针对传统蚁群算法在农机导航路径规划中存在前期搜索盲目、死锁、收敛速度慢、收敛路径质量低的问题,本文提出基于跳点优化蚁群算法(Jump point optimized ant colony algorithm,JPOACO)的路径规划方法。首先,使用优化跳点搜索算法对地...针对传统蚁群算法在农机导航路径规划中存在前期搜索盲目、死锁、收敛速度慢、收敛路径质量低的问题,本文提出基于跳点优化蚁群算法(Jump point optimized ant colony algorithm,JPOACO)的路径规划方法。首先,使用优化跳点搜索算法对地图进行预处理,获得简化跳点;其次,通过简化跳点对栅格地图进行信息素初始化,以加强简化跳点的引导能力和减少前期盲目搜索;接着,设计蚂蚁死亡惩罚机制,以降低陷入死锁蚂蚁走过路径的信息素,减少死锁问题的发生;再者,通过重新设计启发式信息函数并引入分级式信息素因子改进状态转移概率函数,以提高收敛速度,缩短路径长度;最后,采用路径优化策略删减不必要路径节点,以进一步缩短路径长度、提升平滑度,提高路径质量。仿真结果表明,在简单环境中,JPOACO算法求得的路径长度较传统蚁群算法和另一种优化蚁群算法短约22.6%和2.0%,收敛迭代次数、收敛时间分别减少约77.0%、77.5%和49.3%、87.8%,零死亡迭代次数和零死亡时间较后者减少约19.5%和80.5%;在复杂菠萝种植环境中,JPOACO算法较传统蚁群算法和另一种优化蚁群算法求得的路径长度短16.6%和4.7%,收敛迭代次数、收敛时间分别减少约77.1%、17.4%和73.7%、47.4%,零死亡迭代次数和零死亡时间较后者减少约34.3%和58.2%,表明本文算法具有较高的适用性和可行性。展开更多
针对跳点搜索(jump point search,JPS)算法路径存在斜向穿越障碍物、搜索过程中存在较多冗余跳点、路径拐点多且靠近障碍物的问题,提出一种安全快速的跳点搜索(safe fast jump point search,SFJPS)算法。该算法重新定义跳点判断规则,使...针对跳点搜索(jump point search,JPS)算法路径存在斜向穿越障碍物、搜索过程中存在较多冗余跳点、路径拐点多且靠近障碍物的问题,提出一种安全快速的跳点搜索(safe fast jump point search,SFJPS)算法。该算法重新定义跳点判断规则,使生成的跳点均为安全跳点,解决了路径中斜向穿越障碍物的情况;加入基于角度的搜索方向优先级判断,有效减少了搜索过程中的冗余节点,加快了搜索速度;基于Bresenham算法对路径上的跳点进行关键跳点筛选,关键跳点生成的路径拐点明显减少,贴近障碍物的路径长度大幅减小,整体路径长度也有所减小。结果表明在不同场景下本文算法相较于A*算法和JPS算法,路径长度分别最大减小了5.42%和4.48%,搜索时间分别最大缩短了98.33%和67.83%,搜索节点数最大减少了99.08%和56.72%,路径拐点数分别最大减少了90.91%和83.33%。相较于Theta*算法路径长度增加了1.17%,搜索时间缩短了91.07%,搜索节点数减少了98.9%。仿真试验证明本文算法规划速度快,路径安全且拐点更少,更加适用于移动机器人路径规划问题。展开更多
为解决柔性车间内AGV的面对动态障碍物时路径规划不准确的问题,基于位操作方法提出一种跳点搜索(Jump Point Search, JPS)的改进算法。算法采用二进制方式编码化栅格地图,实现障碍物的快速识别;通过位操作方法扩大剪枝规则的应用范围,提...为解决柔性车间内AGV的面对动态障碍物时路径规划不准确的问题,基于位操作方法提出一种跳点搜索(Jump Point Search, JPS)的改进算法。算法采用二进制方式编码化栅格地图,实现障碍物的快速识别;通过位操作方法扩大剪枝规则的应用范围,提升JPS算法中搜寻节点的效率;引入Octile距离模式对算法的启发式函数进行优化,达到降低计算复杂度,提升规划速度目的。分别将改进JPS算法与A*算法、JPS算法进行实验对比,结果表明:在复杂车间环境中,搜索时间、扩展节点数量、规划的路径同比其它两种算法都具有明显优势;在躲避动态障碍物测试中,改进型算法避障成功率为92%,躲避成功次数最高且规划的路径质量最优,同比两种算法综合性能最优。验证了算法的可行性。展开更多
