Extreme mortality bonds(EMBs),which can transfer the extreme mortality risks confronted by life insurance companies into the capital market,refer to the bonds whose nominal values or coupons are associated with mortal...Extreme mortality bonds(EMBs),which can transfer the extreme mortality risks confronted by life insurance companies into the capital market,refer to the bonds whose nominal values or coupons are associated with mortality index.This paper first provides the expected value of mortality index based on the double exponential jump diffusion(DEJD)model under the risk-neutral measure;then derives the pricing models of the EMBs with principal reimbursement non-cumulative and cumulative threshold respectively;finally simulates the bond prices and conducts a parameter sensitivity analysis.This paper finds that the jump and direction characteristics of mortality index have significant impacts on the accuracy of the EMB pricing.展开更多
This paper discusses the valuation of the Credit Default Swap based on a jump market, in which the asset price of a firm follows a double exponential jump diffusion process, the value of the debt is driven by a geomet...This paper discusses the valuation of the Credit Default Swap based on a jump market, in which the asset price of a firm follows a double exponential jump diffusion process, the value of the debt is driven by a geometric Brownian motion, and the default barrier follows a continuous stochastic process. Using the Gaver-Stehfest algorithm and the non-arbitrage asset pricing theory, we give the default probability of the first passage time, and more, derive the price of the Credit Default Swap.展开更多
A stochastic maximum principle for the risk-sensitive optimal control prob- lem of jump diffusion processes with an exponential-of-integral cost functional is derived assuming that the value function is smooth, where ...A stochastic maximum principle for the risk-sensitive optimal control prob- lem of jump diffusion processes with an exponential-of-integral cost functional is derived assuming that the value function is smooth, where the diffusion and jump term may both depend on the control. The form of the maximum principle is similar to its risk-neutral counterpart. But the adjoint equations and the maximum condition heavily depend on the risk-sensitive parameter. As applications, a linear-quadratic risk-sensitive control problem is solved by using the maximum principle derived and explicit optimal control is obtained.展开更多
The hedging problem for insiders is very important in the financial market.The locally risk minimizing hedging was adopted to solve this problem.Since the market was incomplete,the minimal martingale measure was chose...The hedging problem for insiders is very important in the financial market.The locally risk minimizing hedging was adopted to solve this problem.Since the market was incomplete,the minimal martingale measure was chosen as the equivalent martingale measure.By the F-S decomposition,the expression of the locally risk minimizing strategy was presented.Finally,the local risk minimization was applied to index tracking and its relationship with tracking error variance (TEV)-minimizing strategy was obtained.展开更多
The behaviour of stocks on the Ghana stock exchange is examined to show that stock prices on the exchange are subject to sudden price changes. It is shown that such unexpected events and uncertainties affecting tradin...The behaviour of stocks on the Ghana stock exchange is examined to show that stock prices on the exchange are subject to sudden price changes. It is shown that such unexpected events and uncertainties affecting trading on the exchange cannot be modeled solely by the conventional geometric Brownian motion outlined in the Black-Scholes model. A new concise and simpler approach is developed to derive the Jump diffusion model and consequently, its suitability to model stocks on the exchange is emphasized and given rigorous treatment. The model is subsequently used to predict the behaviour of stocks using historical stock prices as input parameters. The simulated stock returns are compared to actual returns to determine the model’s suitability to predict the market. The results show that the jump diffusion model is appropriate in predicting the behaviour of approximately 25% percent of stocks listed on the exchange.展开更多
Structural models of credit risk are known to present vanishing spreads at very short maturities. This shortcoming, which is due to the diffusive behavior assumed for asset values, can be circumvented by considering d...Structural models of credit risk are known to present vanishing spreads at very short maturities. This shortcoming, which is due to the diffusive behavior assumed for asset values, can be circumvented by considering discontinuities of the jump type in their evolution over time. In this paper, we extend the pricing model for corporate bond and determine the default probability in jump-diffusion model to address this issue. To make the problem clearly, we first investigate the case that the firm value follows a geometric Brownian motion under similar assumptions to those in Black and Scholes(1973), Briys and de Varenne(1997), i.e, the default barrier is KD (t, T) and the recovery rate is (1 -w), where D (t, T) is the price of zero coupon default free bond and w is a constant (0 〈 w 〈 1). By changing the numeraire, we obtain the closed-form solution for both the price of bond and default probability. Further, we consider the case of jump-diffusion and suppose that a firm will go bankruptcy if its value Vt 〈 KD (t, T) and at the same time, the bondholder will receive (1 - w) vt/k By introducing the Green function of PDE with absorbing boundary and converting the problem to an II-type Volterra integral equation, we get the closed-form expressions in series form for bond price and corresponding default probability. Numerical results are presented to show the impact of different parameters to credit spread of bond.展开更多
