Waterproof performance of gaskets between segments is the focus of shield tunnels.This paper proposed an analytical method for determining seepage characteristics at tunnel-gasketed joints based on the hydraulic fract...Waterproof performance of gaskets between segments is the focus of shield tunnels.This paper proposed an analytical method for determining seepage characteristics at tunnel-gasketed joints based on the hydraulic fracturing theories.First,the mathematical model was established,and the seepage governing equation and boundary conditions were obtained.Second,three dimensionless parameters were introduced for simplifying the expressions,and the seepage governing equations were normalized.Third,analytical expressions were derived for the interface opening and liquid pressure.Moreover,the influencing factors of seepage process at the gasketed interface were analyzed.Parametric analyses revealed that,in the normalized criterion of liquid viscosity,the liquid tip coordinate was influenced by the degree of negative pressure in the liquid lag region,which was related to the initial contact stress.The coordinate of the liquid tip affected the liquid pressure distribution and the interface opening,which were analyzed under different liquid tip coordinate conditions.Finally,under two limit states,comparative analysis showed that the results of the variation trend of the proposed method agree well with those of previous research.Overall,the proposed analytical method provides a novel solution for the design of the waterproof in shield tunnels.展开更多
A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that th...A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that the loading parameters(initial normal stress,normal stiffness,and shear velocity)determine propagation paths of the wing and secondary cracks in rock bridges during the initial shear cycle,creating different morphologies of macroscopic step-path rupture surfaces and asperities on them.The differences in stress state and rupture surface induce different cyclic shear responses.It shows that high initial normal stress accelerates asperity degradation,raises shear resistance,and promotes compression of intermittent joints.In addition,high normal stiffness provides higher normal stress and shear resistance during the initial cycles and inhibits the dilation and compression of intermittent joints.High shear velocity results in a higher shear resistance,greater dilation,and greater compression.Finally,shear strength is most sensitive to initial normal stress,followed by shear velocity and normal stiffness.Moreover,average dilation angle is most sensitive to initial normal stress,followed by normal stiffness and shear velocity.During the shear cycles,frictional coefficient is affected by asperity degradation,backfilling of rock debris,and frictional area,exhibiting a non-monotonic behavior.展开更多
[Objective]Traditional structural geology textbooks often provide outdated treatments of joints and veins,failing to reflect the significant advances made in the past three decades.This review seeks to address part of...[Objective]Traditional structural geology textbooks often provide outdated treatments of joints and veins,failing to reflect the significant advances made in the past three decades.This review seeks to address part of this gap by highlighting the significance of barren joints and veins in reconstructing both the directions and magnitudes of geological paleostresses.[Conclusion]Conjugate shear joints not only indicate the orientation of the three effective principal stresses but also imply differential stresses at least four times greater than the tensile strength of the brittle host rock.Exfoliation joints form under stress states ofσ_(1)≈σ_(2)>0>σ_(3),whereas polygonal columnar joints in sedimentary rocks reflectσ_(1)^(*)>>σ_(2)^(*)=σ_(3)^(*),allowing the tensile strength of rocks to be estimated.Tensile joints in brittle strong beds interlayered with ductile soft layers are primarily driven by tensile stresses transferred from interfacial shear stresses between the hard and soft layers,with joint saturation mainly controlled by tectonic strain.Under natural strain-rate conditions,the Weibull modulus and tensile strength of the strong layers,as well as the shear-flow strength of the ductile layers,can be inferred from the nonlinear relationship between joint spacing and bed thickness.Ladder-like orthogonal joints,which form under a stress state ofσ_(1)^(*)>>σ_(2)^(*)>σ_(3)^(*),divide strata into blocky units and,after weathering and erosion,give rise to characteristic castle-and tower-like landforms.Veins,as mineral-filled joints,provide spacing and thickness data that allow estimates of layer strain.Moreover,the nonlinear relationship between vein spacing and bed thickness permits quantification of the extent to which mineral precipitation restores the tensile strength of rock beds.The absence of ladder-like orthogonal veins is attributed to this strength recovery.[Significance]Collectively,these observations demonstrate the critical role of joints and veins in constraining both the magnitudes and orientations of geological paleostress fields.展开更多