随着无人车、无人机等自主移动机器人的井喷式发展,寻路算法的重要性也一再提升。跳点搜索+(jump point search plus,JPS+)算法因其显著的高搜索效率而成为了经典的静态栅格化地图寻路算法。对JPS+算法的改进策略和应用场景层出不穷,但...随着无人车、无人机等自主移动机器人的井喷式发展,寻路算法的重要性也一再提升。跳点搜索+(jump point search plus,JPS+)算法因其显著的高搜索效率而成为了经典的静态栅格化地图寻路算法。对JPS+算法的改进策略和应用场景层出不穷,但对路径长度与路径节点数量的优化方法仍有待研究。提出了一种对于强制跳点按功能性的分类方式,并基于这一分类对JPS+算法的预处理和搜索流程进行改进,在提高单次搜索扩展效率的同时,减少路径的长度与节点数。通过仿真地图实验与真实采样地图实验,验证了改进算法的有效性。对比发现:改进JPS+算法在仿真地图中,所求路径长度最大减少5.92%,路径节点数最大减少46.15%,算法用时最大减少25.58%;在真实采样地图中,所求路径长度平均减少2.48%,路径节点数平均减少10.71%,算法用时平均减少17.08%。展开更多
针对传统蚁群算法在移动机器人路径规划中存在搜索盲目性、收敛速度慢及路径转折点多等问题,提出了一种基于改进蚁群算法的移动机器人路径规划算法。首先,利用跳点搜索(Jump Point Search,JPS)算法不均匀分配初始信息素,降低蚁群前期盲...针对传统蚁群算法在移动机器人路径规划中存在搜索盲目性、收敛速度慢及路径转折点多等问题,提出了一种基于改进蚁群算法的移动机器人路径规划算法。首先,利用跳点搜索(Jump Point Search,JPS)算法不均匀分配初始信息素,降低蚁群前期盲目搜索的概率;然后,引入切比雪夫距离加权因子和转弯代价改进启发函数,提高算法的收敛速度、全局路径寻优能力和搜索路径的平滑程度;最后,提出一种新的信息素更新策略,引入自适应奖惩因子,自适应调整迭代前、后期的信息素奖惩因子,保证了算法全局最优收敛。实验仿真结果表明,在不同地图环境下,与现有文献结果对比,该算法可以有效地缩短路径搜索的迭代次数和最优路径长度,并提高路径的平滑程度。展开更多
为解决传统A^(*)寻路算法在搜索过程中会产生大量冗余节点,导致算法整体搜索效率低,运算内存消耗大等问题,从A^(*)算法的两个重要决策点出发,改进算法的代价评估函数与邻节点搜索策略,提出一种改进融合算法。首先,采用向量叉积与尺度平...为解决传统A^(*)寻路算法在搜索过程中会产生大量冗余节点,导致算法整体搜索效率低,运算内存消耗大等问题,从A^(*)算法的两个重要决策点出发,改进算法的代价评估函数与邻节点搜索策略,提出一种改进融合算法。首先,采用向量叉积与尺度平衡因子相结合的方法优化传统A^(*)算法的启发函数,减少A^(*)算法寻路过程中在最优路径周围产生的具有相同代价值的冗余节点,减少了对称路径的搜索;其次,融合跳点搜索(Jump point search, JPS)策略,通过逻辑判断实现路径的变步长跳跃搜索,避免了A^(*)算法逐层搜索效率低的弊端。在不同尺寸的栅格地图中进行仿真分析,发现改进融合算法相比于传统A^(*)算法,在路径长度基本相等的情况下,节点搜索数量约减少95%,且与传统JPS寻路算法相比,有效过滤了路径周围复杂形状障碍物产生的大量冗余跳点。最后,将改进融合算法应用于ROS移动机器人并进行对比实验以验证算法的可行性。实验结果表明:改进融合算法在获得高效安全的路径基础上,搜索效率相比于A^(*)算法可提高约94%。展开更多
