Waterproof performance of gaskets between segments is the focus of shield tunnels.This paper proposed an analytical method for determining seepage characteristics at tunnel-gasketed joints based on the hydraulic fract...Waterproof performance of gaskets between segments is the focus of shield tunnels.This paper proposed an analytical method for determining seepage characteristics at tunnel-gasketed joints based on the hydraulic fracturing theories.First,the mathematical model was established,and the seepage governing equation and boundary conditions were obtained.Second,three dimensionless parameters were introduced for simplifying the expressions,and the seepage governing equations were normalized.Third,analytical expressions were derived for the interface opening and liquid pressure.Moreover,the influencing factors of seepage process at the gasketed interface were analyzed.Parametric analyses revealed that,in the normalized criterion of liquid viscosity,the liquid tip coordinate was influenced by the degree of negative pressure in the liquid lag region,which was related to the initial contact stress.The coordinate of the liquid tip affected the liquid pressure distribution and the interface opening,which were analyzed under different liquid tip coordinate conditions.Finally,under two limit states,comparative analysis showed that the results of the variation trend of the proposed method agree well with those of previous research.Overall,the proposed analytical method provides a novel solution for the design of the waterproof in shield tunnels.展开更多
The corrosion behavior and microstructure characteristics of metal inert gas(MIG)welded dissimilar joints of the 6005A alloy modified with Sc(designated as 6005A+Sc)and the 5083 alloy were investigated using corrosion...The corrosion behavior and microstructure characteristics of metal inert gas(MIG)welded dissimilar joints of the 6005A alloy modified with Sc(designated as 6005A+Sc)and the 5083 alloy were investigated using corrosion tests and microscopy techniques.Results show that the dissimilar joints exhibit strong stress corrosion cracking(SCC)resistance,maintaining substantial strength during slow strain rate tensile tests.Notably,the heat-affected zone(HAZ)and base metal(BM)on the 6005A+Sc side show superior performance in terms of inter-granular corrosion(IGC)and exfoliation corrosion(EXCO)compared to the corresponding zones on the 5083 side.The lower corrosion resistance of the 5083-BM and the 5083-HAZ can be attributed to the presence of numerous Al_(2)Mg_(3)phases and micro-scaled Al_(6)(Mn,Fe)intermetallics,mainly distributed along the rolling direction.Conversely,the enhanced corrosion resistance of the 6005A+Sc-BM and the 6005A+Sc-HAZ can be attributed to the discontinuously distributed grain boundary precipitates(β-Mg_(2)Si),the smaller grain size,and the reduced corrosive current density.展开更多
A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that th...A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that the loading parameters(initial normal stress,normal stiffness,and shear velocity)determine propagation paths of the wing and secondary cracks in rock bridges during the initial shear cycle,creating different morphologies of macroscopic step-path rupture surfaces and asperities on them.The differences in stress state and rupture surface induce different cyclic shear responses.It shows that high initial normal stress accelerates asperity degradation,raises shear resistance,and promotes compression of intermittent joints.In addition,high normal stiffness provides higher normal stress and shear resistance during the initial cycles and inhibits the dilation and compression of intermittent joints.High shear velocity results in a higher shear resistance,greater dilation,and greater compression.Finally,shear strength is most sensitive to initial normal stress,followed by shear velocity and normal stiffness.Moreover,average dilation angle is most sensitive to initial normal stress,followed by normal stiffness and shear velocity.During the shear cycles,frictional coefficient is affected by asperity degradation,backfilling of rock debris,and frictional area,exhibiting a non-monotonic behavior.展开更多
Cu–Ni and Cu–Co–Ni superhydrophobic films were constructed on the surface of B10 copper–nickel alloy welded joints using a two-step process of electrodeposition and stearic acid modification.The chemical compositi...Cu–Ni and Cu–Co–Ni superhydrophobic films were constructed on the surface of B10 copper–nickel alloy welded joints using a two-step process of electrodeposition and stearic acid modification.The chemical composition of the film surface was determined using surface characterization techniques.The corrosion resistance of the films was characterized using electrochemical impedance spectroscopy,potentiodynamic polarization,and scanning Kelvin probe microscopy at multiple scales.The thermal stability,mechanical stability,and self-cleaning properties of the films were also characterized.It was determined that the Cu–Co–Ni superhydrophobic film exhibited the best performance,with a static water contact angle of 159.3°,a roll-off angle of 2.3°,a charge transfer resistance 3300 times higher than the substrate,a self-corrosion current density nearly three orders of magnitude lower,and a surface Kelvin potential increase of 420 mV.The film demonstrated good thermal stability,excellent mechanical stability,and outstanding self-cleaning properties.Combining with previous studies,it was found that Co elements in the film contribute to the formation of a uniform and dense film,Ni elements enhance the adhesion and corrosion resistance between the films,and the combination of Co and Ni elements promotes uniform surface potential and further improves the corrosion resistance and interfilm adhesion of the films.展开更多
[Objective]Traditional structural geology textbooks often provide outdated treatments of joints and veins,failing to reflect the significant advances made in the past three decades.This review seeks to address part of...[Objective]Traditional structural geology textbooks often provide outdated treatments of joints and veins,failing to reflect the significant advances made in the past three decades.This review seeks to address part of this gap by highlighting the significance of barren joints and veins in reconstructing both the directions and magnitudes of geological paleostresses.[Conclusion]Conjugate shear joints not only indicate the orientation of the three effective principal stresses but also imply differential stresses at least four times greater than the tensile strength of the brittle host rock.Exfoliation joints form under stress states ofσ_(1)≈σ_(2)>0>σ_(3),whereas polygonal columnar joints in sedimentary rocks reflectσ_(1)^(*)>>σ_(2)^(*)=σ_(3)^(*),allowing the tensile strength of rocks to be estimated.Tensile joints in brittle strong beds interlayered with ductile soft layers are primarily driven by tensile stresses transferred from interfacial shear stresses between the hard and soft layers,with joint saturation mainly controlled by tectonic strain.Under natural strain-rate conditions,the Weibull modulus and tensile strength of the strong layers,as well as the shear-flow strength of the ductile layers,can be inferred from the nonlinear relationship between joint spacing and bed thickness.Ladder-like orthogonal joints,which form under a stress state ofσ_(1)^(*)>>σ_(2)^(*)>σ_(3)^(*),divide strata into blocky units and,after weathering and erosion,give rise to characteristic castle-and tower-like landforms.Veins,as mineral-filled joints,provide spacing and thickness data that allow estimates of layer strain.Moreover,the nonlinear relationship between vein spacing and bed thickness permits quantification of the extent to which mineral precipitation restores the tensile strength of rock beds.The absence of ladder-like orthogonal veins is attributed to this strength recovery.[Significance]Collectively,these observations demonstrate the critical role of joints and veins in constraining both the magnitudes and orientations of geological paleostress fields.展开更多
Purpose–This study aims to investigate the fatigue behavior and failure modes of bolted lap joints using Modified Tensile Specimens(MTS)under various cyclic load conditions.Emphasis is placed on identifying the relat...Purpose–This study aims to investigate the fatigue behavior and failure modes of bolted lap joints using Modified Tensile Specimens(MTS)under various cyclic load conditions.Emphasis is placed on identifying the relationship between load amplitude,fatigue life,and damage progression in low-carbon steel assemblies.Design/methodology/approach–An experimental approach was adopted using MTS specimens fabricated from St 1203 cold-rolled steel,joined with Grade 8.8 M4 bolts.Cyclic fatigue tests were conducted under zerobased loading at seven distinct force levels.Fracture surfaces were visually analyzed to identify dominant failure mechanisms.Findings–The results revealed a strong inverse correlation between applied cyclic load and fatigue life.Three distinct failure modes were identified:bolt shear at high loads(5.4 kN),interface cracking and slippage at moderate loads(4.9–5.1 kN),and plate tearing or stable fatigue behavior at lower loads(54.1 kN).The results highlight a progressive transition in failure mechanisms,from bolt shear at high loads to plate tearing and interface cracking at lower loads,providing essential insights for fatigue-resistant bolted joint design.Originality/value–This study offers original insights into the fatigue behavior of bolted lap joints using MTS,a relatively underexplored configuration in fatigue assessment.By experimentally evaluating failure modes under varied cyclic load levels,the authors uncover critical transitions in damage mechanisms—from bolt shear to interface cracking and plate tearing—depending on the applied load.Unlike many existing studies focused on numerical modeling or bonded joints alone,this work provides empirical data rooted in real-world fastening conditions using cold-rolled low-carbon steel.展开更多
