, assuming the noise of the seismic data to be the Guassian-distribution. So we have developed a more robust elastic impedance inversion based on the Ll-norm misfit function, and the noise is assumed to be non-Gaussian. Meanwhile, some regularization methods including the sparse constraint regularization and elastic impedance point constraint regularization are incorporated to improve the ill-posed characteristics of the seismic inversion problem. Firstly, we create the Ll-norm misfit objective function of pre-stack inversion problem based on the Bayesian scheme within the sparse constraint regularization and elastic impedance point constraint regularization. And then, we obtain more robust elastic impedances of different angles which are less sensitive to outliers in seismic data by using the IRLS strategy. Finally, we extract the P-wave and S-wave velocity and density by using the more stable parameter extraction method. Tests on synthetic data show that the P-wave and S-wave velocity and density parameters are still estimated reasonable with moderate noise. A test on the real data set shows that compared to the results of the classical elastic impedance inversion method, the estimated results using the proposed method can get better lateral continuity and more distinct show of the gas, verifying the feasibility and stability of the method.
文摘In this paper, we mainly discuss the problem of estimating the n-th derivative for bounded regular vanishing functions. The estimation of the n-th derivative for the function is deduced by the 1-th and 2-th derivative.
基金National Natural Science Foundation of China(No.11671258)
文摘Let Z(λ,G)denote the zeta function of a graph G.In this paper the complement G^Cand the G^(xyz)-transformation G^(xyz)of an r-regular graph G with n vertices and m edges for x,y,z∈{0,1,+,-},are considerd.The relationship between Z(λ,G)and Z(λ,G^C)is obtained.For all x,y,z∈{0,1,+,-},the explicit formulas for the reciprocal of Z(λ,G^(xyz))in terms of r,m,n and the characteristic polynomial of G are obtained.Due to limited space,only the expressions for G^(xyz)with z=0,and xyz∈{0++,+++,1+-}are presented here.
基金supported by NSFC(12071422)Zhejiang Province Science Foundation of China(LY14A010018)。
文摘The functions studied in the paper are the quaternion-valued functions of a quaternionic variable.It is shown that the left slice regular functions and right slice regular functions are related by a particular involution,and that the intrinsic slice regular functions play a central role in the theory of slice regular functions.The relation between left slice regular functions,right slice regular functions and intrinsic slice regular functions is revealed.As an application,the classical Laplace transform is generalized naturally to quaternions in two different ways,which transform a quaternion-valued function of a real variable to a left or right slice regular function.The usual properties of the classical Laplace transforms are generalized to quaternionic Laplace transforms.
基金supported by the National Natural Science Foundation of China(11701422).
文摘There is little work concerning the properties of quaternionic operators acting on slice regular function spaces defined on quaternions.In this paper,we present an equivalent characterization for the boundedness of the product operator C_(φ)D^(m) acting on Bloch-type spaces of slice regular functions.After that,an equivalent estimation for its essential norm is established,which can imply several existing results on holomorphic spaces.
文摘In this paper, the ill-posedness of derivative interpolation is discussed, and a regularized derivative interpolation for non-bandlimited signals is presented. The convergence of the regularized derivative interpolation is studied. The numerical results are given and compared with derivative interpolation using the Tikhonov regularization method. The regularized derivative interpolation in this paper is more accurate in computation.
基金This project is supported by the Natural Science Foundation of China and Science Development Foundation of the Colleges and University of Shanghai.
文摘In this paper, α-times integrated C-regularized cosine functions and mild α-times integrated C-existence families of second order are introduced. Equivalences are proved among α-times integrated C-regularized cosine function for a linear operator A, C-wellposed of (α+1)-times abstract Cauchy problem and mild a -times integrated C-existence family of second order for A when the commutable condition is satisfied. In addition, if A = C-1AC, they are also equivalent to A generating the α -times integrated C-regularized cosine function. The characterization of an exponentially bounded mild α -times integrated C-existence family of second order is given out in terms of a Laplace transform.
基金The questions were posed during B. de Pagter was visiting the Queen's University of Belfast in Spring 1997, whilst the second author stayed at Belfast
文摘In this paper we present some characterizations of Banach function spaces on which every continuous linear operator is regular.