在静态栅格地图中,针对传统蚁群算法进行AGV(Automated Guided Vehicle,自动引导车)路径规划收敛慢且搜索结果容易陷入局部最优的问题,提出一种融合跳点搜索(Jump Point Search,JPS)和双向并行蚁群搜索的改进算法.首先,对实际研究环境...在静态栅格地图中,针对传统蚁群算法进行AGV(Automated Guided Vehicle,自动引导车)路径规划收敛慢且搜索结果容易陷入局部最优的问题,提出一种融合跳点搜索(Jump Point Search,JPS)和双向并行蚁群搜索的改进算法.首先,对实际研究环境进行栅格化建模,使用改进的跳点搜索算法生成双向搜索的初始次优路径,为双向蚁群搜索提供初始搜索方向参考.其次,在双向并行蚁群搜索过程中采用改进的转移概率启发函数,该函数在确定下一个转移节点时考虑了避免AGV与障碍物碰撞的因素,同时通过设计信息素共享机制并结合改进的信息素增量及浓度两种融合模型,共享和更新全局信息素浓度,以更好地探索和优化路径,保证双向路径连结.最后,与传统蚁群算法进行实验结果对比,验证了改进算法的全局搜索能力、效率和安全性.展开更多
为解决传统JPS(Jump Point Search)算法的拐点多和路径次优等问题,提出一种改进的跳点搜索算法。首先,根据地图可行率,对障碍物进行适应性膨胀,以保障安全距离;其次,结合方向性因素对启发函数进行调整,显著提高了路径搜索的目的性;最后...为解决传统JPS(Jump Point Search)算法的拐点多和路径次优等问题,提出一种改进的跳点搜索算法。首先,根据地图可行率,对障碍物进行适应性膨胀,以保障安全距离;其次,结合方向性因素对启发函数进行调整,显著提高了路径搜索的目的性;最后,提出了一种能剔除冗余节点的关键点提取策略,优化了初始规划后的路径,在保证路径最短的同时,显著减少了拓展节点和拐角。实验结果表明,与传统的JPS算法相比,所提算法能缩短路径长度并减少拐角数量,同时拓展节点数量平均减少19%,搜索速度平均提升21.8%。展开更多
为了解决采用遗传算法解析最优路径中存在的转折点较多、易陷入局部最优解、迭代次数较多以及寻优时间过长等问题,引入自适应交叉算子和变异算子,将改进后的跳点搜索(jump point search)算法与改进遗传算法融合,得到跳点搜索-遗传(jump ...为了解决采用遗传算法解析最优路径中存在的转折点较多、易陷入局部最优解、迭代次数较多以及寻优时间过长等问题,引入自适应交叉算子和变异算子,将改进后的跳点搜索(jump point search)算法与改进遗传算法融合,得到跳点搜索-遗传(jump point search-genetic,JPSG)算法。JPSG算法利用JPS算法的高效局部搜索能力来提高整体搜索能力,加速算法整体收敛趋势;利用改进遗传算法的全局搜索能力改变JPS算法不能在复杂障碍物状况下解析最优路径的状态,提高算法对动态环境的适应性。在栅格矩阵中的路径规划仿真表明,相比于改进遗传算法、传统遗传算法,JPSG算法可以有效缩短寻优执行时间,提高寻优准确率,减少运算执行次数,在稳定性、准确性、快速性上具有明显的优势。展开更多