We present a grid-growth method to reconstruct 3D rock joints with arbitrary joint roughness and persistence.In the first step of this workflow,the joint model is divided into uniform grids.Then by adjusting the posit...We present a grid-growth method to reconstruct 3D rock joints with arbitrary joint roughness and persistence.In the first step of this workflow,the joint model is divided into uniform grids.Then by adjusting the positions of the grids,the joint morphology can be modified to construct models with desired joint roughness and persistence.Accordingly,numerous joint models with different joint roughness and persistence were built.The effects of relevant parameters(such as the number,height,slope of asperities,and the number,area of rock bridges)on the joint roughness coefficient(JRC)and joint persistence were investigated.Finally,an artificially split joint was reconstructed using the method,and the method's accuracy was evaluated by comparing the JRC of the models with that of the artificially split joint.The results showed that the proposed method can effectively control the JRC of joint models by adjusting the number,height,and slope of asperities.The method can also modify the joint persistence of joint models by adjusting the number and area of rock bridges.Additionally,the JRC of models obtained by our method agrees with that of the artificially split surface.Overall,the method demonstrated high accuracy for 3D rock joint reconstruction.展开更多
Technological advancements and the emphasis on reducing the use of hazardous materials,such as Pb,have led to the widely use of Sn-based Pb-free solder in advanced packaging technology.With the miniaturization of sold...Technological advancements and the emphasis on reducing the use of hazardous materials,such as Pb,have led to the widely use of Sn-based Pb-free solder in advanced packaging technology.With the miniaturization of solder joints,Sn-based micro solder joints often contain single or limitedβ-Sn grains.The strong anisotropy ofβ-Sn,which is significantly correlated with the reliability of the micro solder joints during service,requires the development of methods for controlling the orientations of theseβ-Sn grains.In this review,we focus on the anisotropy of theβ-Sn grains in micro solder joints and the interactions betweenβ-Sn grain orientation and reliability issues concerning electromigration(EM),thermomigration(TM),EM+TM,corrosion process,tensile and shear creep behavior,thermal cycling(TC)and cryogenic temperature.Furthermore,we summarize the strategies for controlling theβ-Sn orientation in micro solder joints.The methods include changing the solder joint size and composition,adding additives,nucleating on specific substrates and interfacial intermetallic compounds,with the aid of external loads during solidification process and introducing heredity effect of theβ-Sn texture during multi-reflow.Finally,the{101}and{301}twinning models with∼60°rotations about a common〈100〉are adopted to explain the mechanism ofβ-Sn grain nucleation and morphology.The shortcomings of the existing methods and the further potential for the development in the field are discussed to promote the application of Pb-free solders in advanced packaging.展开更多
Numerous slope failures have been reported during periods of water level fluctuations.Understanding the influence of water on the creep behavior of joints is essential for evaluating the long-term stability of slopes....Numerous slope failures have been reported during periods of water level fluctuations.Understanding the influence of water on the creep behavior of joints is essential for evaluating the long-term stability of slopes.This study focuses on the effects of drying-wetting cycles and soaking conditions on the long-term behavior of sandstone joints.A total of 12 multi-stage shear creep tests are carried out on sandstone joints subjected to varying drying-wetting cycles under both soaking and un-soaking conditions.Based on the experimental results,the influences of drying-wetting cycles as well as soaking conditions on the microstructure,shear creep displacement,strength,and failure morphologies of sandstone joints are investigated comprehensively.Results indicate that increasing drying-wetting cycles not only yields larger shear creep displacements but also leads to a negative exponential decrease in the strength of sandstone joints.Besides,soaking conditions strongly influence the creep behavior of sandstone joints.The failure strength and long-term strength of sandstone joints for soaked samples decrease by 13.6%–29.0%and 19.4%–37.5%,respectively,as compared to unsoaked samples.Furthermore,four distinct stages in the shear creep process were identified according to the results obtained from multi-stage shear creep tests and computerized tomography scans,and three creep failure modes of sandstone joints are thus determined.Finally,the influence mechanism of drying-wetting cycles and soaking conditions on the creep failure modes of sandstone joints is revealed.Drying-wetting cycles and soaking conditions diminish the influence of asperities on the shear creep behavior of joints,thereby reducing the resistance of joints to long-term deformation.展开更多
Understanding the anchorage performance of en-echelon joints under cyclic shear loading is crucial for optimizing support strategies in jointed rock masses.This study examines the anchorage effects on enechelon joints...Understanding the anchorage performance of en-echelon joints under cyclic shear loading is crucial for optimizing support strategies in jointed rock masses.This study examines the anchorage effects on enechelon joints with various orientations using laboratory cyclic shear tests.By comparing unbolted and bolted en-echelon joints,we analyze shear zone damage,shear properties,dilatancy,energy absorption,and acoustic emission characteristics to evaluate anchoring effects across shear cycles and joint orientations.Results reveal that bolted en-echelon joints experience more severe shear zone damage after cycles,with bolt deformation correlating to shear zone width.Bolted en-echelon joints exhibit faster shear strength deterioration and higher cumulative strength loss compared to unbolted ones,with losses ranging from 20.04%to 72.76%.The compressibility of en-echelon joints reduces the anchoring effect during shear cycles,leading to lower shear strength of bolted en-echelon joints in later stages of shear cycles compared to unbolted ones.Bolts reinforce en-echelon joints more effectively at non-positive angles,with the best performance observed at 0°and-60°.Anchorage accelerates the transition from rolling friction to sliding friction in the shear zone,enhancing energy absorption,which is crucial for rock projects under dynamic shear loading.Additionally,rock bolts expedite the transition of the cumulative AE hits and cumulative AE energy curves from rapid to steady growth,indicating that strong bolt-rock interactions accelerate crack initiation,propagation,and energy release.展开更多
Understanding the rate-dependent shear behavior of rough joints is crucial.This study explores the ratedependent shear behavior of rough joints through direct shear tests conducted under constant normal stiffness(CNS)...Understanding the rate-dependent shear behavior of rough joints is crucial.This study explores the ratedependent shear behavior of rough joints through direct shear tests conducted under constant normal stiffness(CNS)boundary conditions,with the shear failure process monitored using acoustic emission(AE)technology.As the shear rate increases,both the peak and ultimate shear stresses of rough joints exhibit a decrease,highlighting a pronounced rate-dependent behavior.Asperity degradation under different shear rates is effectively characterized by normalized AE counts,exhibiting a three-stage Sshaped trend:Stage I(quiescent),Stage II(growth),and Stage III(stable).The simultaneous occurrence of the lowest AE b-value and the highest AE amplitude closely aligns with the moment of peak shear stress.This synchronization suggests that AE events of significant energy are predominantly clustered around the peak shear stress,which critically influences the overall progression of failure.Three failure modes of asperities were categorized,including the biting-off failure mode(BFM),the climbing-sliding failure mode(CFM),and the hybrid biting-off and climbing-sliding failure mode(HFM).Analysis of the multifractal spectra reveals that both the multifractal spectrum width(Δα)and the fractal dimension variability(Δf)diminish as the shear rate increases,suggesting that the complexity of the failure modes is inversely related to the shear rate.With increasing shear rates,the dominant failure mode evolves from BFM to CFM.The research findings facilitate a comprehensive understanding of the ratedependent shear behavior of rough joints,providing valuable guidance for rational support in underground engineering.展开更多