The authors prove a sufficient stochastic maximum principle for the optimal control of a forward-backward Markov regime switching jump diffusion system and show its connection to dynamic programming principle. The res...The authors prove a sufficient stochastic maximum principle for the optimal control of a forward-backward Markov regime switching jump diffusion system and show its connection to dynamic programming principle. The result is applied to a cash flow valuation problem with terminal wealth constraint in a financial market. An explicit optimal strategy is obtained in this example.展开更多
We investigate periodic solutions of regime-switching jump diffusions.We first show the well-posedness of solutions to stochastic differential equations corresponding to the hybrid system.Then,we derive the strong Fel...We investigate periodic solutions of regime-switching jump diffusions.We first show the well-posedness of solutions to stochastic differential equations corresponding to the hybrid system.Then,we derive the strong Feller property and irreducibility of the associated time-inhomogeneous semigroups.Finally,we establish the existence and uniqueness of periodic solutions.Concrete examples are presented to illustrate the results.展开更多
In this study,we aim at developing a model for option pricing to reduce the risks associated with Ethiopian coffee price fluctuations.We used daily closed Washed Sidama class A Grade3(WSDA3)coffee price recorded in th...In this study,we aim at developing a model for option pricing to reduce the risks associated with Ethiopian coffee price fluctuations.We used daily closed Washed Sidama class A Grade3(WSDA3)coffee price recorded in the period 31 May 2011 to 30 March 2018 obtained from Ethiopia commodity exchange(ECX)market to analyse the price fluctuation.The nature of log-returns of the price is asymmetric(negatively skewed)and exhibits high kurtosis.We used jump diffusion models for modeling and option pricing the coffee price.The method of maximum likelihood is applied to estimate the parameters of the models.We used the root mean square error(RMSE)to test the validation of the models.The values of RMSE for Merton’s and double exponential jump diffusion models are 0.1093 and 0.0783,respectively.These results indicate that the models fit the data very well.We used analytical and Monte Carlo technique to find the call option pricing of WSDA3 price.Based on the empirical results,we concluded that double exponential jump diffusion model is more efficient than Merton’s model for modeling and option pricing of this coffee price.展开更多
Stochastic optimal control problems for a class of reflected diffusion with Poisson jumps in a half-space are considered. The nonlinear Nisio' s semigroup for such optimal control problems was constructed. A Hamil...Stochastic optimal control problems for a class of reflected diffusion with Poisson jumps in a half-space are considered. The nonlinear Nisio' s semigroup for such optimal control problems was constructed. A Hamilton-Jacobi-Bellman equation with the Neumann boundary condition associated with this semigroup was obtained. Then, viscosity solutions of this equation were defined and discussed, and various uniqueness of this equation was also considered. Finally, the value function was such optimal control problems is shown to be a viscosity solution of this equation.展开更多
Although Geometric Brownian Motion and Jump Diffusion Models have largely dominated the literature on asset price modeling, studies of the empirical stock price data on the Ghana Stock Exchange have led to the conclus...Although Geometric Brownian Motion and Jump Diffusion Models have largely dominated the literature on asset price modeling, studies of the empirical stock price data on the Ghana Stock Exchange have led to the conclusion that there are some stocks in which the return processes consistently depart from these models in theory as well as in its statistical properties. This paper gives a fundamental review of the development of a stock price model based on pure jump processes to capture the unique behavior exhibited by some stocks on the Exchange. Although pure jump processes have been examined thoroughly by other authors, there is a lack of mathematical clarity in terms of deriving the underlying stock price process. This paper provides a link between stock prices existing on a measure space to its development as a pure jump Levy process. We test the suitability of the model to the empirical evidence using numerical procedures. The simulation results show that the trajectories of the model are a better fit for the empirical data than those produced by the diffusion and jump diffusion models.展开更多