文摘针对传统蚁群算法在农机导航路径规划中存在前期搜索盲目、死锁、收敛速度慢、收敛路径质量低的问题,本文提出基于跳点优化蚁群算法(Jump point optimized ant colony algorithm,JPOACO)的路径规划方法。首先,使用优化跳点搜索算法对地图进行预处理,获得简化跳点;其次,通过简化跳点对栅格地图进行信息素初始化,以加强简化跳点的引导能力和减少前期盲目搜索;接着,设计蚂蚁死亡惩罚机制,以降低陷入死锁蚂蚁走过路径的信息素,减少死锁问题的发生;再者,通过重新设计启发式信息函数并引入分级式信息素因子改进状态转移概率函数,以提高收敛速度,缩短路径长度;最后,采用路径优化策略删减不必要路径节点,以进一步缩短路径长度、提升平滑度,提高路径质量。仿真结果表明,在简单环境中,JPOACO算法求得的路径长度较传统蚁群算法和另一种优化蚁群算法短约22.6%和2.0%,收敛迭代次数、收敛时间分别减少约77.0%、77.5%和49.3%、87.8%,零死亡迭代次数和零死亡时间较后者减少约19.5%和80.5%;在复杂菠萝种植环境中,JPOACO算法较传统蚁群算法和另一种优化蚁群算法求得的路径长度短16.6%和4.7%,收敛迭代次数、收敛时间分别减少约77.1%、17.4%和73.7%、47.4%,零死亡迭代次数和零死亡时间较后者减少约34.3%和58.2%,表明本文算法具有较高的适用性和可行性。
文摘针对跳点搜索(jump point search,JPS)算法路径存在斜向穿越障碍物、搜索过程中存在较多冗余跳点、路径拐点多且靠近障碍物的问题,提出一种安全快速的跳点搜索(safe fast jump point search,SFJPS)算法。该算法重新定义跳点判断规则,使生成的跳点均为安全跳点,解决了路径中斜向穿越障碍物的情况;加入基于角度的搜索方向优先级判断,有效减少了搜索过程中的冗余节点,加快了搜索速度;基于Bresenham算法对路径上的跳点进行关键跳点筛选,关键跳点生成的路径拐点明显减少,贴近障碍物的路径长度大幅减小,整体路径长度也有所减小。结果表明在不同场景下本文算法相较于A*算法和JPS算法,路径长度分别最大减小了5.42%和4.48%,搜索时间分别最大缩短了98.33%和67.83%,搜索节点数最大减少了99.08%和56.72%,路径拐点数分别最大减少了90.91%和83.33%。相较于Theta*算法路径长度增加了1.17%,搜索时间缩短了91.07%,搜索节点数减少了98.9%。仿真试验证明本文算法规划速度快,路径安全且拐点更少,更加适用于移动机器人路径规划问题。
文摘为解决柔性车间内AGV的面对动态障碍物时路径规划不准确的问题,基于位操作方法提出一种跳点搜索(Jump Point Search, JPS)的改进算法。算法采用二进制方式编码化栅格地图,实现障碍物的快速识别;通过位操作方法扩大剪枝规则的应用范围,提升JPS算法中搜寻节点的效率;引入Octile距离模式对算法的启发式函数进行优化,达到降低计算复杂度,提升规划速度目的。分别将改进JPS算法与A*算法、JPS算法进行实验对比,结果表明:在复杂车间环境中,搜索时间、扩展节点数量、规划的路径同比其它两种算法都具有明显优势;在躲避动态障碍物测试中,改进型算法避障成功率为92%,躲避成功次数最高且规划的路径质量最优,同比两种算法综合性能最优。验证了算法的可行性。
文摘随着无人车、无人机等自主移动机器人的井喷式发展,寻路算法的重要性也一再提升。跳点搜索+(jump point search plus,JPS+)算法因其显著的高搜索效率而成为了经典的静态栅格化地图寻路算法。对JPS+算法的改进策略和应用场景层出不穷,但对路径长度与路径节点数量的优化方法仍有待研究。提出了一种对于强制跳点按功能性的分类方式,并基于这一分类对JPS+算法的预处理和搜索流程进行改进,在提高单次搜索扩展效率的同时,减少路径的长度与节点数。通过仿真地图实验与真实采样地图实验,验证了改进算法的有效性。对比发现:改进JPS+算法在仿真地图中,所求路径长度最大减少5.92%,路径节点数最大减少46.15%,算法用时最大减少25.58%;在真实采样地图中,所求路径长度平均减少2.48%,路径节点数平均减少10.71%,算法用时平均减少17.08%。
