In this paper, global robust stability of uncertain stochastic recurrent neural networks with Markovian jumping parameters is considered. A novel Linear matrix inequal- ity(LMI) based stability criterion is obtained...In this paper, global robust stability of uncertain stochastic recurrent neural networks with Markovian jumping parameters is considered. A novel Linear matrix inequal- ity(LMI) based stability criterion is obtained to guarantee the asymptotic stability of uncertain stochastic recurrent neural networks with Markovian jumping parameters. The results are derived by using the Lyapunov functional technique, Lipchitz condition and S-procuture. Finally, numerical examples are given to demonstrate the correctness of the theoretical results. Our results are also compared with results discussed in [31] and [34] to show the effectiveness and conservativeness.展开更多
The security control of Markovian jumping neural networks(MJNNs)is investigated under false data injection attacks that take place in the shared communication network.Stochastic sampleddata control is employed to rese...The security control of Markovian jumping neural networks(MJNNs)is investigated under false data injection attacks that take place in the shared communication network.Stochastic sampleddata control is employed to research the exponential synchronization of MJNNs under false data injection attacks(FDIAs)since it can alleviate the impact of the FDIAs on the performance of the system by adjusting the sampling periods.A multi-delay error system model is established through the input-delay approach.To reduce the conservatism of the results,a sampling-periodprobability-dependent looped Lyapunov functional is constructed.In light of some less conservative integral inequalities,a synchronization criterion is derived,and an algorithm is provided that can be solved for determining the controller gain.Finally,a numerical simulation is presented to confirm the efficiency of the proposed method.展开更多
This paper is concerned with the problem of robust stability for a class of Markovian jumping stochastic neural networks (MJSNNs) subject to mode-dependent time-varying interval delay and state-multiplicative noise....This paper is concerned with the problem of robust stability for a class of Markovian jumping stochastic neural networks (MJSNNs) subject to mode-dependent time-varying interval delay and state-multiplicative noise. Based on the Lyapunov-Krasovskii functional and a stochastic analysis approach, some new delay-dependent sufficient conditions are obtained in the linear matrix inequality (LMI) format such that delayed MJSNNs are globally asymptotically stable in the mean-square sense for all admissible uncertainties. An important feature of the results is that the stability criteria are dependent on not only the lower bound and upper bound of delay for all modes but also the covariance matrix consisting of the correlation coefficient. Numerical examples are given to illustrate the effectiveness.展开更多
We investigate the problem of H_(∞) state estimation for discrete-time Markov jump neural networks. The transition probabilities of the Markov chain are assumed to be piecewise time-varying, and the persistent dwell-...We investigate the problem of H_(∞) state estimation for discrete-time Markov jump neural networks. The transition probabilities of the Markov chain are assumed to be piecewise time-varying, and the persistent dwell-time switching rule,as a more general switching rule, is adopted to describe this variation characteristic. Afterwards, based on the classical Lyapunov stability theory, a Lyapunov function is established, in which the information about the Markov jump feature of the system mode and the persistent dwell-time switching of the transition probabilities is considered simultaneously.Furthermore, via using the stochastic analysis method and some advanced matrix transformation techniques, some sufficient conditions are obtained such that the estimation error system is mean-square exponentially stable with an H_(∞) performance level, from which the specific form of the estimator can be obtained. Finally, the rationality and effectiveness of the obtained results are verified by a numerical example.展开更多
In this article, we investigates finite-time H∞ control problem of Markovian jumping neural networks of neutral type with distributed time varying delays. The mathematical model of the Markovian jumping neural networ...In this article, we investigates finite-time H∞ control problem of Markovian jumping neural networks of neutral type with distributed time varying delays. The mathematical model of the Markovian jumping neural networks with distributed delays is established in which a set of neural networks are used as individual subsystems. Finite time stability analysis for such neural networks is addressed based on the linear matrix inequality approach. Numerical examples are given to illustrate the usefulness of our proposed method. The results obtained are compared with the results in the literature to show the conservativeness.展开更多
This paper focuses on the reachable set estimation for Markovian jump neural networks with time delay.By allowing uncertainty in the transition probabilities,a framework unifies and enhances the generality and realism...This paper focuses on the reachable set estimation for Markovian jump neural networks with time delay.By allowing uncertainty in the transition probabilities,a framework unifies and enhances the generality and realism of these systems.To fully exploit the unified uncertain transition probabilities,an equivalent transformation technique is introduced as an alternative to traditional estimation methods,effectively utilizing the information of transition probabilities.Furthermore,a vector Wirtinger-based summation inequality is proposed,which captures more system information compared to existing ones.Building upon these components,a novel condition that guarantees a reachable set estimation is presented for Markovian jump neural networks with unified uncertain transition probabilities.A numerical example is illustrated to demonstrate the superiority of the approaches.展开更多