In this paper the insurer's solvency ratio model with or without jump diffusion process in the presence of financial distress cost is constructed, where an insurer's solvency ratio is characterized by a Markov-modul...In this paper the insurer's solvency ratio model with or without jump diffusion process in the presence of financial distress cost is constructed, where an insurer's solvency ratio is characterized by a Markov-modulated dynamics. By Girsanov's theorem and the option pricing formula, the expected present value of shareholders' terminal payoff is provided.展开更多
We study optimal investment and proportional reinsurance strategy in the presence of inside information. The risk process is assumed to follow a compound Poisson process perturbed by a standard Brownian motion. The in...We study optimal investment and proportional reinsurance strategy in the presence of inside information. The risk process is assumed to follow a compound Poisson process perturbed by a standard Brownian motion. The insurer is allowed to invest in a risk-free asset and a risky asset as well as to purchase proportional reinsurance. In addition, it has some extra information available from the beginning of the trading interval, thus introducing in this way inside information aspects to our model. We consider two optimization problems: the problem of maximizing the expected exponential utility of terminal wealth with and without inside information, respectively. By solving the corresponding Hamilton-Jacobi-Bellman equations, explicit expressions for their optimal value functions and the corresponding optimal strategies are obtained. Finally, we discuss the effects of parameters on the optimal strategy and the effect of the inside information by numerical simulations.展开更多
This paper deals with numerical solutions of nonlinear stiff stochastic differential equations with jump-diffusion and piecewise continuous arguments.By combining compensated split-step methods and balanced methods,a ...This paper deals with numerical solutions of nonlinear stiff stochastic differential equations with jump-diffusion and piecewise continuous arguments.By combining compensated split-step methods and balanced methods,a class of compensated split-step balanced(CSSB)methods are suggested for solving the equations.Based on the one-sided Lipschitz condition and local Lipschitz condition,a strong convergence criterion of CSSB methods is derived.It is proved under some suitable conditions that the numerical solutions produced by CSSB methods can preserve the mean-square exponential stability of the corresponding analytical solutions.Several numerical examples are presented to illustrate the obtained theoretical results and the effectiveness of CSSB methods.Moreover,in order to show the computational advantage of CSSB methods,we also give a numerical comparison with the adapted split-step backward Euler methods with or without compensation and tamed explicit methods.展开更多
A class of hybrid jump diffusions modulated by a Markov chain is considered in this work. The motivation stems from insurance risk models, and emerging applications in production planning and wireless communications. ...A class of hybrid jump diffusions modulated by a Markov chain is considered in this work. The motivation stems from insurance risk models, and emerging applications in production planning and wireless communications. The models are hybrid in that they involve both continuous dynamics and discrete events. Under suitable conditions, asymptotic expansions of the transition densities for the underlying processes are developed. The formal expansions are validated and the error bounds obtained.展开更多
The main purpose of this thesis is in analyzing and empirically simulating risk minimizing European foreign exchange option pricing and hedging strategy when the spot foreign exchange rate is governed by a Markov-modu...The main purpose of this thesis is in analyzing and empirically simulating risk minimizing European foreign exchange option pricing and hedging strategy when the spot foreign exchange rate is governed by a Markov-modulated jump-diffusion model. The domestic and foreign money market interest rates, the drift and the volatility of the exchange rate dynamics all depend on a continuous-time hidden Markov chain which can be interpreted as the states of a macro-economy. In this paper, we will provide a practical lognormal diffusion dynamic of the spot foreign exchange rate for market practitioners. We employing the minimal martingale measure to demonstrate a system of coupled partial-differential-integral equations satisfied by the currency option price and attain the corresponding hedging schemes and the residual risk. Numerical simulations of the double exponential jump diffusion regime-switching model are used to illustrate the different effects of the various parameters on currency option prices.展开更多
In this paper, we are concerned with the problem of the pathwise uniqueness of one-dimensional reflected stochastic differential equations with jumps under the assumption of non-Lipschitz continuous coefficients whose...In this paper, we are concerned with the problem of the pathwise uniqueness of one-dimensional reflected stochastic differential equations with jumps under the assumption of non-Lipschitz continuous coefficients whose proof are based on the technique of local time.展开更多