We present a grid-growth method to reconstruct 3D rock joints with arbitrary joint roughness and persistence.In the first step of this workflow,the joint model is divided into uniform grids.Then by adjusting the posit...We present a grid-growth method to reconstruct 3D rock joints with arbitrary joint roughness and persistence.In the first step of this workflow,the joint model is divided into uniform grids.Then by adjusting the positions of the grids,the joint morphology can be modified to construct models with desired joint roughness and persistence.Accordingly,numerous joint models with different joint roughness and persistence were built.The effects of relevant parameters(such as the number,height,slope of asperities,and the number,area of rock bridges)on the joint roughness coefficient(JRC)and joint persistence were investigated.Finally,an artificially split joint was reconstructed using the method,and the method's accuracy was evaluated by comparing the JRC of the models with that of the artificially split joint.The results showed that the proposed method can effectively control the JRC of joint models by adjusting the number,height,and slope of asperities.The method can also modify the joint persistence of joint models by adjusting the number and area of rock bridges.Additionally,the JRC of models obtained by our method agrees with that of the artificially split surface.Overall,the method demonstrated high accuracy for 3D rock joint reconstruction.展开更多
The shear performance of bolts plays a crucial role in controlling rock mass stability,and the roughness of the joint surface is one of the main factors affecting the mechanical properties of anchored joints.The 2nd g...The shear performance of bolts plays a crucial role in controlling rock mass stability,and the roughness of the joint surface is one of the main factors affecting the mechanical properties of anchored joints.The 2nd generation of negative Poisson ratio(2G-NPR)bolt is a new independently developed material characterized by high strength and toughness.However,the influence of joint surface roughness on its anchorage shear performance remains unexplored.This study involves preparing regular saw-tooth jointed rock masses and conducting laboratory shear comparison tests on unbolted samples,2G-NPR bolts,and Q235 steel anchors.A three-dimensional finite element method,developed by the author,was employed for numerical simulations to analyze the influence of saw-tooth angles on the shear resistance of anchored bolts.The findings show that the anchorage of bolts enhances the shear strength and deformation of saw-tooth rock joints.The 2G-NPR bolts demonstrate superior performance in shear strength and deformation enhancement compared to Q235 steel anchors,including improved toughening and crack-arresting effects.Furthermore,the improvement of the shear strength and displacement of the bolt decreases with the increase of the joint saw-tooth angle.These findings provide a valuable test basis for the engineering application of 2G-NPR bolts in rock mass stabilization.展开更多
Purpose–This study aims to investigate the fatigue behavior and failure modes of bolted lap joints using Modified Tensile Specimens(MTS)under various cyclic load conditions.Emphasis is placed on identifying the relat...Purpose–This study aims to investigate the fatigue behavior and failure modes of bolted lap joints using Modified Tensile Specimens(MTS)under various cyclic load conditions.Emphasis is placed on identifying the relationship between load amplitude,fatigue life,and damage progression in low-carbon steel assemblies.Design/methodology/approach–An experimental approach was adopted using MTS specimens fabricated from St 1203 cold-rolled steel,joined with Grade 8.8 M4 bolts.Cyclic fatigue tests were conducted under zerobased loading at seven distinct force levels.Fracture surfaces were visually analyzed to identify dominant failure mechanisms.Findings–The results revealed a strong inverse correlation between applied cyclic load and fatigue life.Three distinct failure modes were identified:bolt shear at high loads(5.4 kN),interface cracking and slippage at moderate loads(4.9–5.1 kN),and plate