文摘针对传统蚁群算法在移动机器人路径规划中存在搜索盲目性、收敛速度慢及路径转折点多等问题,提出了一种基于改进蚁群算法的移动机器人路径规划算法。首先,利用跳点搜索(Jump Point Search,JPS)算法不均匀分配初始信息素,降低蚁群前期盲目搜索的概率;然后,引入切比雪夫距离加权因子和转弯代价改进启发函数,提高算法的收敛速度、全局路径寻优能力和搜索路径的平滑程度;最后,提出一种新的信息素更新策略,引入自适应奖惩因子,自适应调整迭代前、后期的信息素奖惩因子,保证了算法全局最优收敛。实验仿真结果表明,在不同地图环境下,与现有文献结果对比,该算法可以有效地缩短路径搜索的迭代次数和最优路径长度,并提高路径的平滑程度。
文摘为解决传统A^(*)寻路算法在搜索过程中会产生大量冗余节点,导致算法整体搜索效率低,运算内存消耗大等问题,从A^(*)算法的两个重要决策点出发,改进算法的代价评估函数与邻节点搜索策略,提出一种改进融合算法。首先,采用向量叉积与尺度平衡因子相结合的方法优化传统A^(*)算法的启发函数,减少A^(*)算法寻路过程中在最优路径周围产生的具有相同代价值的冗余节点,减少了对称路径的搜索;其次,融合跳点搜索(Jump point search, JPS)策略,通过逻辑判断实现路径的变步长跳跃搜索,避免了A^(*)算法逐层搜索效率低的弊端。在不同尺寸的栅格地图中进行仿真分析,发现改进融合算法相比于传统A^(*)算法,在路径长度基本相等的情况下,节点搜索数量约减少95%,且与传统JPS寻路算法相比,有效过滤了路径周围复杂形状障碍物产生的大量冗余跳点。最后,将改进融合算法应用于ROS移动机器人并进行对比实验以验证算法的可行性。实验结果表明:改进融合算法在获得高效安全的路径基础上,搜索效率相比于A^(*)算法可提高约94%。
文摘在静态栅格地图中,针对传统蚁群算法进行AGV(Automated Guided Vehicle,自动引导车)路径规划收敛慢且搜索结果容易陷入局部最优的问题,提出一种融合跳点搜索(Jump Point Search,JPS)和双向并行蚁群搜索的改进算法.首先,对实际研究环境进行栅格化建模,使用改进的跳点搜索算法生成双向搜索的初始次优路径,为双向蚁群搜索提供初始搜索方向参考.其次,在双向并行蚁群搜索过程中采用改进的转移概率启发函数,该函数在确定下一个转移节点时考虑了避免AGV与障碍物碰撞的因素,同时通过设计信息素共享机制并结合改进的信息素增量及浓度两种融合模型,共享和更新全局信息素浓度,以更好地探索和优化路径,保证双向路径连结.最后,与传统蚁群算法进行实验结果对比,验证了改进算法的全局搜索能力、效率和安全性.
文摘为解决传统JPS(Jump Point Search)算法的拐点多和路径次优等问题,提出一种改进的跳点搜索算法。首先,根据地图可行率,对障碍物进行适应性膨胀,以保障安全距离;其次,结合方向性因素对启发函数进行调整,显著提高了路径搜索的目的性;最后,提出了一种能剔除冗余节点的关键点提取策略,优化了初始规划后的路径,在保证路径最短的同时,显著减少了拓展节点和拐角。实验结果表明,与传统的JPS算法相比,所提算法能缩短路径长度并减少拐角数量,同时拓展节点数量平均减少19%,搜索速度平均提升21.8%。
文摘为了解决采用遗传算法解析最优路径中存在的转折点较多、易陷入局部最优解、迭代次数较多以及寻优时间过长等问题,引入自适应交叉算子和变异算子,将改进后的跳点搜索(jump point search)算法与改进遗传算法融合,得到跳点搜索-遗传(jump point search-genetic,JPSG)算法。JPSG算法利用JPS算法的高效局部搜索能力来提高整体搜索能力,加速算法整体收敛趋势;利用改进遗传算法的全局搜索能力改变JPS算法不能在复杂障碍物状况下解析最优路径的状态,提高算法对动态环境的适应性。在栅格矩阵中的路径规划仿真表明,相比于改进遗传算法、传统遗传算法,JPSG算法可以有效缩短寻优执行时间,提高寻优准确率,减少运算执行次数,在稳定性、准确性、快速性上具有明显的优势。