This paper considers the problem of partially observed optimal control for forward-backward stochastic systems driven by Brownian motions and an independent Poisson random measure with a feature that the cost function...This paper considers the problem of partially observed optimal control for forward-backward stochastic systems driven by Brownian motions and an independent Poisson random measure with a feature that the cost functional is of mean-field type. When the coefficients of the system and the objective performance functionals are allowed to be random, possibly non-Markovian, Malliavin calculus is employed to derive a maximum principle for the optimal control of such a system where the adjoint process is explicitly expressed. The authors also investigate the mean-field type optimal control problem for the system driven by mean-field type forward-backward stochastic differential equations(FBSDEs in short) with jumps, where the coefficients contain not only the state process but also its expectation under partially observed information. The maximum principle is established using convex variational technique. An example is given to illustrate the obtained results.展开更多
We study the existence and uniqueness of a solution to path-dependent backward stochastic Volterra integral equations(BSVIEs)with jumps,where path-dependence means the dependence of the free term and generator of a pa...We study the existence and uniqueness of a solution to path-dependent backward stochastic Volterra integral equations(BSVIEs)with jumps,where path-dependence means the dependence of the free term and generator of a path of a c`adl`ag process.Furthermore,we prove path-differentiability of such a solution and establish the duality principle between a linear path-dependent forward stochastic Volterra integral equation(FSVIE)with jumps and a linear path-dependent BSVIE with jumps.As a result of the duality principle we get a comparison theorem and derive a class of dynamic coherent risk measures based on path-dependent BSVIEs with jumps.展开更多
文摘Extreme mortality bonds(EMBs),which can transfer the extreme mortality risks confronted by life insurance companies into the capital market,refer to the bonds whose nominal values or coupons are associated with mortality index.This paper first provides the expected value of mortality index based on the double exponential jump diffusion(DEJD)model under the risk-neutral measure;then derives the pricing models of the EMBs with principal reimbursement non-cumulative and cumulative threshold respectively;finally simulates the bond prices and conducts a parameter sensitivity analysis.This paper finds that the jump and direction characteristics of mortality index have significant impacts on the accuracy of the EMB pricing.
基金Supported by The National Natural Science Foundation of China(71261015)Humanity and Social Science Youth Foundation of Education Ministry in China(10YJC630334)Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region
文摘This paper discusses the valuation of the Credit Default Swap based on a jump market, in which the asset price of a firm follows a double exponential jump diffusion process, the value of the debt is driven by a geometric Brownian motion, and the default barrier follows a continuous stochastic process. Using the Gaver-Stehfest algorithm and the non-arbitrage asset pricing theory, we give the default probability of the first passage time, and more, derive the price of the Credit Default Swap.
基金supported by the National Basic Research Program of China (973 Program, 2007CB814904)the National Natural Science Foundations of China (10921101)+2 种基金Shandong Province (2008BS01024, ZR2010AQ004)the Science Funds for Distinguished Young Scholars of Shandong Province (JQ200801)Shandong University (2009JQ004),the Independent Innovation Foundations of Shandong University (IIFSDU,2009TS036, 2010TS060)
文摘A stochastic maximum principle for the risk-sensitive optimal control prob- lem of jump diffusion processes with an exponential-of-integral cost functional is derived assuming that the value function is smooth, where the diffusion and jump term may both depend on the control. The form of the maximum principle is similar to its risk-neutral counterpart. But the adjoint equations and the maximum condition heavily depend on the risk-sensitive parameter. As applications, a linear-quadratic risk-sensitive control problem is solved by using the maximum principle derived and explicit optimal control is obtained.
基金The China Scholarship Council,the National Basic Research Program(2009CB219301) of China(973) in partthe National Public Benefit Scientific Research Foundation(201011078) of China+2 种基金the National Innovation Research Project for Exploration and Development of Oil Shale(OSP-02 and OSR-02)the NSF(41304087,11071026,61133011,61170092,60973088,61202308,11001100,11171131 and 11026043) of Chinathe Basic Research Foundation of Jilin University in 2012
文摘In this paper, we have studied the necessary maximum principle of stochastic optimal control problem with delay and jump diffusion.