tearing or stable fatigue behavior at lower loads(54.1 kN).The results highlight a progressive transition in failure mechanisms,from bolt shear at high loads to plate tearing and interface cracking at lower loads,providing essential insights for fatigue-resistant bolted joint design.Originality/value–This study offers original insights into the fatigue behavior of bolted lap joints using MTS,a relatively underexplored configuration in fatigue assessment.By experimentally evaluating failure modes under varied cyclic load levels,the authors uncover critical transitions in damage mechanisms—from bolt shear to interface cracking and plate tearing—depending on the applied load.Unlike many existing studies focused on numerical modeling or bonded joints alone,this work provides empirical data rooted in real-world fastening conditions using cold-rolled low-carbon steel.展开更多
The primary objective of this work is to improve our understanding of the mechanical involvements of two-order roughness in shear.First,wavelet analysis is used to separate the waviness(first-order)and unevenness(seco...The primary objective of this work is to improve our understanding of the mechanical involvements of two-order roughness in shear.First,wavelet analysis is used to separate the waviness(first-order)and unevenness(second-order)from four granite joint surfaces,with roughness characterized using Grasselli’s 3D morphology parameters.The results reveal that first-order roughness is more pronounced than second-order roughness,highlighting the dominant role of waviness in joint surface roughness.Additionally,the variation in first-order roughness with strike direction corresponds to the total roughness,while second-order roughness remains largely constant,indicating that roughness anisotropy is primarily driven by waviness.Then,direct shear tests on joint replicas are performed to investigate the contributions of both roughness orders to peak shear strength.The results show that the peak dilation angle is closely related to first-order roughness,while the shear component angle is closely associated with second-order roughness,both exhibiting a linear correlation.Based on these findings,relationships are established between the angles and their respective roughness orders.Finally,a joint shear strength criterion based on two-order roughness is proposed.A comparative analysis of prediction accuracy reveals that the average relative error for the proposed criterion is 13.79%,while the errors for Xia's,Yang's,and Ban's criteria are 15.19%,16.29%,and 13.87%,respectively.It demonstrates the proposed criterion can predict the peak shear strength of rock joints.展开更多
Numerous slope failures have been reported during periods of water level fluctuations.Understanding the influence of water on the creep behavior of joints is essential for evaluating the long-term stability of slopes....Numerous slope failures have been reported during periods of water level fluctuations.Understanding the influence of water on the creep behavior of joints is essential for evaluating the long-term stability of slopes.This study focuses on the effects of drying-wetting cycles and soaking conditions on the long-term behavior of sandstone joints.A total of 12 multi-stage shear creep tests are carried out on sandstone joints subjected to varying drying-wetting cycles under both soaking and un-soaking conditions.Based on the experimental results,the influences of drying-wetting cycles as well as soaking conditions on the microstructure,shear creep displacement,strength,and failure morphologies of sandstone joints are investigated comprehensively.Results indicate that increasing drying-wetting cycles not only yields larger shear creep displacements but also leads to a negative exponential decrease in the strength of sandstone joints.Besides,soaking conditions strongly influence the creep behavior of sandstone joints.The failure strength and long-term strength of sandstone joints for soaked samples decrease by 13.6%–29.0%and 19.4%–37.5%,respectively,as compared to unsoaked samples.Furthermore,four distinct stages in the shear creep process were identified according to the results obtained from multi-stage shear creep tests and computerized tomography scans,and three creep failure modes of sandstone joints are thus determined.Finally,the influence mechanism of drying-wetting cycles and soaking conditions on the creep failure modes of sandstone joints is revealed.Drying-wetting cycles and soaking conditions diminish the influence of asperities on the shear creep behavior of joints,thereby reducing the resistance of joints to long-term deformation.展开更多