基金supported by the National Natural Science Foundation of China (No.51877013),(ZJ),(http://www.nsfc.gov.cn/)the Jiangsu Provincial Key Research and Development Program (No.BE2021636),(ZJ),(http://kxjst.jiangsu.gov.cn/)+1 种基金the Science and Technology Project of Changzhou City (No.CE20205056),(ZJ),(http://kjj.changzhou.gov.cn/)by Qing Lan Project of Jiangsu Province (no specific grant number),(ZJ),(http://jyt.jiangsu.gov.cn/).
文摘The structure and function of brain networks have been altered in patients with end-stage renal disease(ESRD).Manifold regularization(MR)only considers the pairing relationship between two brain regions and cannot represent functional interactions or higher-order relationships between multiple brain regions.To solve this issue,we developed a method to construct a dynamic brain functional network(DBFN)based on dynamic hypergraph MR(DHMR)and applied it to the classification of ESRD associated with mild cognitive impairment(ESRDaMCI).The construction of DBFN with Pearson’s correlation(PC)was transformed into an optimization model.Node convolution and hyperedge convolution superposition were adopted to dynamically modify the hypergraph structure,and then got the dynamic hypergraph to form the manifold regular terms of the dynamic hypergraph.The DHMR and L_(1) norm regularization were introduced into the PC-based optimization model to obtain the final DHMR-based DBFN(DDBFN).Experiment results demonstrated the validity of the DDBFN method by comparing the classification results with several related brain functional network construction methods.Our work not only improves better classification performance but also reveals the discriminative regions of ESRDaMCI,providing a reference for clinical research and auxiliary diagnosis of concomitant cognitive impairments.
基金supported by National Natural Science Foundation of China(No.61806006)Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘The existing multi-view subspace clustering algorithms based on tensor singular value decomposition(t-SVD)predominantly utilize tensor nuclear norm to explore the intra view correlation between views of the same samples,while neglecting the correlation among the samples within different views.Moreover,the tensor nuclear norm is not fully considered as a convex approximation of the tensor rank function.Treating different singular values equally may result in suboptimal tensor representation.A hypergraph regularized multi-view subspace clustering algorithm with dual tensor log-determinant(HRMSC-DTL)was proposed.The algorithm used subspace learning in each view to learn a specific set of affinity matrices,and introduced a non-convex tensor log-determinant function to replace the tensor nuclear norm to better improve global low-rankness.It also introduced hyper-Laplacian regularization to preserve the local geometric structure embedded in the high-dimensional space.Furthermore,it rotated the original tensor and incorporated a dual tensor mechanism to fully exploit the intra view correlation of the original tensor and the inter view correlation of the rotated tensor.At the same time,an alternating direction of multipliers method(ADMM)was also designed to solve non-convex optimization model.Experimental evaluations on seven widely used datasets,along with comparisons to several state-of-the-art algorithms,demonstrated the superiority and effectiveness of the HRMSC-DTL algorithm in terms of clustering performance.
基金DuPont Nutrition Health, Finska Läkaresalskapet Finnish Clinical Chemistry Foundation
文摘Given that vascular calcification is inversely correlated with the clinical intake of menaquinone, a rat model of warfarin-induced calcification may be useful for testing menaquinone and vitamin K-1 potential effects on vascular function. The aim of the present study was to investigate effects of vitamin K-1 and menaquinone-7 treatments on blood pressure and vascular function in warfarin-induced vascular calcification model during five-week intervention in normotensive Wistar-Kyoto rats. Blood pressure was measured weekly, and at the end of the intervention in vitro vascular reactivity measurements were done. Alizarin Red S and von Kossa stainings were used to record possible calcification of aortic sections. Routine clinical chemistry was done from serum and urine samples. Vascular calcification was seen only in a few warfarin-treated animals in histological staining. Warfarin-treatment did not change significantly blood pressure of the rats. Warfarin-treatment increased slightly the endothelium-dependent relaxation of aorta after the L-type calcium channels were blocked. Also the vascular relaxation improved after NOS inhibition in the aorta of the healthy controls and menaquinone-7 treated animals, indicating that the relaxation in those groups was not totally dependent on NO. Clinical chemistry from serum showed some differences in urea, creatinine as well as lipid and glucose metabolism between the healthy controls and warfarin-treated rats.