期刊文献+
共找到193篇文章
< 1 2 10 >
每页显示 20 50 100
STOCHASTIC STABILITY OF UNCERTAIN RECURRENT NEURAL NETWORKS WITH MARKOVIAN JUMPING PARAMETERS 被引量:1
1
作者 M.SYED ALI 《Acta Mathematica Scientia》 SCIE CSCD 2015年第5期1122-1136,共15页
In this paper, global robust stability of uncertain stochastic recurrent neural networks with Markovian jumping parameters is considered. A novel Linear matrix inequal- ity(LMI) based stability criterion is obtained... In this paper, global robust stability of uncertain stochastic recurrent neural networks with Markovian jumping parameters is considered. A novel Linear matrix inequal- ity(LMI) based stability criterion is obtained to guarantee the asymptotic stability of uncertain stochastic recurrent neural networks with Markovian jumping parameters. The results are derived by using the Lyapunov functional technique, Lipchitz condition and S-procuture. Finally, numerical examples are given to demonstrate the correctness of the theoretical results. Our results are also compared with results discussed in [31] and [34] to show the effectiveness and conservativeness. 展开更多
关键词 Lyapunov functional linear matrix inequality Markovian jumping parameters recurrent neural networks
在线阅读 下载PDF
Security control of Markovian jump neural networks with stochastic sampling subject to false data injection attacks
2
作者 Lan Yao Xia Huang +1 位作者 Zhen Wang Min Xiao 《Communications in Theoretical Physics》 SCIE CAS CSCD 2023年第10期146-154,共9页
The security control of Markovian jumping neural networks(MJNNs)is investigated under false data injection attacks that take place in the shared communication network.Stochastic sampleddata control is employed to rese... The security control of Markovian jumping neural networks(MJNNs)is investigated under false data injection attacks that take place in the shared communication network.Stochastic sampleddata control is employed to research the exponential synchronization of MJNNs under false data injection attacks(FDIAs)since it can alleviate the impact of the FDIAs on the performance of the system by adjusting the sampling periods.A multi-delay error system model is established through the input-delay approach.To reduce the conservatism of the results,a sampling-periodprobability-dependent looped Lyapunov functional is constructed.In light of some less conservative integral inequalities,a synchronization criterion is derived,and an algorithm is provided that can be solved for determining the controller gain.Finally,a numerical simulation is presented to confirm the efficiency of the proposed method. 展开更多
关键词 Markovian jumping neural networks stochastic sampling looped-functional false data injection attack
原文传递
Robust stability analysis for Markovian jumping stochastic neural networks with mode-dependent time-varying interval delay and multiplicative noise
3
作者 张化光 浮洁 +1 位作者 马铁东 佟绍成 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第8期3325-3336,共12页
This paper is concerned with the problem of robust stability for a class of Markovian jumping stochastic neural networks (MJSNNs) subject to mode-dependent time-varying interval delay and state-multiplicative noise.... This paper is concerned with the problem of robust stability for a class of Markovian jumping stochastic neural networks (MJSNNs) subject to mode-dependent time-varying interval delay and state-multiplicative noise. Based on the Lyapunov-Krasovskii functional and a stochastic analysis approach, some new delay-dependent sufficient conditions are obtained in the linear matrix inequality (LMI) format such that delayed MJSNNs are globally asymptotically stable in the mean-square sense for all admissible uncertainties. An important feature of the results is that the stability criteria are dependent on not only the lower bound and upper bound of delay for all modes but also the covariance matrix consisting of the correlation coefficient. Numerical examples are given to illustrate the effectiveness. 展开更多
关键词 mode-dependent time-varying interval delay multiplicative noise covariance matrix correlation coefficient Markovian jumping stochastic neural networks
原文传递
H_(∞) state estimation for Markov jump neural networks with transition probabilities subject to the persistent dwell-time switching rule
4
作者 Hao Shen Jia-Cheng Wu +1 位作者 Jian-Wei Xia Zhen Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期88-95,共8页