Plasma electrolytic oxidation(PEO)processing of light metals has been established for decades and is in increasing industrial use,even as an alternative surface treatment to produce multifunctional coatings with envir...Plasma electrolytic oxidation(PEO)processing of light metals has been established for decades and is in increasing industrial use,even as an alternative surface treatment to produce multifunctional coatings with environmental-friendly processing concept.One of the benefits of PEO processing claimed already a couple of years ago was the ability to treat dissimilar metal joints,which can obviously improve the surface homogeneity and stability at the interface of the dissimilar components,especially impeding the galvanic corrosion due to the different electrochemical properties of each component.However,the progress and breakthrough develop slowly especially for the macro scales due to the much larger gap between each component.This literature review firstly demonstrates the still low number of studies reporting successful PEO treatment of material combination such as Mg/Al,Mg/Ti,Al/Ti and scarcely light metal combinations with steel.The main issues and challenges to performing PEO processing on the macroscale dissimilar weldments were stated.On the other hand,dissimilar metal joints also widely exist in micrometer scale in alloys and metal matrix composites(MMCs).Moreover,there is a huge knowledge base on PEO treatment of such multiphase substrates.PEO processing of such complicated mixed microstructures is reviewed as well to reveal the basic problems.To some certain degree,these PEO-related studies on alloys and MMCs can be good examples to have an insight into the coating formation mechanism on macro-scaled dissimilar metal joints.Conclusions are drawn from the micro-to macroscale.Finally,critical access to the problems is given and possible solutions and reaming limitations are discussed.展开更多
In rock engineering,the cyclic shear characteristics of rough joints under dynamic disturbances are still insufficiently studied.This study conducted cyclic shear experiments on rough joints under dynamic normal loads...In rock engineering,the cyclic shear characteristics of rough joints under dynamic disturbances are still insufficiently studied.This study conducted cyclic shear experiments on rough joints under dynamic normal loads to assess the impact of shear frequency(f_(h))and shear displacement amplitude(u_(d))on the frictional properties of the joint.The results reveal that within a single shearing cycle,the normal displacement negatively correlates with the dynamic normal force.As the shear cycle number increases,the joint surface undergoes progressive wear,resulting in an exponential decrease in the peak normal displacement.In the cyclic shearing procedure,the forward peak values of shear force and friction coefficient display larger fluctuations at either lower or higher shear frequencies.However,under moderate shear frequency conditions,the changes in the shear strength of the joint surface are smaller,and the degree of degradation post-shearing is relatively limited.As the shear displacement amplitude increases,the range of normal deformation within the joint widens.Furthermore,after shearing,the corresponding joint roughness coefficient trend shows a gradual decrease with an increasing shear displacement amplitude,while varying with the shearing frequency in a pattern that initially rises and then falls,with a turning point at 0.05 Hz.The findings of this research contribute to a profound comprehension of the cyclic frictional properties of rock joints under dynamic disturbances.展开更多
To investigate the influence of different joint conditions on the rockburst of a circular tunnel,a true-triaxial test of rockburst with a single set of joint conditions was conducted.The rockburst incubation and evolu...To investigate the influence of different joint conditions on the rockburst of a circular tunnel,a true-triaxial test of rockburst with a single set of joint conditions was conducted.The rockburst incubation and evolution characteristics and acoustic emission evolution characteristics under different joint directions and joint dip angles were studied.The Weibull function was used to fit rockburst debris with different particle sizes and a single set of joints to obtain statistical results.The experimental results revealed that shear fracture rockburst occurred in samples with joints aligned with the tunnel strike as well as joints with inclination angles of 45°,60°,and 90°.Slab buckling–shear fracture rockburst was more likely to occur in samples with inclination angles of 0°and 30°.Slab buckling–shear fracture rockburst occurred in samples