To investigate the influence of different joint conditions on the rockburst of a circular tunnel,a true-triaxial test of rockburst with a single set of joint conditions was conducted.The rockburst incubation and evolu...To investigate the influence of different joint conditions on the rockburst of a circular tunnel,a true-triaxial test of rockburst with a single set of joint conditions was conducted.The rockburst incubation and evolution characteristics and acoustic emission evolution characteristics under different joint directions and joint dip angles were studied.The Weibull function was used to fit rockburst debris with different particle sizes and a single set of joints to obtain statistical results.The experimental results revealed that shear fracture rockburst occurred in samples with joints aligned with the tunnel strike as well as joints with inclination angles of 45°,60°,and 90°.Slab buckling–shear fracture rockburst was more likely to occur in samples with inclination angles of 0°and 30°.Slab buckling–shear fracture rockburst occurred in samples with joints crossing the tunnel strike as well as in samples with joints with inclination angles of 0°,30°,45°,60°,and 90°.The location of the rockburst pit was influenced by the joint inclination angle when the joints aligned with the tunnel strike.In contrast,when the joints crossed the tunnel strike,the location of the rockburst pit was independent of the joint inclination angle.The cumulative absolute energy of acoustic emission(AE)exhibited an overall upward trend with the increase in joint dip angle.The cumulative absolute energy of the AE of the jointed samples was greater than that of intact samples(without joints).Loading reached the rockburst stage in the samples with joints aligned with the tunnel strike and dip angles of 45°,60°,and 90°.Moreover,the peak value of AE cumulative absolute energy was the highest.These results can elucidate the evolution mechanism of rockburst in the surrounding rock of circular tunnels with a single set of joints in deep underground engineering.展开更多
Experimental tests are essential for evaluating S-N curves and assessing the fatigue life of welded joints.However,in the case of complex geometries,experimental tests often cannot provide the necessary stress-strain ...Experimental tests are essential for evaluating S-N curves and assessing the fatigue life of welded joints.However,in the case of complex geometries,experimental tests often cannot provide the necessary stress-strain data for specific materials and welded joints.Therefore,finite element(FE)analyses are frequently utilized to assess fatigue behavior in complex geometries and address the discontinuities induced by welding processes.In this study,the fatigue properties of titanium welded joints,produced using an innovative laser source and welded without the use of filler materials,were analyzed through numerical methods.Two different FEmethodswere applied to T-specimens fabricated from Ti6Al4V sheets:the hot-spot stress and notch-stress approach.The FE fatigue life predictions were validated using experimental fatigue test results.The Hot-Spot Stress method yielded a fatigue limit slightly below 100 MPa,demonstrating a consistent slope in the S-N response.Conversely,the Notch Stress method,using a 1 mm fictitious notch radius,indicated a higher fatigue strength corresponding to a range between 225 and 250MPa,providing amore conservative and localized fatigue estimate.Fatigue resistance in welded joints of steel and aluminum is commonly assessed using specific fatigue classes called“Fatigue Strength Classes(FAT)curves”and their associated S-N curves as recommended by the International Institute of Welding(IIW).However,no such FAT class assignments currently exist for titanium alloys.To address this gap,strain-based FAT curves were proposed by normalizing steel FAT curves using titanium’s elastic properties.This strain-based framework enables direct comparison across materials and provides a foundation for fatigue evaluation of titanium weldments.The author proposed a procedure to normalize steel FAT curves considering the different elastic material properties,enabling a comparison with Ti6Al4V data in terms of hot spot strain or notch strain.This approach facilitates the development of a universal framework for strain-based fatigue evaluation across different materials.展开更多
A steel-concrete composite cable-stayed bridge features integrated steel girders and concrete decks linked by shear connectors to support loads,but stress concentration in wet joints can lead to cracking.In-situ tests...A steel-concrete composite cable-stayed bridge features integrated steel girders and concrete decks linked by shear connectors to support loads,but stress concentration in wet joints can lead to cracking.In-situ tests were conducted on key sections of steel-concrete composite cable-stayed bridges to analyze the stress-strain evolution of wet joints under environmental factors,constraints,and complex construction processes.The coordinated working performance of the bridge decks was also analyzed.The results indicate that temperature is the key factor affecting the stresses and strains in wet joint concrete.Approximately 7 days after casting the wet joint concrete,the strains at each measurement point of the wet joint are approximately negatively correlated with the temperature change at the measurement point.Different locations within the wet joints have respective impacts,presenting potential weak points.Construction conditions have a certain impact on the stress and strain of the wet joint.The top deck of the steel box girder is not fully bonded to the bottom surface of the wet joints,resulting in a certain strain difference after loading.To further analyze the cooperative working performance of steel box girders and concrete wet joint bridge deck systems,finite element analysis was conducted on composite girder structures.A stiffness calculation method for shear connectors based on numerical simulation was proposed.The results indicate that strain differences can cause interface slip in composite girders.This slip leads to increased deflection of the composite girders and increased tensile stress in the bottom plate of the steel box girders.This study clarifies the stress conditions and factors affecting wet joints during construction,preventing early cracking,and offers precise data for a full bridge finite element model.展开更多
Jacket platforms constitute the foundational infrastructure of offshore oil and gas field exploitation.How to efficiently and accurately monitor the mechanical properties of jacket structures is one of the key problem...Jacket platforms constitute the foundational infrastructure of offshore oil and gas field exploitation.How to efficiently and accurately monitor the mechanical properties of jacket structures is one of the key problems to be solved to ensure the safe operation of the platform.To address the practical engineering problem that it is difficult to monitor the stress response of the tubular joints of jacket platforms online,a digital twin reduced-order method for real-time prediction of the stress response of tubular joints is proposed.In the offline construction phase,multi-scale modeling and multi-parameter experimental design methods are used to obtain the stress response data set of the jacket structure.Proper orthogonal decomposition is employed to extract the main feature information from the snapshot matrix,resulting in a reduced-order basis.The leave-one-out cross-validation method is used to select the optimal modal order for constructing the reduced-order model(ROM).In the online prediction phase,a digital twin model of the tubular joint is established,and the prediction performance of the ROM is analyzed and verified through using random environmental load and field environmental monitoring data.The results indicate that,compared with traditional numerical simulations of tubular joints,the ROM based on the proposed reduced-order method is more efficient in predicting the stress response of tubular joints while ensuring accuracy and robustness.展开更多
The corrosion behavior and life of Sn−3.0Ag−0.5Cu solder joints were investigated through fire smoke exposure experiments within the temperature range of 45−80℃.The nonlinear Wiener process and Arrhenius equation wer...The corrosion behavior and life of Sn−3.0Ag−0.5Cu solder joints were investigated through fire smoke exposure experiments within the temperature range of 45−80℃.The nonlinear Wiener process and Arrhenius equation were used to establish the probability distribution function and prediction model of the solder joint’s average life and individual remaining useful life.The results indicate that solder joint resistance shows a nonlinear growth trend with time increasing.After 24 h,the solder joint transforms from spherical to rose-like shapes.Higher temperatures accelerate solder joint failure,and the relationship between failure time and temperature conforms to the Arrhenius equation.The predicted life of the model is in good agreement with experimental results,demonstrating the effectiveness and accuracy of the model.展开更多