We investigate the problem of H_(∞) state estimation for discrete-time Markov jump neural networks. The transition probabilities of the Markov chain are assumed to be piecewise time-varying, and the persistent dwell-... We investigate the problem of H_(∞) state estimation for discrete-time Markov jump neural networks. The transition probabilities of the Markov chain are assumed to be piecewise time-varying, and the persistent dwell-time switching rule,as a more general switching rule, is adopted to describe this variation characteristic. Afterwards, based on the classical Lyapunov stability theory, a Lyapunov function is established, in which the information about the Markov jump feature of the system mode and the persistent dwell-time switching of the transition probabilities is considered simultaneously.Furthermore, via using the stochastic analysis method and some advanced matrix transformation techniques, some sufficient conditions are obtained such that the estimation error system is mean-square exponentially stable with an H_(∞) performance level, from which the specific form of the estimator can be obtained. Finally, the rationality and effectiveness of the obtained results are verified by a numerical example. 展开更多
关键词 Markov jump neural networks persistent dwell-time switching rule H_(∞)state estimation meansquare exponential stability
原文传递
FINITE-TIME H∞ CONTROL FOR A CLASS OF MARKOVIAN JUMPING NEURAL NETWORKS WITH DISTRIBUTED TIME VARYING DELAYS-LMI APPROACH
5
作者 p.baskar s.padmanabhan m.syed ali 《Acta Mathematica Scientia》 SCIE CSCD 2018年第2期561-579,共19页
In this article, we investigates finite-time H∞ control problem of Markovian jumping neural networks of neutral type with distributed time varying delays. The mathematical model of the Markovian jumping neural networ... In this article, we investigates finite-time H∞ control problem of Markovian jumping neural networks of neutral type with distributed time varying delays. The mathematical model of the Markovian jumping neural networks with distributed delays is established in which a set of neural networks are used as individual subsystems. Finite time stability analysis for such neural networks is addressed based on the linear matrix inequality approach. Numerical examples are given to illustrate the usefulness of our proposed method. The results obtained are compared with the results in the literature to show the conservativeness. 展开更多
关键词 Finite-time H∞ control Markovian jumping neural networks Lyapunov stability
在线阅读 下载PDF
Reachable set estimation for discrete-time Markovian jump neural networks with unified uncertain transition probability
6
作者 Yufeng Tian Wengang Ao Peng Shi 《Journal of Automation and Intelligence》 2023年第3期167-174,共8页
This paper focuses on the reachable set estimation for Markovian jump neural networks with time delay.By allowing uncertainty in the transition probabilities,a framework unifies and enhances the generality and realism... This paper focuses on the reachable set estimation for Markovian jump neural networks with time delay.By allowing uncertainty in the transition probabilities,a framework unifies and enhances the generality and realism of these systems.To fully exploit the unified uncertain transition probabilities,an equivalent transformation technique is introduced as an alternative to traditional estimation methods,effectively utilizing the information of transition probabilities.Furthermore,a vector Wirtinger-based summation inequality is proposed,which captures more system information compared to existing ones.Building upon these components,a novel condition that guarantees a reachable set estimation is presented for Markovian jump neural networks with unified uncertain transition probabilities.A numerical example is illustrated to demonstrate the superiority of the approaches. 展开更多
关键词 Markovian jump neural networks Unified uncertain transition probabilities Reachable set estimation Double-boundary approach Vector wirtinger-based summation inequality
在线阅读 下载PDF
State estimation for neural neutral-type networks with mixed time-varying delays and Markovian jumping parameters 被引量:2
7
作者 S.Lakshmanan Ju H.Park +1 位作者 H.Y.Jung P.Balasubramaniam 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期29-37,共9页
This paper is concerned with a delay-dependent state estimator for neutral-type neural networks with mixed timevarying delays and Markovian jumping parameters.The addressed neural networks have a finite number of mode... This paper is concerned with a delay-dependent state estimator for neutral-type neural networks with mixed timevarying delays and Markovian jumping parameters.The addressed neural networks have a finite number of modes,and the modes may jump from one to another according to a Markov process.By construction of a suitable Lyapunov-Krasovskii functional,a delay-dependent condition is developed to estimate the neuron states through available output measurements such that the estimation error system is globally asymptotically stable in a mean square.The criterion is formulated in terms of a set of linear matrix inequalities(LMIs),which can be checked efficiently by use of some standard numerical packages. 展开更多