基金National Natural Science Foundations of China (No. 11071076,No. 11126124)
文摘The hedging problem for insiders is very important in the financial market.The locally risk minimizing hedging was adopted to solve this problem.Since the market was incomplete,the minimal martingale measure was chosen as the equivalent martingale measure.By the F-S decomposition,the expression of the locally risk minimizing strategy was presented.Finally,the local risk minimization was applied to index tracking and its relationship with tracking error variance (TEV)-minimizing strategy was obtained.
文摘The behaviour of stocks on the Ghana stock exchange is examined to show that stock prices on the exchange are subject to sudden price changes. It is shown that such unexpected events and uncertainties affecting trading on the exchange cannot be modeled solely by the conventional geometric Brownian motion outlined in the Black-Scholes model. A new concise and simpler approach is developed to derive the Jump diffusion model and consequently, its suitability to model stocks on the exchange is emphasized and given rigorous treatment. The model is subsequently used to predict the behaviour of stocks using historical stock prices as input parameters. The simulated stock returns are compared to actual returns to determine the model’s suitability to predict the market. The results show that the jump diffusion model is appropriate in predicting the behaviour of approximately 25% percent of stocks listed on the exchange.
基金Supported by the National Basic Research Program of China(973 Program)(2007CB814903)
文摘Structural models of credit risk are known to present vanishing spreads at very short maturities. This shortcoming, which is due to the diffusive behavior assumed for asset values, can be circumvented by considering discontinuities of the jump type in their evolution over time. In this paper, we extend the pricing model for corporate bond and determine the default probability in jump-diffusion model to address this issue. To make the problem clearly, we first investigate the case that the firm value follows a geometric Brownian motion under similar assumptions to those in Black and Scholes(1973), Briys and de Varenne(1997), i.e, the default barrier is KD (t, T) and the recovery rate is (1 -w), where D (t, T) is the price of zero coupon default free bond and w is a constant (0 〈 w 〈 1). By changing the numeraire, we obtain the closed-form solution for both the price of bond and default probability. Further, we consider the case of jump-diffusion and suppose that a firm will go bankruptcy if its value Vt 〈 KD (t, T) and at the same time, the bondholder will receive (1 - w) vt/k By introducing the Green function of PDE with absorbing boundary and converting the problem to an II-type Volterra integral equation, we get the closed-form expressions in series form for bond price and corresponding default probability. Numerical results are presented to show the impact of different parameters to credit spread of bond.
基金supported by the National Natural Science Foundation of China(No.61573217)the 111 Project(No.B12023)the National High-level Personnel of Special Support Program and the Chang Jiang Scholar Program of the Ministry of Education of China
文摘The authors prove a sufficient stochastic maximum principle for the optimal control of a forward-backward Markov regime switching jump diffusion system and show its connection to dynamic programming principle. The result is applied to a cash flow valuation problem with terminal wealth constraint in a financial market. An explicit optimal strategy is obtained in this example.
基金The authors thank the referees for the careful reading of their paper and all of the insightful suggestions and comments that greatly improved the presentation of the paper.This work was supported by the research fund from Shanxi Province Department of Finance and Education for Ph.D.Graduates to Work in Shanxi(No.2021-18,125/Z24179)and the Natural Sciences and Engineering Research Council of Canada(No.4394-2018).
文摘We investigate periodic solutions of regime-switching jump diffusions.We first show the well-posedness of solutions to stochastic differential equations corresponding to the hybrid system.Then,we derive the strong Feller property and irreducibility of the associated time-inhomogeneous semigroups.Finally,we establish the existence and uniqueness of periodic solutions.Concrete examples are presented to illustrate the results.