This paper is concerned with a delay-dependent state estimator for neutral-type neural networks with mixed timevarying delays and Markovian jumping parameters.The addressed neural networks have a finite number of mode...This paper is concerned with a delay-dependent state estimator for neutral-type neural networks with mixed timevarying delays and Markovian jumping parameters.The addressed neural networks have a finite number of modes,and the modes may jump from one to another according to a Markov process.By construction of a suitable Lyapunov-Krasovskii functional,a delay-dependent condition is developed to estimate the neuron states through available output measurements such that the estimation error system is globally asymptotically stable in a mean square.The criterion is formulated in terms of a set of linear matrix inequalities(LMIs),which can be checked efficiently by use of some standard numerical packages.展开更多
We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-d...We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.展开更多
This paper investigates event-triggered synchronization for complex networks with Markovian jumping parameters.Nonlinear dynamics with Markovian jumping parameters is considered for each node in a complex network. By ...This paper investigates event-triggered synchronization for complex networks with Markovian jumping parameters.Nonlinear dynamics with Markovian jumping parameters is considered for each node in a complex network. By utilizing the proposed event-triggered strategy, and based on the Lyapunov functional method and linear matrix inequality technology,some sufficient conditions for synchronization of complex networks are derived whether the transition rate matrix for the Markov process is completely known or not. Finally, a numerical example is presented to illustrate the effectiveness of the proposed theoretical results.展开更多
In this paper, we consider a class of impulsive stochas- tic recurrent neural networks with time-varying delays and Markovian jumping. Based on some impulsive delay differential inequalities, some easy-to-test conditi...In this paper, we consider a class of impulsive stochas- tic recurrent neural networks with time-varying delays and Markovian jumping. Based on some impulsive delay differential inequalities, some easy-to-test conditions such that the dynamics of the neural network is stochastically exponentially stable in the mean square, independent of the time delay, are obtained. An example is also given to illustrate the effectiveness of our results.展开更多
The global asymptotical stability for a class of stochastic delayed neural networks (SDNNs) with Maxkovian jumping parameters is considered. By applying Lyapunov functional method and Ito's differential rule, new d...The global asymptotical stability for a class of stochastic delayed neural networks (SDNNs) with Maxkovian jumping parameters is considered. By applying Lyapunov functional method and Ito's differential rule, new delay-dependent stability conditions are derived. All results are expressed in terms of linear matrix inequality (LMI), and a numerical example is presented to illustrate the correctness and less conservativeness of the proposed method.展开更多
Artificial neural networks (ANNs) and genetic programming (GP) have recently been used for the estimation of hydraulic data. In this study, they were used as alternative tools to estimate the characteristics of hy...Artificial neural networks (ANNs) and genetic programming (GP) have recently been used for the estimation of hydraulic data. In this study, they were used as alternative tools to estimate the characteristics of hydraulic jumps, such as the free surface location and energy dissipation. The dimensionless hydraulic parameters, including jump depth, jump length, and energy dissipation, were determined as functions of the Froude number and the height and length of corrugations. The estimations of the ANN and GP models were found to be in good agreement with the measured data. The results of the ANN model were compared with those of the GP model, showing that the proposed ANN models are much more accurate than the GP models.展开更多
The H_∞state estimation problem for a class of stochastic neural networks with Markovian jumping parameters and leakage delay is investigated in this paper.By employing a suitable Lyapunov functional and inequality t...The H_∞state estimation problem for a class of stochastic neural networks with Markovian jumping parameters and leakage delay is investigated in this paper.By employing a suitable Lyapunov functional and inequality technic,the suffcient conditions for exponential stability as well as prescribed H_∞norm level of the state estimation error system are proposed and verified,and all obtained results are expressed in terms of strict linear matrix inequalities(LMIs).Examples and simulations are presented to show the effectiveness of the proposed methods,at the same time,the effect of leakage delay on stability of neural networks system and on the attenuation level of state estimator are discussed.展开更多
基金supported by NBHM project grant No.2/48(10)/2011-RD-II/865
文摘In this paper, global robust stability of uncertain stochastic recurrent neural networks with Markovian jumping parameters is considered. A novel Linear matrix inequal- ity(LMI) based stability criterion is obtained to guarantee the asymptotic stability of uncertain stochastic recurrent neural networks with Markovian jumping parameters. The results are derived by using the Lyapunov functional technique, Lipchitz condition and S-procuture. Finally, numerical examples are given to demonstrate the correctness of the theoretical results. Our results are also compared with results discussed in [31] and [34] to show the effectiveness and conservativeness.