关键词 neural networks state estimation neutral delay Markovian jumping parameters
原文传递
Stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks with mixed delays and the Wiener process based on sampled-data control 被引量:1
8
作者 M. Kalpana P. Balasubramaniam 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第7期564-573,共10页
We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-d... We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results. 展开更多
关键词 stochastic asymptotical synchronization fuzzy cellular neural networks chaotic Markovian jumping parameters sampled-data control
原文传递
Synchronization of Markovian jumping complex networks with event-triggered control 被引量:1
9
作者 邵浩宇 胡爱花 刘丹 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期595-602,共8页
This paper investigates event-triggered synchronization for complex networks with Markovian jumping parameters.Nonlinear dynamics with Markovian jumping parameters is considered for each node in a complex network. By ... This paper investigates event-triggered synchronization for complex networks with Markovian jumping parameters.Nonlinear dynamics with Markovian jumping parameters is considered for each node in a complex network. By utilizing the proposed event-triggered strategy, and based on the Lyapunov functional method and linear matrix inequality technology,some sufficient conditions for synchronization of complex networks are derived whether the transition rate matrix for the Markov process is completely known or not. Finally, a numerical example is presented to illustrate the effectiveness of the proposed theoretical results. 展开更多
关键词 complex networks SYNCHRONIZATION event-triggered control Markovian jumping parameters
原文传递
基于Jump-SBERT的二进制代码相似性检测技术研究 被引量:1
10
作者 严尹彤 于璐 +2 位作者 王泰彦 李宇薇 潘祖烈 《计算机科学》 CSCD 北大核心 2024年第5期355-362,共8页
二进制代码相似性检测技术在不同的安全领域中有着重要的作用。针对现有的二进制代码相似性检测方法面临计算开销大且精度低、二进制函数语义信息识别不全面和评估数据集单一等问题,提出了一种基于Jump-SBERT的二进制代码相似性检测技术... 二进制代码相似性检测技术在不同的安全领域中有着重要的作用。针对现有的二进制代码相似性检测方法面临计算开销大且精度低、二进制函数语义信息识别不全面和评估数据集单一等问题,提出了一种基于Jump-SBERT的二进制代码相似性检测技术。Jump-SBERT有两个主要创新点,一是利用孪生网络构建SBERT网络结构,该网络结构能够在降低模型的计算开销的同时保持计算精度不变;二是引入了跳转识别机制,使Jump-SBERT可以学习到二进制函数的图结构信息,从而更加全面地捕获二进制函数的语义信息。实验结果表明,Jump-SBERT在小函数池(32个函数)中的识别准确率可达96.3%,在大函数池(10000个函数)中的识别准确率可达85.1%,比最先进(State-of-the-Art,SOTA)的方法高出36.13%,且Jump-SBERT在大规模二进制代码相似性检测中的表现更加稳定。消融实验表明,两个主要创新点对Jump-SBERT均有积极作用,其中,跳转识别机制的贡献最高可达9.11%。 展开更多
关键词 二进制代码 相似性检测 语义信息 SBERT网络结构 跳转识别机制
在线阅读 下载PDF
Exponential Stability of Impulsive Stochastic Recurrent Neural Networks with Time-Varying Delays and Markovian Jumping
11
作者 XU Congcong 《Wuhan University Journal of Natural Sciences》 CAS 2014年第1期71-78,共8页
In this paper, we consider a class of impulsive stochas- tic recurrent neural networks with time-varying delays and Markovian jumping. Based on some impulsive delay differential inequalities, some easy-to-test conditi... In this paper, we consider a class of impulsive stochas- tic recurrent neural networks with time-varying delays and Markovian jumping. Based on some impulsive delay differential inequalities, some easy-to-test conditions such that the dynamics of the neural network is stochastically exponentially stable in the mean square, independent of the time delay, are obtained. An example is also given to illustrate the effectiveness of our results. 展开更多
关键词 exponential stability stochastic recurrent neural network Markovian jumping IMPULSIVE time-varying delays
原文传递
Stability of stochastic neural networks with Markovian jumping parameters 被引量:1
12
作者 Hua Mingang Deng Feiqi Peng Yunjian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第3期613-618,共6页
The global asymptotical stability for a class of stochastic delayed neural networks (SDNNs) with Maxkovian jumping parameters is considered. By applying Lyapunov functional method and Ito's differential rule, new d... The global asymptotical stability for a class of stochastic delayed neural networks (SDNNs) with Maxkovian jumping parameters is considered. By applying Lyapunov functional method and Ito's differential rule, new delay-dependent stability conditions are derived. All results are expressed in terms of linear matrix inequality (LMI), and a numerical example is presented to illustrate the correctness and less conservativeness of the proposed method. 展开更多
关键词 stochastic neural networks global asymptotical stability linear matrix inequality Markovian jumping parameters.