The shear performance of bolts plays a crucial role in controlling rock mass stability,and the roughness of the joint surface is one of the main factors affecting the mechanical properties of anchored joints.The 2nd g...The shear performance of bolts plays a crucial role in controlling rock mass stability,and the roughness of the joint surface is one of the main factors affecting the mechanical properties of anchored joints.The 2nd generation of negative Poisson ratio(2G-NPR)bolt is a new independently developed material characterized by high strength and toughness.However,the influence of joint surface roughness on its anchorage shear performance remains unexplored.This study involves preparing regular saw-tooth jointed rock masses and conducting laboratory shear comparison tests on unbolted samples,2G-NPR bolts,and Q235 steel anchors.A three-dimensional finite element method,developed by the author,was employed for numerical simulations to analyze the influence of saw-tooth angles on the shear resistance of anchored bolts.The findings show that the anchorage of bolts enhances the shear strength and deformation of saw-tooth rock joints.The 2G-NPR bolts demonstrate superior performance in shear strength and deformation enhancement compared to Q235 steel anchors,including improved toughening and crack-arresting effects.Furthermore,the improvement of the shear strength and displacement of the bolt decreases with the increase of the joint saw-tooth angle.These findings provide a valuable test basis for the engineering application of 2G-NPR bolts in rock mass stabilization.展开更多
Plasma electrolytic oxidation(PEO)processing of light metals has been established for decades and is in increasing industrial use,even as an alternative surface treatment to produce multifunctional coatings with envir...Plasma electrolytic oxidation(PEO)processing of light metals has been established for decades and is in increasing industrial use,even as an alternative surface treatment to produce multifunctional coatings with environmental-friendly processing concept.One of the benefits of PEO processing claimed already a couple of years ago was the ability to treat dissimilar metal joints,which can obviously improve the surface homogeneity and stability at the interface of the dissimilar components,especially impeding the galvanic corrosion due to the different electrochemical properties of each component.However,the progress and breakthrough develop slowly especially for the macro scales due to the much larger gap between each component.This literature review firstly demonstrates the still low number of studies reporting successful PEO treatment of material combination such as Mg/Al,Mg/Ti,Al/Ti and scarcely light metal combinations with steel.The main issues and challenges to performing PEO processing on the macroscale dissimilar weldments were stated.On the other hand,dissimilar metal joints also widely exist in micrometer scale in alloys and metal matrix composites(MMCs).Moreover,there is a huge knowledge base on PEO treatment of such multiphase substrates.PEO processing of such complicated mixed microstructures is reviewed as well to reveal the basic problems.To some certain degree,these PEO-related studies on alloys and MMCs can be good examples to have an insight into the coating formation mechanism on macro-scaled dissimilar metal joints.Conclusions are drawn from the micro-to macroscale.Finally,critical access to the problems is given and possible solutions and reaming limitations are discussed.展开更多
In rock engineering,the cyclic shear characteristics of rough joints under dynamic disturbances are still insufficiently studied.This study conducted cyclic shear experiments on rough joints under dynamic normal loads...In rock engineering,the cyclic shear characteristics of rough joints under dynamic disturbances are still insufficiently studied.This study conducted cyclic shear experiments on rough joints under dynamic normal loads to assess the impact of shear frequency(f_(h))and shear displacement amplitude(u_(d))on the frictional properties of the joint.The results reveal that within a single shearing cycle,the normal displacement negatively correlates with the dynamic normal force.As the shear cycle number increases,the joint surface undergoes progressive wear,resulting in an exponential decrease in the peak normal displacement.In the cyclic shearing procedure,the forward peak values of shear force and friction coefficient display larger fluctuations at either lower or higher shear frequencies.However,under moderate shear frequency conditions,the changes in the shear strength of the joint surface are smaller,and the degree of degradation post-shearing is relatively limited.As the shear displacement amplitude increases,the range of normal deformation within the joint widens.Furthermore,after shearing,the corresponding joint roughness coefficient trend shows a gradual decrease with an increasing shear displacement amplitude,while varying with the shearing frequency in a pattern that initially rises and then falls,with a turning point at 0.05 Hz.The findings of this research contribute to a profound comprehension of the cyclic frictional properties of rock joints under dynamic disturbances.展开更多
Ni/TiAl composite brazed joints could significantly reduce the aircraft’s weight.However,low interfacial adhesion,coarse and brittle-hard intermetallic compounds(IMCs)seriously limited the application of Ni/TiAl comp...Ni/TiAl composite brazed joints could significantly reduce the aircraft’s weight.However,low interfacial adhesion,coarse and brittle-hard intermetallic compounds(IMCs)seriously limited the application of Ni/TiAl composite joints in the next generation of aerospace applications.So enhanced K4169/TiAl composite joints were investigated by vacuum brazed with(Ni_(53.33)Cr_(20)B_(16.67)Si_(10)/Zr_(25)Ti_(18.75)Ta_(12.5)Ni_(25)Cu_(18.75))composite filler metal(CFM)designed based on cluster-plus-glue-atom model.The shear strength of the joint reached 485 MPa,comparable to the 491 MPa of TiAl substrate.The flat and brittle-hard diffusion reaction layer between Zones I and II was eliminated,simultaneously generating CrB4 dispersion strengthening due to the CFM developed with the interfacial solid-liquid space-time hysteresis effect.In Zones II and III,IMCs all transformed into Niss(Cr,Fe)_([0–88]),Niss(Ti,Al)_([004]),and Niss(Zr,Si)_([11–2])of circular and oval shapes through isothermal solidification.Meanwhile,the residual stresses and hardness were distributed in reticulated cladding characteristics.Thereby,lattice distortion led to solid solution strengthening and increased plastic toughness through crack termination and bridging mechanisms,which inhibited dislocations from plugging and crack propagation.Various interfaces in ZoneⅣwere regulated into semi-and coherent interfaces.Ni3(Ti,Al)/(Ni,Ti,Al)and(Ni,Ti,Al)/AlNi_(2)Ti were composed of higher interfacial bonding energy(2.771 J/m^(2),2.547 J/m^(2))and Ni-Ni covalent bonds.Interfacial covalent bonding and large interfacial bonding energy coupling strengthened Zone IV.Consequently,cracks initiated at the(Ni,Ti,Al)[013]/Ti3Al_([010])and expanded rapidly into TiAl substrate.Therefore,applying this method to design CFMs and regulate the phase,grain morphology,and interface’s fine structure could provide new pathways for dissimilar hard-to-join metals.展开更多
基金Project(52278421)supported by the National Natural Science Foundation of ChinaProject(2024ZZTS0754)supported by the Fundamental Research Funds for the Central Universities of Central South University,China+2 种基金Project(2023CXQD067)supported by the Central South University Innovation-Driven Research Programme,ChinaProject(2022QNRC001)supported by Young Elite Scientists Sponsorship Program by CASTProject(2023TJ-N24)supported by the Youth Talent Program by China Railway Society and the Hunan Provincial Science and Technology Promotion Talent Project。
文摘Waterproof performance of gaskets between segments is the focus of shield tunnels.This paper proposed an analytical method for determining seepage characteristics at tunnel-gasketed joints based on the hydraulic fracturing theories.First,the mathematical model was established,and the seepage governing equation and boundary conditions were obtained.Second,three dimensionless parameters were introduced for simplifying the expressions,and the seepage governing equations were normalized.Third,analytical expressions were derived for the interface opening and liquid pressure.Moreover,the influencing factors of seepage process at the gasketed interface were analyzed.Parametric analyses revealed that,in the normalized criterion of liquid viscosity,the liquid tip coordinate was influenced by the degree of negative pressure in the liquid lag region,which was related to the initial contact stress.The coordinate of the liquid tip affected the liquid pressure distribution and the interface opening,which were analyzed under different liquid tip coordinate conditions.Finally,under two limit states,comparative analysis showed that the results of the variation trend of the proposed method agree well with those of previous research.Overall,the proposed analytical method provides a novel solution for the design of the waterproof in shield tunnels.