文摘In this study,we aim at developing a model for option pricing to reduce the risks associated with Ethiopian coffee price fluctuations.We used daily closed Washed Sidama class A Grade3(WSDA3)coffee price recorded in the period 31 May 2011 to 30 March 2018 obtained from Ethiopia commodity exchange(ECX)market to analyse the price fluctuation.The nature of log-returns of the price is asymmetric(negatively skewed)and exhibits high kurtosis.We used jump diffusion models for modeling and option pricing the coffee price.The method of maximum likelihood is applied to estimate the parameters of the models.We used the root mean square error(RMSE)to test the validation of the models.The values of RMSE for Merton’s and double exponential jump diffusion models are 0.1093 and 0.0783,respectively.These results indicate that the models fit the data very well.We used analytical and Monte Carlo technique to find the call option pricing of WSDA3 price.Based on the empirical results,we concluded that double exponential jump diffusion model is more efficient than Merton’s model for modeling and option pricing of this coffee price.
文摘Stochastic optimal control problems for a class of reflected diffusion with Poisson jumps in a half-space are considered. The nonlinear Nisio' s semigroup for such optimal control problems was constructed. A Hamilton-Jacobi-Bellman equation with the Neumann boundary condition associated with this semigroup was obtained. Then, viscosity solutions of this equation were defined and discussed, and various uniqueness of this equation was also considered. Finally, the value function was such optimal control problems is shown to be a viscosity solution of this equation.
文摘Although Geometric Brownian Motion and Jump Diffusion Models have largely dominated the literature on asset price modeling, studies of the empirical stock price data on the Ghana Stock Exchange have led to the conclusion that there are some stocks in which the return processes consistently depart from these models in theory as well as in its statistical properties. This paper gives a fundamental review of the development of a stock price model based on pure jump processes to capture the unique behavior exhibited by some stocks on the Exchange. Although pure jump processes have been examined thoroughly by other authors, there is a lack of mathematical clarity in terms of deriving the underlying stock price process. This paper provides a link between stock prices existing on a measure space to its development as a pure jump Levy process. We test the suitability of the model to the empirical evidence using numerical procedures. The simulation results show that the trajectories of the model are a better fit for the empirical data than those produced by the diffusion and jump diffusion models.
基金Supported by National Natural Science Foundation of China (10671182)Anhui Natural Science Foundation (090416225)+1 种基金Anhui Natural Science Foundation of Universities (KJ2010A037, KJ2010B026)Anhui Natural Science Foundation (10040606Q03)
文摘In this paper the insurer's solvency ratio model with or without jump diffusion process in the presence of financial distress cost is constructed, where an insurer's solvency ratio is characterized by a Markov-modulated dynamics. By Girsanov's theorem and the option pricing formula, the expected present value of shareholders' terminal payoff is provided.
基金Acknowledgements This work was supported in part by FDCT 076/2012/A3, SRG022- FST12-XJ, the Natural Science Foundation of Hebei Province (Grant No. A2014202202), and the National Natural Science Foundation of China (Grant No. 11301376).
文摘We study optimal investment and proportional reinsurance strategy in the presence of inside information. The risk process is assumed to follow a compound Poisson process perturbed by a standard Brownian motion. The insurer is allowed to invest in a risk-free asset and a risky asset as well as to purchase proportional reinsurance. In addition, it has some extra information available from the beginning of the trading interval, thus introducing in this way inside information aspects to our model. We consider two optimization problems: the problem of maximizing the expected exponential utility of terminal wealth with and without inside information, respectively. By solving the corresponding Hamilton-Jacobi-Bellman equations, explicit expressions for their optimal value functions and the corresponding optimal strategies are obtained. Finally, we discuss the effects of parameters on the optimal strategy and the effect of the inside information by numerical simulations.
基金supported by National Natural Science Foundation of China(Grant No.11971010)Scientific Research Project of Education Department of Hubei Province(Grant No.B2019184)。
文摘This paper deals with numerical solutions of nonlinear stiff stochastic differential equations with jump-diffusion and piecewise continuous arguments.By combining compensated split-step methods and balanced methods,a class of compensated split-step balanced(CSSB)methods are suggested for solving the equations.Based on the one-sided Lipschitz condition and local Lipschitz condition,a strong convergence criterion of CSSB methods is derived.It is proved under some suitable conditions that the numerical solutions produced by CSSB methods can preserve the mean-square exponential stability of the corresponding analytical solutions.Several numerical examples are presented to illustrate the obtained theoretical results and the effectiveness of CSSB methods.Moreover,in order to show the computational advantage of CSSB methods,we also give a numerical comparison with the adapted split-step backward Euler methods with or without compensation and tamed explicit methods.