在线阅读 下载PDF
Estimation of hydraulic jump on corrugated bed using artificial neural networks and genetic programming
13
作者 Akram ABBASPOUR Davood FARSADIZADEH Mohammad Ali GHORBANI 《Water Science and Engineering》 EI CAS CSCD 2013年第2期189-198,共10页
Artificial neural networks (ANNs) and genetic programming (GP) have recently been used for the estimation of hydraulic data. In this study, they were used as alternative tools to estimate the characteristics of hy... Artificial neural networks (ANNs) and genetic programming (GP) have recently been used for the estimation of hydraulic data. In this study, they were used as alternative tools to estimate the characteristics of hydraulic jumps, such as the free surface location and energy dissipation. The dimensionless hydraulic parameters, including jump depth, jump length, and energy dissipation, were determined as functions of the Froude number and the height and length of corrugations. The estimations of the ANN and GP models were found to be in good agreement with the measured data. The results of the ANN model were compared with those of the GP model, showing that the proposed ANN models are much more accurate than the GP models. 展开更多
关键词 artificial neural networks genetic programming corrugated bed Froude number hydraulic jump
在线阅读 下载PDF
H_∞ State Estimation for Stochastic Markovian Jumping Neural Network with Time-varying Delay and Leakage Delay
14
作者 Ya-Jun Li Zhao-Wen Huang Jing-Zhao Li 《International Journal of Automation and computing》 EI CSCD 2019年第3期329-340,共12页
The H_∞state estimation problem for a class of stochastic neural networks with Markovian jumping parameters and leakage delay is investigated in this paper.By employing a suitable Lyapunov functional and inequality t... The H_∞state estimation problem for a class of stochastic neural networks with Markovian jumping parameters and leakage delay is investigated in this paper.By employing a suitable Lyapunov functional and inequality technic,the suffcient conditions for exponential stability as well as prescribed H_∞norm level of the state estimation