基金financially supported by the Science and Technology Innovation Program of Hunan Province,China(No.2023RC3055)the Natural Science Foundation of Hunan Province,China(Nos.2023JJ30671,2020JJ4114)+5 种基金the Natural Science Foundation of Changsha City,China(No.Kq2208264)National Key Project of Research and Development Plan of China(Nos.2021YFC1910505,2021YFC1910504)the Young Core Teacher Foundation of Hunan Province,China(No.150220001)Key Research and Development Program of Guangdong Province,China(No.2020B010186002)the National Natural Science Foundation of China(No.51601229)the Key-Area Research and Development Program of Foshan City,China(No.2230032004640).
文摘The corrosion behavior and microstructure characteristics of metal inert gas(MIG)welded dissimilar joints of the 6005A alloy modified with Sc(designated as 6005A+Sc)and the 5083 alloy were investigated using corrosion tests and microscopy techniques.Results show that the dissimilar joints exhibit strong stress corrosion cracking(SCC)resistance,maintaining substantial strength during slow strain rate tensile tests.Notably,the heat-affected zone(HAZ)and base metal(BM)on the 6005A+Sc side show superior performance in terms of inter-granular corrosion(IGC)and exfoliation corrosion(EXCO)compared to the corresponding zones on the 5083 side.The lower corrosion resistance of the 5083-BM and the 5083-HAZ can be attributed to the presence of numerous Al_(2)Mg_(3)phases and micro-scaled Al_(6)(Mn,Fe)intermetallics,mainly distributed along the rolling direction.Conversely,the enhanced corrosion resistance of the 6005A+Sc-BM and the 6005A+Sc-HAZ can be attributed to the discontinuously distributed grain boundary precipitates(β-Mg_(2)Si),the smaller grain size,and the reduced corrosive current density.
基金financially supported by the National Natural Science Foundation of China(Grant No.42172292)Taishan Scholars Project Special Funding,and Shandong Energy Group(Grant No.SNKJ 2022A01-R26).
文摘A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that the loading parameters(initial normal stress,normal stiffness,and shear velocity)determine propagation paths of the wing and secondary cracks in rock bridges during the initial shear cycle,creating different morphologies of macroscopic step-path rupture surfaces and asperities on them.The differences in stress state and rupture surface induce different cyclic shear responses.It shows that high initial normal stress accelerates asperity degradation,raises shear resistance,and promotes compression of intermittent joints.In addition,high normal stiffness provides higher normal stress and shear resistance during the initial cycles and inhibits the dilation and compression of intermittent joints.High shear velocity results in a higher shear resistance,greater dilation,and greater compression.Finally,shear strength is most sensitive to initial normal stress,followed by shear velocity and normal stiffness.Moreover,average dilation angle is most sensitive to initial normal stress,followed by normal stiffness and shear velocity.During the shear cycles,frictional coefficient is affected by asperity degradation,backfilling of rock debris,and frictional area,exhibiting a non-monotonic behavior.
基金fnancial support by the National Natural Science Foundation of China(Grant No.42176209)the Natural Science Foundation of Shandong Province(Grant No.ZR2021MD064).
文摘Cu–Ni and Cu–Co–Ni superhydrophobic films were constructed on the surface of B10 copper–nickel alloy welded joints using a two-step process of electrodeposition and stearic acid modification.The chemical composition of the film surface was determined using surface characterization techniques.The corrosion resistance of the films was characterized using electrochemical impedance spectroscopy,potentiodynamic polarization,and scanning Kelvin probe microscopy at multiple scales.The thermal stability,mechanical stability,and self-cleaning properties of the films were also characterized.It was determined that the Cu–Co–Ni superhydrophobic film exhibited the best performance,with a static water contact angle of 159.3°,a roll-off angle of 2.3°,a charge transfer resistance 3300 times higher than the substrate,a self-corrosion current density nearly three orders of magnitude lower,and a surface Kelvin potential increase of 420 mV.The film demonstrated good thermal stability,excellent mechanical stability,and outstanding self-cleaning properties.Combining with previous studies,it was found that Co elements in the film contribute to the formation of a uniform and dense film,Ni elements enhance the adhesion and corrosion resistance between the films,and the combination of Co and Ni elements promotes uniform surface potential and further improves the corrosion resistance and interfilm adhesion of the films.
文摘[Objective]Traditional structural geology textbooks often provide outdated treatments of joints and veins,failing to reflect the significant advances made in the past three decades.This review seeks to address part of this gap by highlighting the significance of barren joints and veins in reconstructing both the directions and magnitudes of geological paleostresses.[Conclusion]Conjugate shear joints not only indicate the orientation of the three effective principal stresses but also imply differential stresses at least four times greater than the tensile strength of the brittle host rock.Exfoliation joints form under stress states ofσ_(1)≈σ_(2)>0>σ_(3),whereas polygonal columnar joints in sedimentary rocks reflectσ_(1)^(*)>>σ_(2)^(*)=σ_(3)^(*),allowing the tensile strength of rocks to be estimated.Tensile joints in brittle strong beds interlayered with ductile soft layers are primarily driven by tensile stresses transferred from interfacial shear stresses between the hard and soft layers,with joint saturation mainly controlled by tectonic strain.Under natural strain-rate conditions,the Weibull modulus and tensile strength of the strong layers,as well as the shear-flow strength of the ductile layers,can be inferred from the nonlinear relationship between joint spacing and bed thickness.Ladder-like orthogonal joints,which form under a stress state ofσ_(1)^(*)>>σ_(2)^(*)>σ_(3)^(*),divide strata into blocky units and,after weathering and erosion,give rise to characteristic castle-and tower-like landforms.Veins,as mineral-filled joints,provide spacing and thickness data that allow estimates of layer strain.Moreover,the nonlinear relationship between vein spacing and bed thickness permits quantification of the extent to which mineral precipitation restores the tensile strength of rock beds.The absence of ladder-like orthogonal veins is attributed to this strength recovery.[Significance]Collectively,these observations demonstrate the critical role of joints and veins in constraining both the magnitudes and orientations of geological paleostress fields.