基金the NNSF of China under Grants 61973199,62003794,62173214the Shandong Provincial NSF ZR2020QF050,ZR2021MF003。
文摘The security control of Markovian jumping neural networks(MJNNs)is investigated under false data injection attacks that take place in the shared communication network.Stochastic sampleddata control is employed to research the exponential synchronization of MJNNs under false data injection attacks(FDIAs)since it can alleviate the impact of the FDIAs on the performance of the system by adjusting the sampling periods.A multi-delay error system model is established through the input-delay approach.To reduce the conservatism of the results,a sampling-periodprobability-dependent looped Lyapunov functional is constructed.In light of some less conservative integral inequalities,a synchronization criterion is derived,and an algorithm is provided that can be solved for determining the controller gain.Finally,a numerical simulation is presented to confirm the efficiency of the proposed method.
基金supported by the National Natural Science Foundation of China (Grant Nos 60534010,60774048,60728307,60804006,60521003)the National High Technology Research and Development Program of China (863 Program) (Grant No 2006AA04Z183)+2 种基金the Natural Science Foundation of Liaoning Province of China (Grant No 20062018)973 Project (Grant No 2009CB320601)111 Project (Grant No B08015)
文摘This paper is concerned with the problem of robust stability for a class of Markovian jumping stochastic neural networks (MJSNNs) subject to mode-dependent time-varying interval delay and state-multiplicative noise. Based on the Lyapunov-Krasovskii functional and a stochastic analysis approach, some new delay-dependent sufficient conditions are obtained in the linear matrix inequality (LMI) format such that delayed MJSNNs are globally asymptotically stable in the mean-square sense for all admissible uncertainties. An important feature of the results is that the stability criteria are dependent on not only the lower bound and upper bound of delay for all modes but also the covariance matrix consisting of the correlation coefficient. Numerical examples are given to illustrate the effectiveness.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61873002, 61703004, 61973199, 61573008, and 61973200)。
文摘We investigate the problem of H_(∞) state estimation for discrete-time Markov jump neural networks. The transition probabilities of the Markov chain are assumed to be piecewise time-varying, and the persistent dwell-time switching rule,as a more general switching rule, is adopted to describe this variation characteristic. Afterwards, based on the classical Lyapunov stability theory, a Lyapunov function is established, in which the information about the Markov jump feature of the system mode and the persistent dwell-time switching of the transition probabilities is considered simultaneously.Furthermore, via using the stochastic analysis method and some advanced matrix transformation techniques, some sufficient conditions are obtained such that the estimation error system is mean-square exponentially stable with an H_(∞) performance level, from which the specific form of the estimator can be obtained. Finally, the rationality and effectiveness of the obtained results are verified by a numerical example.
文摘In this article, we investigates finite-time H∞ control problem of Markovian jumping neural networks of neutral type with distributed time varying delays. The mathematical model of the Markovian jumping neural networks with distributed delays is established in which a set of neural networks are used as individual subsystems. Finite time stability analysis for such neural networks is addressed based on the linear matrix inequality approach. Numerical examples are given to illustrate the usefulness of our proposed method. The results obtained are compared with the results in the literature to show the conservativeness.