error system are proposed and verified,and all obtained results are expressed in terms of strict linear matrix inequalities(LMIs).Examples and simulations are presented to show the effectiveness of the proposed methods,at the same time,the effect of leakage delay on stability of neural networks system and on the attenuation level of state estimator are discussed. 展开更多
关键词 H_∞ filtering state estimation Markovian jump exponential stability linear matrix inequality(LMI) neural networks time-varying DELAY LEAKAGE DELAY
原文传递
基于循环步长跳跃网络的时间序列预测算法
15
作者 史彦丽 刘鑫 赵金星 《计算机应用与软件》 北大核心 2025年第9期324-330,368,共8页
传统基于回声状态网络的混沌时间序列预测存在网络结构不确定、储备池内部结构冗余的问题,造成网络预测精度低。针对上述问题,提出一种改进的确定性循环跳跃网络。该文构建单向环形连接的拓扑结构,并共享连接权值,避免储备池中随机连接... 传统基于回声状态网络的混沌时间序列预测存在网络结构不确定、储备池内部结构冗余的问题,造成网络预测精度低。针对上述问题,提出一种改进的确定性循环跳跃网络。该文构建单向环形连接的拓扑结构,并共享连接权值,避免储备池中随机连接造成的网络不稳定性,从而提升预测精度;设计双向步长跳跃模式,减少网络内部连接的冗余,降低储备池的复杂度,有效地提高网络构建的速度。在混沌时间序列上短期预测的实验结果表明,所提出算法在混沌时间序列的单步预测中具有更好的性能。 展开更多
关键词 混沌时间序列 预测模型 回声状态网络 储备池 确定性循环跳跃网络
在线阅读 下载PDF
适用于宽带无线通信系统的跳步螺旋交织器
16
作者 袁伟 《计算机应用文摘》 2025年第4期71-74,共4页
针对某宽带自组织网络波形项目的需求,研制了一种能够在全地域全场景下支持分布式无中心组网的波形,以提供高传输速率、低时延和可靠的通信保障。首先,分析了常用交织器在宽带自组织网络波形设计中的不足之处。其次,通过研究码元在缓存... 针对某宽带自组织网络波形项目的需求,研制了一种能够在全地域全场景下支持分布式无中心组网的波形,以提供高传输速率、低时延和可靠的通信保障。首先,分析了常用交织器在宽带自组织网络波形设计中的不足之处。其次,通过研究码元在缓存矩阵中的分布特点,设计了行跳步、列递增的螺旋跳步码元读取方式及缓存矩阵方案。基于此,提出了一种适用于该宽带自组织网络波形项目的跳步螺旋交织器。系统仿真结果表明,所提跳步螺旋交织器能够有效提升波形抗连续突发错误的能力,同时降低处理时延和开发实现的复杂度,使得波形具备低时延性和可部署于轻量小型化设备的能力。 展开更多
关键词 交织技术 宽带自组织网络 跳步螺旋交织 系统仿真
在线阅读 下载PDF
中立型神经网络的自适应有限时间随机同步
17
作者 黄畅 陈巧玉 《上海工程技术大学学报》 2025年第1期93-98,共6页
研究了一类中立型时滞神经网络的自适应有限时间随机同步问题。建立具有不确定和马尔可夫跳变参数的中立型时滞神经网络,通过自适应控制策略,得到主从系统的有限时间稳定性准则。根据伊藤公式和Lyapunov稳定性理论,获得中立型神经网络... 研究了一类中立型时滞神经网络的自适应有限时间随机同步问题。建立具有不确定和马尔可夫跳变参数的中立型时滞神经网络,通过自适应控制策略,得到主从系统的有限时间稳定性准则。根据伊藤公式和Lyapunov稳定性理论,获得中立型神经网络有限时间同步的充分条件,并估计其同步时间。数值例子验证了该方法的可行性。 展开更多
关键词 中立型神经网络 自适应控制 马尔可夫跳变 有限时间同步 随机时滞神经网络
在线阅读 下载PDF
基于EESP与ODConv的多尺度轴承故障诊断方法
18
作者 任义 陈大鹏 +1 位作者 栾方军 袁帅 《机电工程》 北大核心 2025年第5期832-844,920,共14页