文摘Purpose–This study aims to investigate the fatigue behavior and failure modes of bolted lap joints using Modified Tensile Specimens(MTS)under various cyclic load conditions.Emphasis is placed on identifying the relationship between load amplitude,fatigue life,and damage progression in low-carbon steel assemblies.Design/methodology/approach–An experimental approach was adopted using MTS specimens fabricated from St 1203 cold-rolled steel,joined with Grade 8.8 M4 bolts.Cyclic fatigue tests were conducted under zerobased loading at seven distinct force levels.Fracture surfaces were visually analyzed to identify dominant failure mechanisms.Findings–The results revealed a strong inverse correlation between applied cyclic load and fatigue life.Three distinct failure modes were identified:bolt shear at high loads(5.4 kN),interface cracking and slippage at moderate loads(4.9–5.1 kN),and plate tearing or stable fatigue behavior at lower loads(54.1 kN).The results highlight a progressive transition in failure mechanisms,from bolt shear at high loads to plate tearing and interface cracking at lower loads,providing essential insights for fatigue-resistant bolted joint design.Originality/value–This study offers original insights into the fatigue behavior of bolted lap joints using MTS,a relatively underexplored configuration in fatigue assessment.By experimentally evaluating failure modes under varied cyclic load levels,the authors uncover critical transitions in damage mechanisms—from bolt shear to interface cracking and plate tearing—depending on the applied load.Unlike many existing studies focused on numerical modeling or bonded joints alone,this work provides empirical data rooted in real-world fastening conditions using cold-rolled low-carbon steel.
基金supported by the National Natural Science Foundation of China(Nos.12172019 and 42477210).
文摘We present a grid-growth method to reconstruct 3D rock joints with arbitrary joint roughness and persistence.In the first step of this workflow,the joint model is divided into uniform grids.Then by adjusting the positions of the grids,the joint morphology can be modified to construct models with desired joint roughness and persistence.Accordingly,numerous joint models with different joint roughness and persistence were built.The effects of relevant parameters(such as the number,height,slope of asperities,and the number,area of rock bridges)on the joint roughness coefficient(JRC)and joint persistence were investigated.Finally,an artificially split joint was reconstructed using the method,and the method's accuracy was evaluated by comparing the JRC of the models with that of the artificially split joint.The results showed that the proposed method can effectively control the JRC of joint models by adjusting the number,height,and slope of asperities.The method can also modify the joint persistence of joint models by adjusting the number and area of rock bridges.Additionally,the JRC of models obtained by our method agrees with that of the artificially split surface.Overall,the method demonstrated high accuracy for 3D rock joint reconstruction.
基金financially supported by the National Natural Science Foundation of China(No.52075072)the Provincial Applied Basic Research Program of Liaoning Provincial Department of Science and Technology(No.2023JH2/101300181)the Key R&D Program of Shandong Province,China(No.2022CXGC020408)。
文摘Technological advancements and the emphasis on reducing the use of hazardous materials,such as Pb,have led to the widely use of Sn-based Pb-free solder in advanced packaging technology.With the miniaturization of solder joints,Sn-based micro solder joints often contain single or limitedβ-Sn grains.The strong anisotropy ofβ-Sn,which is significantly correlated with the reliability of the micro solder joints during service,requires the development of methods for controlling the orientations of theseβ-Sn grains.In this review,we focus on the anisotropy of theβ-Sn grains in micro solder joints and the interactions betweenβ-Sn grain orientation and reliability issues concerning electromigration(EM),thermomigration(TM),EM+TM,corrosion process,tensile and shear creep behavior,thermal cycling(TC)and cryogenic temperature.Furthermore,we summarize the strategies for controlling theβ-Sn orientation in micro solder joints.The methods include changing the solder joint size and composition,adding additives,nucleating on specific substrates and interfacial intermetallic compounds,with the aid of external loads during solidification process and introducing heredity effect of theβ-Sn texture during multi-reflow.Finally,the{101}and{301}twinning models with∼60°rotations about a common〈100〉are adopted to explain the mechanism ofβ-Sn grain nucleation and morphology.The shortcomings of the existing methods and the further potential for the development in the field are discussed to promote the application of Pb-free solders in advanced packaging.
基金financial support from the National Natural Science Foundation of China(Grant Nos.52479108,52408391)the Fundamental Research Funds for the Central Universities(2042024kf0032)+1 种基金the Postdoctoral Fellowship Program(Grade C)of China Postdoctoral Science Foundation(Grant No.GZC20241283)the Natural Science Foundation of Hubei Province,China(No.2024AFB160)。
文摘Numerous slope failures have been reported during periods of water level fluctuations.Understanding the influence of water on the creep behavior of joints is essential for evaluating the long-term stability of slopes.This study focuses on the effects of drying-wetting cycles and soaking conditions on the long-term behavior of sandstone joints.A total of 12 multi-stage shear creep tests are carried out on sandstone joints subjected to varying drying-wetting cycles under both soaking and un-soaking conditions.Based on the experimental results,the influences of drying-wetting cycles as well as soaking conditions on the microstructure,shear creep displacement,strength,and failure morphologies of sandstone joints are investigated comprehensively.Results indicate that increasing drying-wetting cycles not only yields larger shear creep displacements but also leads to a negative exponential decrease in the strength of sandstone joints.Besides,soaking conditions strongly influence the creep behavior of sandstone joints.The failure strength and long-term strength of sandstone joints for soaked samples decrease by 13.6%–29.0%and 19.4%–37.5%,respectively,as compared to unsoaked samples.Furthermore,four distinct stages in the shear creep process were identified according to the results obtained from multi-stage shear creep tests and computerized tomography scans,and three creep failure modes of sandstone joints are thus determined.Finally,the influence mechanism of drying-wetting cycles and soaking conditions on the creep failure modes of sandstone joints is revealed.Drying-wetting cycles and soaking conditions diminish the influence of asperities on the shear creep behavior of joints,thereby reducing the resistance of joints to long-term deformation.
基金financially supported by the National Natural Science Foundation of China (No.42172292)Taishan Scholars Project Special Funding,and Shandong Energy Group (No.SNKJ2022A01-R26)funded by the China Scholarship Council (CSC No.202006220274)。
文摘Understanding the anchorage performance of en-echelon joints under cyclic shear loading is crucial for optimizing support strategies in jointed rock masses.This study examines the anchorage effects on enechelon joints with various orientations using laboratory cyclic shear tests.By comparing unbolted and bolted en-echelon joints,we analyze shear zone damage,shear properties,dilatancy,energy absorption,and acoustic emission characteristics to evaluate anchoring effects across shear cycles and joint orientations.Results reveal that bolted en-echelon joints experience more severe shear zone damage after cycles,with bolt deformation correlating to shear zone width.Bolted en-echelon joints exhibit faster shear strength deterioration and higher cumulative strength loss compared to unbolted ones,with losses ranging from 20.04%to 72.76%.The compressibility of en-echelon joints reduces the anchoring effect during shear cycles,leading to lower shear strength of bolted en-echelon joints in later stages of shear cycles compared to unbolted ones.Bolts reinforce en-echelon joints more effectively at non-positive angles,with the best performance observed at 0°and-60°.Anchorage accelerates the transition from rolling friction to sliding friction in the shear zone,enhancing energy absorption,which is crucial for rock projects under dynamic shear loading.Additionally,rock bolts expedite the transition of the cumulative AE hits and cumulative AE energy curves from rapid to steady growth,indicating that strong bolt-rock interactions accelerate crack initiation,propagation,and energy release.