基金funded by National Key Research and Development Program of China under Grant 2022YFE0107300the Chongqing Technology Innovation and Application Development Special Key Project under Grant CSTB2022TIAD-KPX0162+3 种基金the National Natural Science Foundation of China under Grant U22A20101the Chongqing Technology Innovation and Application Development Special Key Project under Grant CSTB2022TIAD-CUX0015the Chongqing postdoctoral innovativetalents support program under Grant CQBX202205the China Postdoctoral Science Foundation under Grant 2023M730411.
文摘This paper focuses on the reachable set estimation for Markovian jump neural networks with time delay.By allowing uncertainty in the transition probabilities,a framework unifies and enhances the generality and realism of these systems.To fully exploit the unified uncertain transition probabilities,an equivalent transformation technique is introduced as an alternative to traditional estimation methods,effectively utilizing the information of transition probabilities.Furthermore,a vector Wirtinger-based summation inequality is proposed,which captures more system information compared to existing ones.Building upon these components,a novel condition that guarantees a reachable set estimation is presented for Markovian jump neural networks with unified uncertain transition probabilities.A numerical example is illustrated to demonstrate the superiority of the approaches.
基金Project supported by the 2010 Yeungnam University Research Grant
文摘This paper is concerned with a delay-dependent state estimator for neutral-type neural networks with mixed timevarying delays and Markovian jumping parameters.The addressed neural networks have a finite number of modes,and the modes may jump from one to another according to a Markov process.By construction of a suitable Lyapunov-Krasovskii functional,a delay-dependent condition is developed to estimate the neuron states through available output measurements such that the estimation error system is globally asymptotically stable in a mean square.The criterion is formulated in terms of a set of linear matrix inequalities(LMIs),which can be checked efficiently by use of some standard numerical packages.
基金the Ministry of Science and Technology of India(Grant No.DST/Inspire Fellowship/2010/[293]/dt.18/03/2011)
文摘We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.
基金Project supported by the National Natural Science Foundation of China(Grant No.11202084)
文摘This paper investigates event-triggered synchronization for complex networks with Markovian jumping parameters.Nonlinear dynamics with Markovian jumping parameters is considered for each node in a complex network. By utilizing the proposed event-triggered strategy, and based on the Lyapunov functional method and linear matrix inequality technology,some sufficient conditions for synchronization of complex networks are derived whether the transition rate matrix for the Markov process is completely known or not. Finally, a numerical example is presented to illustrate the effectiveness of the proposed theoretical results.
文摘In this paper, we consider a class of impulsive stochas- tic recurrent neural networks with time-varying delays and Markovian jumping. Based on some impulsive delay differential inequalities, some easy-to-test conditions such that the dynamics of the neural network is stochastically exponentially stable in the mean square, independent of the time delay, are obtained. An example is also given to illustrate the effectiveness of our results.
基金supported by the National Natural Science Foundation of China(60874114).
文摘The global asymptotical stability for a class of stochastic delayed neural networks (SDNNs) with Maxkovian jumping parameters is considered. By applying Lyapunov functional method and Ito's differential rule, new delay-dependent stability conditions are derived. All results are expressed in terms of linear matrix inequality (LMI), and a numerical example is presented to illustrate the correctness and less conservativeness of the proposed method.
文摘Artificial neural networks (ANNs) and genetic programming (GP) have recently been used for the estimation of hydraulic data. In this study, they were used as alternative tools to estimate the characteristics of hydraulic jumps, such as the free surface location and energy dissipation. The dimensionless hydraulic parameters, including jump depth, jump length, and energy dissipation, were determined as functions of the Froude number and the height and length of corrugations. The estimations of the ANN and GP models were found to be in good agreement with the measured data. The results of the ANN model were compared with those of the GP model, showing that the proposed ANN models are much more accurate than the GP models.
基金supported by the Research Fund for the Doctoral Program of Guang Dong Province of China (No. 2015A030310336)
文摘The H_∞state estimation problem for a class of stochastic neural networks with Markovian jumping parameters and leakage delay is investigated in this paper.By employing a suitable Lyapunov functional and inequality technic,the suffcient conditions for exponential stability as well as prescribed H_∞norm level of the state estimation error system are proposed and verified,and all obtained results are expressed in terms of strict linear matrix inequalities(LMIs).Examples and simulations are presented to show the effectiveness of the proposed methods,at the same time,the effect of leakage delay on stability of neural networks system and on the attenuation level of state estimator are discussed.