with joints crossing the tunnel strike as well as in samples with joints with inclination angles of 0°,30°,45°,60°,and 90°.The location of the rockburst pit was influenced by the joint inclination angle when the joints aligned with the tunnel strike.In contrast,when the joints crossed the tunnel strike,the location of the rockburst pit was independent of the joint inclination angle.The cumulative absolute energy of acoustic emission(AE)exhibited an overall upward trend with the increase in joint dip angle.The cumulative absolute energy of the AE of the jointed samples was greater than that of intact samples(without joints).Loading reached the rockburst stage in the samples with joints aligned with the tunnel strike and dip angles of 45°,60°,and 90°.Moreover,the peak value of AE cumulative absolute energy was the highest.These results can elucidate the evolution mechanism of rockburst in the surrounding rock of circular tunnels with a single set of joints in deep underground engineering.展开更多
The corrosion behavior and microstructure characteristics of metal inert gas(MIG)welded dissimilar joints of the 6005A alloy modified with Sc(designated as 6005A+Sc)and the 5083 alloy were investigated using corrosion...The corrosion behavior and microstructure characteristics of metal inert gas(MIG)welded dissimilar joints of the 6005A alloy modified with Sc(designated as 6005A+Sc)and the 5083 alloy were investigated using corrosion tests and microscopy techniques.Results show that the dissimilar joints exhibit strong stress corrosion cracking(SCC)resistance,maintaining substantial strength during slow strain rate tensile tests.Notably,the heat-affected zone(HAZ)and base metal(BM)on the 6005A+Sc side show superior performance in terms of inter-granular corrosion(IGC)and exfoliation corrosion(EXCO)compared to the corresponding zones on the 5083 side.The lower corrosion resistance of the 5083-BM and the 5083-HAZ can be attributed to the presence of numerous Al_(2)Mg_(3)phases and micro-scaled Al_(6)(Mn,Fe)intermetallics,mainly distributed along the rolling direction.Conversely,the enhanced corrosion resistance of the 6005A+Sc-BM and the 6005A+Sc-HAZ can be attributed to the discontinuously distributed grain boundary precipitates(β-Mg_(2)Si),the smaller grain size,and the reduced corrosive current density.展开更多
The corrosion behavior and life of Sn−3.0Ag−0.5Cu solder joints were investigated through fire smoke exposure experiments within the temperature range of 45−80℃.The nonlinear Wiener process and Arrhenius equation wer...The corrosion behavior and life of Sn−3.0Ag−0.5Cu solder joints were investigated through fire smoke exposure experiments within the temperature range of 45−80℃.The nonlinear Wiener process and Arrhenius equation were used to establish the probability distribution function and prediction model of the solder joint’s average life and individual remaining useful life.The results indicate that solder joint resistance shows a nonlinear growth trend with time increasing.After 24 h,the solder joint transforms from spherical to rose-like shapes.Higher temperatures accelerate solder joint failure,and the relationship between failure time and temperature conforms to the Arrhenius equation.The predicted life of the model is in good agreement with experimental results,demonstrating the effectiveness and accuracy of the model.展开更多
The human thumb plays a crucial role in performing coordinated hand movements for precise tool use.However,quantifying and interpreting the kinematics and couplings of the six degrees of freedom(6DOF)between the inter...The human thumb plays a crucial role in performing coordinated hand movements for precise tool use.However,quantifying and interpreting the kinematics and couplings of the six degrees of freedom(6DOF)between the interphalangeal(IP)and metacarpophalangeal(MCP)joints during hand functional tasks remains challenging.To address this issue,advanced dynamic biplane radiography combined with a model-based 2D–3D tracking technique was employed to decode the inherent kinematics of the thumb IP and MCP joints during key pinch,tip pinch,palmar pinch and wide grasp.The results indicate that the functional tasks of the thumb are intricately modulated by the 3D rotational and translational motions of the IP and MCP joints.The IP joint exhibited the greatest flexion/extension range of motion during the tip pinch task(67.2°±8.4°),compared to smaller ranges in key pinch(27.6°±3.8°)and wide grasp(16.2°±7.1°)tasks.In the wide grasp task,the IP joint showed more movement in the radius/ulna direction(3.4±1.2 mm)compared to tip pinch(3.1±0.8 mm).Furthermore,the kinematic data of the IP joint challenge the traditional notion that the IP joint normally acts as a hinge mechanism.The results of this study help to elucidate the kinematics of human thumb IP and MCP joints and may provide new inspiration for the design of high-performance bionic hands or thumb prosthetics as well as for evaluating the outcomes of thumb therapeutic interventions and surgical procedures.展开更多