基金Supported in part by the National Science Foundation under DMS-0304928 and in part by Wayne State University Research Enhancement Program.
文摘A class of hybrid jump diffusions modulated by a Markov chain is considered in this work. The motivation stems from insurance risk models, and emerging applications in production planning and wireless communications. The models are hybrid in that they involve both continuous dynamics and discrete events. Under suitable conditions, asymptotic expansions of the transition densities for the underlying processes are developed. The formal expansions are validated and the error bounds obtained.
基金Supported by the National Natural Science Foundation of China(No.11301454,No.71771147 and No.71201100)the Jiangsu Qing Lan Project for Excellent Young Teachers in University(2014)+1 种基金Six Talent Peaks Project in Jiangsu Province(2016-JY-081)the Natural Science Foundation for Colleges and Universities in Jiangsu Province(17KJB110020)
文摘The main purpose of this thesis is in analyzing and empirically simulating risk minimizing European foreign exchange option pricing and hedging strategy when the spot foreign exchange rate is governed by a Markov-modulated jump-diffusion model. The domestic and foreign money market interest rates, the drift and the volatility of the exchange rate dynamics all depend on a continuous-time hidden Markov chain which can be interpreted as the states of a macro-economy. In this paper, we will provide a practical lognormal diffusion dynamic of the spot foreign exchange rate for market practitioners. We employing the minimal martingale measure to demonstrate a system of coupled partial-differential-integral equations satisfied by the currency option price and attain the corresponding hedging schemes and the residual risk. Numerical simulations of the double exponential jump diffusion regime-switching model are used to illustrate the different effects of the various parameters on currency option prices.
基金supported by the National Natural Science Foundation of China (No.12261038, 11671408 and11871484)Natural Science Foundation of Jiangxi Province (No.20232BAB201004, 20212BAB201009)Training Program of Young Talents for academic and technical leaders of major disciplines in Jiangxi Province(No.20204BCJL23057)。
文摘In this paper, we are concerned with the problem of the pathwise uniqueness of one-dimensional reflected stochastic differential equations with jumps under the assumption of non-Lipschitz continuous coefficients whose proof are based on the technique of local time.
基金supported by the National Natural Science Foundation of China under Grant Nos.11471051 and 11371362the Teaching Mode Reform Project of BUPT under Grant No.BUPT2015JY52+5 种基金supported by the National Natural Science Foundation of China under Grant No.11371029the Natural Science Foundation of Anhui Province under Grant No.1508085JGD10supported by the National Natural Science Foundation of China under Grant No.71373043the National Social Science Foundation of China under Grant No.14AZD121the Scientific Research Project Achievement of UIBE NetworkingCollaboration Center for China’s Multinational Business under Grant No.201502YY003A
文摘This paper considers the problem of partially observed optimal control for forward-backward stochastic systems driven by Brownian motions and an independent Poisson random measure with a feature that the cost functional is of mean-field type. When the coefficients of the system and the objective performance functionals are allowed to be random, possibly non-Markovian, Malliavin calculus is employed to derive a maximum principle for the optimal control of such a system where the adjoint process is explicitly expressed. The authors also investigate the mean-field type optimal control problem for the system driven by mean-field type forward-backward stochastic differential equations(FBSDEs in short) with jumps, where the coefficients contain not only the state process but also its expectation under partially observed information. The maximum principle is established using convex variational technique. An example is given to illustrate the obtained results.
文摘We study the existence and uniqueness of a solution to path-dependent backward stochastic Volterra integral equations(BSVIEs)with jumps,where path-dependence means the dependence of the free term and generator of a path of a c`adl`ag process.Furthermore,we prove path-differentiability of such a solution and establish the duality principle between a linear path-dependent forward stochastic Volterra integral equation(FSVIE)with jumps and a linear path-dependent BSVIE with jumps.As a result of the duality principle we get a comparison theorem and derive a class of dynamic coherent risk measures based on path-dependent BSVIEs with jumps.