基金supported by the Nagasaki University Global Human Resource Development Scholarship and the Support for Pioneering Research Initiated by the Next Generation.
文摘Understanding the rate-dependent shear behavior of rough joints is crucial.This study explores the ratedependent shear behavior of rough joints through direct shear tests conducted under constant normal stiffness(CNS)boundary conditions,with the shear failure process monitored using acoustic emission(AE)technology.As the shear rate increases,both the peak and ultimate shear stresses of rough joints exhibit a decrease,highlighting a pronounced rate-dependent behavior.Asperity degradation under different shear rates is effectively characterized by normalized AE counts,exhibiting a three-stage Sshaped trend:Stage I(quiescent),Stage II(growth),and Stage III(stable).The simultaneous occurrence of the lowest AE b-value and the highest AE amplitude closely aligns with the moment of peak shear stress.This synchronization suggests that AE events of significant energy are predominantly clustered around the peak shear stress,which critically influences the overall progression of failure.Three failure modes of asperities were categorized,including the biting-off failure mode(BFM),the climbing-sliding failure mode(CFM),and the hybrid biting-off and climbing-sliding failure mode(HFM).Analysis of the multifractal spectra reveals that both the multifractal spectrum width(Δα)and the fractal dimension variability(Δf)diminish as the shear rate increases,suggesting that the complexity of the failure modes is inversely related to the shear rate.With increasing shear rates,the dominant failure mode evolves from BFM to CFM.The research findings facilitate a comprehensive understanding of the ratedependent shear behavior of rough joints,providing valuable guidance for rational support in underground engineering.
基金funded by the National Natural Science Foundation of China(Grant Nos.52364005,51934003)Yunnan major scientific and technological special project(202202AG050014).This support is gratefully acknowledged.
文摘To investigate the influence of different joint conditions on the rockburst of a circular tunnel,a true-triaxial test of rockburst with a single set of joint conditions was conducted.The rockburst incubation and evolution characteristics and acoustic emission evolution characteristics under different joint directions and joint dip angles were studied.The Weibull function was used to fit rockburst debris with different particle sizes and a single set of joints to obtain statistical results.The experimental results revealed that shear fracture rockburst occurred in samples with joints aligned with the tunnel strike as well as joints with inclination angles of 45°,60°,and 90°.Slab buckling–shear fracture rockburst was more likely to occur in samples with inclination angles of 0°and 30°.Slab buckling–shear fracture rockburst occurred in samples with joints crossing the tunnel strike as well as in samples with joints with inclination angles of 0°,30°,45°,60°,and 90°.The location of the rockburst pit was influenced by the joint inclination angle when the joints aligned with the tunnel strike.In contrast,when the joints crossed the tunnel strike,the location of the rockburst pit was independent of the joint inclination angle.The cumulative absolute energy of acoustic emission(AE)exhibited an overall upward trend with the increase in joint dip angle.The cumulative absolute energy of the AE of the jointed samples was greater than that of intact samples(without joints).Loading reached the rockburst stage in the samples with joints aligned with the tunnel strike and dip angles of 45°,60°,and 90°.Moreover,the peak value of AE cumulative absolute energy was the highest.These results can elucidate the evolution mechanism of rockburst in the surrounding rock of circular tunnels with a single set of joints in deep underground engineering.
基金supported by the project PRIN_2022PNRR_P2022Y3PBY_001“MADLEINE,CUP:J53D23015830001”.Project funded under the National Recovery and Resilience Plan(NRRP),Mission 4 Component C2 Investment 1.1 by the European Union-NextGenerationEU.
文摘Experimental tests are essential for evaluating S-N curves and assessing the fatigue life of welded joints.However,in the case of complex geometries,experimental tests often cannot provide the necessary stress-strain data for specific materials and welded joints.Therefore,finite element(FE)analyses are frequently utilized to assess fatigue behavior in complex geometries and address the discontinuities induced by welding processes.In this study,the fatigue properties of titanium welded joints,produced using an innovative laser source and welded without the use of filler materials,were analyzed through numerical methods.Two different FEmethodswere applied to T-specimens fabricated from Ti6Al4V sheets:the hot-spot stress and notch-stress approach.The FE fatigue life predictions were validated using experimental fatigue test results.The Hot-Spot Stress method yielded a fatigue limit slightly below 100 MPa,demonstrating a consistent slope in the S-N response.Conversely,the Notch Stress method,using a 1 mm fictitious notch radius,indicated a higher fatigue strength corresponding to a range between 225 and 250MPa,providing amore conservative and localized fatigue estimate.Fatigue resistance in welded joints of steel and aluminum is commonly assessed using specific fatigue classes called“Fatigue Strength Classes(FAT)curves”and their associated S-N curves as recommended by the International Institute of Welding(IIW).However,no such FAT class assignments currently exist for titanium alloys.To address this gap,strain-based FAT curves were proposed by normalizing steel FAT curves using titanium’s elastic properties.This strain-based framework enables direct comparison across materials and provides a foundation for fatigue evaluation of titanium weldments.The author proposed a procedure to normalize steel FAT curves considering the different elastic material properties,enabling a comparison with Ti6Al4V data in terms of hot spot strain or notch strain.This approach facilitates the development of a universal framework for strain-based fatigue evaluation across different materials.
文摘A steel-concrete composite cable-stayed bridge features integrated steel girders and concrete decks linked by shear connectors to support loads,but stress concentration in wet joints can lead to cracking.In-situ tests were conducted on key sections of steel-concrete composite cable-stayed bridges to analyze the stress-strain evolution of wet joints under environmental factors,constraints,and complex construction processes.The coordinated working performance of the bridge decks was also analyzed.The results indicate that temperature is the key factor affecting the stresses and strains in wet joint concrete.Approximately 7 days after casting the wet joint concrete,the strains at each measurement point of the wet joint are approximately negatively correlated with the temperature change at the measurement point.Different locations within the wet joints have respective impacts,presenting potential weak points.Construction conditions have a certain impact on the stress and strain of the wet joint.The top deck of the steel box girder is not fully bonded to the bottom surface of the wet joints,resulting in a certain strain difference after loading.To further analyze the cooperative working performance of steel box girders and concrete wet joint bridge deck systems,finite element analysis was conducted on composite girder structures.A stiffness calculation method for shear connectors based on numerical simulation was proposed.The results indicate that strain differences can cause interface slip in composite girders.This slip leads to increased deflection of the composite girders and increased tensile stress in the bottom plate of the steel box girders.This study clarifies the stress conditions and factors affecting wet joints during construction,preventing early cracking,and offers precise data for a full bridge finite element model.
基金financially supported by the National Natural Science Foundation of China(Grant No.11472076).
文摘Jacket platforms constitute the foundational infrastructure of offshore oil and gas field exploitation.How to efficiently and accurately monitor the mechanical properties of jacket structures is one of the key problems to be solved to ensure the safe operation of the platform.To address the practical engineering problem that it is difficult to monitor the stress response of the tubular joints of jacket platforms online,a digital twin reduced-order method for real-time prediction of the stress response of tubular joints is proposed.In the offline construction phase,multi-scale modeling and multi-parameter experimental design methods are used to obtain the stress response data set of the jacket structure.Proper orthogonal decomposition is employed to extract the main feature information from the snapshot matrix,resulting in a reduced-order basis.The leave-one-out cross-validation method is used to select the optimal modal order for constructing the reduced-order model(ROM).In the online prediction phase,a digital twin model of the tubular joint is established,and the prediction performance of the ROM is analyzed and verified through using random environmental load and field environmental monitoring data.The results indicate that,compared with traditional numerical simulations of tubular joints,the ROM based on the proposed reduced-order method is more efficient in predicting the stress response of tubular joints while ensuring accuracy and robustness.