Thickness of the intermetallic compounds(IMC)layer at the interface has a significant effect on the mechanical properties of Mg/Al dissimilar joints.However,the thickness of IMC layer can be only obtained by metallurg...Thickness of the intermetallic compounds(IMC)layer at the interface has a significant effect on the mechanical properties of Mg/Al dissimilar joints.However,the thickness of IMC layer can be only obtained by metallurgical microscopy,which is destructive and has to break down the weld.Therefore,it is crucial to find a reliable approach that can non-destructively predict the thickness of IMC layer in practical application.In the current study,Mg alloy and Al alloy were friction stir butt welded(FSW)under different tool rotation speeds(TRS)to obtain different thicknesses of IMC layers.As the TRS increased from 400 rpm to 1000 rpm,thickness of the IMC layer increased from 0.4μm to 1.3μm,the peak welding temperatures increased from 259℃to 402℃,and the Z-axis downforces decreased from10.5 kN to 3.2 k N during welding process.Higher TRS would generally induce higher welding heat input,which promotes the growth of the IMC layer and the softening of base materials.The IMC layer formed through solid-state diffusion and transformation instead of eutectic reaction according to the welding temperature history and interfacial microstructure,and its evolution process was clearly observed by plan view.In order to incorporate the effect of dramatic change of welding temperature which is the characteristic feature of FSW,Psd Voigt function was used to fit the welding temperature histories.A new prediction formula was then established to predict thicknesses of IMC layers with considering sharp welding temperature change.Predicted thicknesses gave good agreement with measured thicknesses obtained experimentally under different welding parameters,which confirmed the accuracy and reliability of the new prediction formula.Based on this prediction formula,the time period of temperature higher than 200℃during welding was found critical for the thickening of interfacial IMC layers.展开更多
Understanding the rate-dependent shear behavior of rough joints is crucial.This study explores the ratedependent shear behavior of rough joints through direct shear tests conducted under constant normal stiffness(CNS)...Understanding the rate-dependent shear behavior of rough joints is crucial.This study explores the ratedependent shear behavior of rough joints through direct shear tests conducted under constant normal stiffness(CNS)boundary conditions,with the shear failure process monitored using acoustic emission(AE)technology.As the shear rate increases,both the peak and ultimate shear stresses of rough joints exhibit a decrease,highlighting a pronounced rate-dependent behavior.Asperity degradation under different shear rates is effectively characterized by normalized AE counts,exhibiting a three-stage Sshaped trend:Stage I(quiescent),Stage II(growth),and Stage III(stable).The simultaneous occurrence of the lowest AE b-value and the highest AE amplitude closely aligns with the moment of peak shear stress.This synchronization suggests that AE events of significant energy are predominantly clustered around the peak shear stress,which critically influences the overall progression of failure.Three failure modes of asperities were categorized,including the biting-off failure mode(BFM),the climbing-sliding failure mode(CFM),and the hybrid biting-off and climbing-sliding failure mode(HFM).Analysis of the multifractal spectra reveals that both the multifractal spectrum width(Δα)and the fractal dimension variability(Δf)diminish as the shear rate increases,suggesting that the complexity of the failure modes is inversely related to the shear rate.With increasing shear rates,the dominant failure mode evolves from BFM to CFM.The research findings facilitate a comprehensive understanding of the ratedependent shear behavior of rough joints,providing valuable guidance for rational support in underground engineering.展开更多