为了解决轴承故障诊断中多尺度特征提取准确性和稳定性不足的问题,提出了一种融合增强高效空间金字塔(EESP)与全维动态卷积(ODConv)的多尺度轴承诊断方法,即基于多尺度全维动态卷积网络(MSODConvNet)的轴承故障诊断模型。首先,采用了基... 为了解决轴承故障诊断中多尺度特征提取准确性和稳定性不足的问题,提出了一种融合增强高效空间金字塔(EESP)与全维动态卷积(ODConv)的多尺度轴承诊断方法,即基于多尺度全维动态卷积网络(MSODConvNet)的轴承故障诊断模型。首先,采用了基于EESP的空洞卷积金字塔模块,利用了多尺度空洞卷积结构增强了特征提取能力,有效地捕捉了不同尺度的特征信息,从而提升了模型对复杂信号的感知能力;其次,采用的ODConv模块使卷积核在多个维度上同时进行了高效运作,使用动态调整卷积核结构提升了模型的灵活性和适应性,使其能够更好地应对复杂数据中的多样化模式和特征;最后,在ODConv模块中引入了双跳跃连接机制,进一步强化了信息在深层网络中的传递效果,确保了特征信息的完整性和高效传递。研究结果表明:基于EESP和ODConv的多尺度模型在分类准确率方面得到较大的提高,在凯斯西储大学(CWRU)数据集上的准确率可达99.50%,表现出较高的准确性和稳定性,并在与其他对比方法的比较中展现出较高的优势。该研究可为工业设备的智能维护和故障诊断提供新的方法和思路,为实现更精确和更高效的故障诊断提供理论依据。 展开更多
关键词 轴承故障诊断 多尺度特征提取 增强高效空间金字塔 多尺度全维动态卷积网络 双跳跃连接机制 故障诊断模型
在线阅读 下载PDF
基于卷积神经网络的IT设备运行故障自动化监测技术
19
作者 贺雯静 《电子设计工程》 2025年第17期80-84,共5页
为保障IT设备稳定运行,提出基于卷积神经网络的IT设备运行故障自动化监测技术。构建IT设备运行故障自动化监测模型结构,将所采集的信息中用于训练的部分输入至输入层;卷积层针对运行故障信息,通过卷积运算提取运行故障特征;池化层对提... 为保障IT设备稳定运行,提出基于卷积神经网络的IT设备运行故障自动化监测技术。构建IT设备运行故障自动化监测模型结构,将所采集的信息中用于训练的部分输入至输入层;卷积层针对运行故障信息,通过卷积运算提取运行故障特征;池化层对提取的特征实施降维处理;全连接层整合特征,获取预测结果;分类层采用Softmax多分类器对故障预测结果进行分类。采用跳跃连接卷积结构改进卷积神经网络,进行参数反向优化,通过调整网络参数提升模型性能。实验结果显示,该技术在学习步长为2、卷积核数量为80的条件下,监测的DBI指数快速从1下降至0.13左右,各类故障停工时间下降幅度均在50%以上。 展开更多
关键词 卷积神经网络 IT设备 运行故障 自动化监测 跳跃连接 Adam算法
在线阅读 下载PDF
深度复数轴向自注意力卷积循环网络的语音增强 被引量:3
20
作者 曹洁 王乔 +3 位作者 梁浩鹏 王宸章 李晓旭 于泓 《计算机系统应用》 2024年第4期60-68,共9页
单通道语音增强任务中相位估计不准确会导致增强语音的质量较差,针对这一问题,提出了一种基于深度复数轴向自注意力卷积循环网络(deep complex axial self-attention convolutional recurrent network,DCACRN)的语音增强方法,在复数域... 单通道语音增强任务中相位估计不准确会导致增强语音的质量较差,针对这一问题,提出了一种基于深度复数轴向自注意力卷积循环网络(deep complex axial self-attention convolutional recurrent network,DCACRN)的语音增强方法,在复数域同时实现了语音幅度信息和相位信息的增强.首先使用基于复数卷积网络的编码器从输入语音信号中提取复数表示的特征,并引入卷积跳连模块用以将特征映射到高维空间进行特征融合,加强信息间的交互和梯度的流动.然后设计了基于轴向自注意力机制的编码器-解码器结构,利用轴向自注意力机制来增强模型的时序建模能力和特征提取能力.最后通过解码器实现对语音信号的重构,同时利用混合损失函数优化网络模型,提升增强语音信号的质量.实验在公开数据集Valentini和DNS Challenge上进行,结果表明所提方法相对于其他模型在客观语音质量评估(perceptual evaluation of speech quality,PESQ)和短时客观可懂度(short-time objective intelligibility,STOI)两项指标上均有提升,在非混响数据集中,PESQ比DCTCRN(deep cosine transform convolutional recurrent network)提高了12.8%,比DCCRN(deep complex convolutional recurrent network)提高了3.9%,验证了该网络模型在语音增强任务中的有效性. 展开更多
关键词 单通道语音增强 复数卷积循环网络 卷积跳连 轴向自注意力机制
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部