基金National Natural Science Foundation of China (No. 52206180)Fundamental Research Funds for the Central Universities,China (No. WK2320000050)。
文摘The corrosion behavior and life of Sn−3.0Ag−0.5Cu solder joints were investigated through fire smoke exposure experiments within the temperature range of 45−80℃.The nonlinear Wiener process and Arrhenius equation were used to establish the probability distribution function and prediction model of the solder joint’s average life and individual remaining useful life.The results indicate that solder joint resistance shows a nonlinear growth trend with time increasing.After 24 h,the solder joint transforms from spherical to rose-like shapes.Higher temperatures accelerate solder joint failure,and the relationship between failure time and temperature conforms to the Arrhenius equation.The predicted life of the model is in good agreement with experimental results,demonstrating the effectiveness and accuracy of the model.
基金Project(GZB202405561)supported by the Postdoctoral Fellowship Program of China Postdoctoral Science FoundationProject(42377154)supported by the National Natural Science Foundation of China。
文摘The shear performance of bolts plays a crucial role in controlling rock mass stability,and the roughness of the joint surface is one of the main factors affecting the mechanical properties of anchored joints.The 2nd generation of negative Poisson ratio(2G-NPR)bolt is a new independently developed material characterized by high strength and toughness.However,the influence of joint surface roughness on its anchorage shear performance remains unexplored.This study involves preparing regular saw-tooth jointed rock masses and conducting laboratory shear comparison tests on unbolted samples,2G-NPR bolts,and Q235 steel anchors.A three-dimensional finite element method,developed by the author,was employed for numerical simulations to analyze the influence of saw-tooth angles on the shear resistance of anchored bolts.The findings show that the anchorage of bolts enhances the shear strength and deformation of saw-tooth rock joints.The 2G-NPR bolts demonstrate superior performance in shear strength and deformation enhancement compared to Q235 steel anchors,including improved toughening and crack-arresting effects.Furthermore,the improvement of the shear strength and displacement of the bolt decreases with the increase of the joint saw-tooth angle.These findings provide a valuable test basis for the engineering application of 2G-NPR bolts in rock mass stabilization.
基金the China Scholarship Council(No.201708510113)for fellowship and funding.
文摘Plasma electrolytic oxidation(PEO)processing of light metals has been established for decades and is in increasing industrial use,even as an alternative surface treatment to produce multifunctional coatings with environmental-friendly processing concept.One of the benefits of PEO processing claimed already a couple of years ago was the ability to treat dissimilar metal joints,which can obviously improve the surface homogeneity and stability at the interface of the dissimilar components,especially impeding the galvanic corrosion due to the different electrochemical properties of each component.However,the progress and breakthrough develop slowly especially for the macro scales due to the much larger gap between each component.This literature review firstly demonstrates the still low number of studies reporting successful PEO treatment of material combination such as Mg/Al,Mg/Ti,Al/Ti and scarcely light metal combinations with steel.The main issues and challenges to performing PEO processing on the macroscale dissimilar weldments were stated.On the other hand,dissimilar metal joints also widely exist in micrometer scale in alloys and metal matrix composites(MMCs).Moreover,there is a huge knowledge base on PEO treatment of such multiphase substrates.PEO processing of such complicated mixed microstructures is reviewed as well to reveal the basic problems.To some certain degree,these PEO-related studies on alloys and MMCs can be good examples to have an insight into the coating formation mechanism on macro-scaled dissimilar metal joints.Conclusions are drawn from the micro-to macroscale.Finally,critical access to the problems is given and possible solutions and reaming limitations are discussed.
基金funding support from the National Natural Science Foundation of China(Grant Nos.52174092 and 51904290)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20220157).
文摘In rock engineering,the cyclic shear characteristics of rough joints under dynamic disturbances are still insufficiently studied.This study conducted cyclic shear experiments on rough joints under dynamic normal loads to assess the impact of shear frequency(f_(h))and shear displacement amplitude(u_(d))on the frictional properties of the joint.The results reveal that within a single shearing cycle,the normal displacement negatively correlates with the dynamic normal force.As the shear cycle number increases,the joint surface undergoes progressive wear,resulting in an exponential decrease in the peak normal displacement.In the cyclic shearing procedure,the forward peak values of shear force and friction coefficient display larger fluctuations at either lower or higher shear frequencies.However,under moderate shear frequency conditions,the changes in the shear strength of the joint surface are smaller,and the degree of degradation post-shearing is relatively limited.As the shear displacement amplitude increases,the range of normal deformation within the joint widens.Furthermore,after shearing,the corresponding joint roughness coefficient trend shows a gradual decrease with an increasing shear displacement amplitude,while varying with the shearing frequency in a pattern that initially rises and then falls,with a turning point at 0.05 Hz.The findings of this research contribute to a profound comprehension of the cyclic frictional properties of rock joints under dynamic disturbances.
基金financially supported by the National Natural Science Foundation of China(Nos.52275314 and 52075074).
文摘Ni/TiAl composite brazed joints could significantly reduce the aircraft’s weight.However,low interfacial adhesion,coarse and brittle-hard intermetallic compounds(IMCs)seriously limited the application of Ni/TiAl composite joints in the next generation of aerospace applications.So enhanced K4169/TiAl composite joints were investigated by vacuum brazed with(Ni_(53.33)Cr_(20)B_(16.67)Si_(10)/Zr_(25)Ti_(18.75)Ta_(12.5)Ni_(25)Cu_(18.75))composite filler metal(CFM)designed based on cluster-plus-glue-atom model.The shear strength of the joint reached 485 MPa,comparable to the 491 MPa of TiAl substrate.The flat and brittle-hard diffusion reaction layer between Zones I and II was eliminated,simultaneously generating CrB4 dispersion strengthening due to the CFM developed with the interfacial solid-liquid space-time hysteresis effect.In Zones II and III,IMCs all transformed into Niss(Cr,Fe)_([0–88]),Niss(Ti,Al)_([004]),and Niss(Zr,Si)_([11–2])of circular and oval shapes through isothermal solidification.Meanwhile,the residual stresses and hardness were distributed in reticulated cladding characteristics.Thereby,lattice distortion led to solid solution strengthening and increased plastic toughness through crack termination and bridging mechanisms,which inhibited dislocations from plugging and crack propagation.Various interfaces in ZoneⅣwere regulated into semi-and coherent interfaces.Ni3(Ti,Al)/(Ni,Ti,Al)and(Ni,Ti,Al)/AlNi_(2)Ti were composed of higher interfacial bonding energy(2.771 J/m^(2),2.547 J/m^(2))and Ni-Ni covalent bonds.Interfacial covalent bonding and large interfacial bonding energy coupling strengthened Zone IV.Consequently,cracks initiated at the(Ni,Ti,Al)[013]/Ti3Al_([010])and expanded rapidly into TiAl substrate.Therefore,applying this method to design CFMs and regulate the phase,grain morphology,and interface’s fine structure could provide new pathways for dissimilar hard-to-join metals.