The design principles for conventional reinforced concrete structures have gradually transitioned to seismic-resistant design since the 1970s.However,until recently,the implementation of strength capacity and ductilit...The design principles for conventional reinforced concrete structures have gradually transitioned to seismic-resistant design since the 1970s.However,until recently,the implementation of strength capacity and ductility design has not been rigorously enforced inmany developing countries that are prone to seismic risks.Numerous studies have evaluated the effectiveness of joint behavior based on both ductile and non-ductile designs under cyclic loading.Previous research has demonstrated that enhancing joint regions with Ultra-High Performance Steel Fiber Reinforced Concrete(UHPSFRC)significantly improves the seismic resistance of structural components.This paper presents a detailed analysis of the considerable improvements in energy dissipation capacity and stiffness degradation observed in both reinforced test samples compared to the control sample.Furthermore,assessing the effective performance of enhanced reinforced concrete joints is a critical parameter for evaluating the feasibility of this approach.The findings highlight the potential for UHPSFRC to enhance the resilience of concrete structures under seismic loads,providing a viable solution to improve the safety and durability of infrastructure in earthquake-prone regions.This study aims to inform future design methodologies and standards in seismic-resistant construction in developing nations,emphasizing the importance of adopting innovative materials to mitigate earthquake risks effectively.展开更多
The effects of tungsten inert gas arc-assisted friction stir welding(TIG-FSW)on the microstructure,tensile properties and corrosion resistance of AA6016 and AA2519 alloys lap joints were investigated by means of optic...The effects of tungsten inert gas arc-assisted friction stir welding(TIG-FSW)on the microstructure,tensile properties and corrosion resistance of AA6016 and AA2519 alloys lap joints were investigated by means of optical microscope,scanning electron microscope,tensile test at room temperature,corrosion immersion tests and electrochemical measurements.The results show that the introduction of TIG arc during FSW process results in a more uniform microstructure of the joint with no tunnel hole defects.Furthermore,it enhances tensile strength and elongation of the joint with increased rates of 11.5%and 50.0%,respectively;meanwhile,the corrosion current density and largest corrosion depth are decreased with reduction rates of 78.2%and 45.7%,respectively.TIG-FSW can promote flow,contact and diffusion of materials,thus improving microstructure of the joint.Additionally,it reduces the size and number of secondary phase particles.Consequently,these factors contribute to the higher tensile properties and corrosion resistance of the joints.展开更多
Understanding the anchorage performance of en-echelon joints under cyclic shear loading is crucial for optimizing support strategies in jointed rock masses.This study examines the anchorage effects on enechelon joints...Understanding the anchorage performance of en-echelon joints under cyclic shear loading is crucial for optimizing support strategies in jointed rock masses.This study examines the anchorage effects on enechelon joints with various orientations using laboratory cyclic shear tests.By comparing unbolted and bolted en-echelon joints,we analyze shear zone damage,shear properties,dilatancy,energy absorption,and acoustic emission characteristics to evaluate anchoring effects across shear cycles and joint orientations.Results reveal that bolted en-echelon joints experience more severe shear zone damage after cycles,with bolt deformation correlating to shear zone width.Bolted en-echelon joints exhibit faster shear strength deterioration and higher cumulative strength loss compared to unbolted ones,with losses ranging from 20.04%to 72.76%.The compressibility of en-echelon joints reduces the anchoring effect during shear cycles,leading to lower shear strength of bolted en-echelon joints in later stages of shear cycles compared to unbolted ones.Bolts reinforce en-echelon joints more effectively at non-positive angles,with the best performance observed at 0°and-60°.Anchorage accelerates the transition from rolling friction to sliding friction in the shear zone,enhancing energy absorption,which is crucial for rock projects under dynamic shear loading.Additionally,rock bolts expedite the transition of the cumulative AE hits and cumulative AE energy curves from rapid to steady growth,indicating that strong bolt-rock interactions accelerate crack initiation,propagation,and energy release.展开更多
Experimental tests are essential for evaluating S-N curves and assessing the fatigue life of welded joints.However,in the case of complex geometries,experimental tests often cannot provide the necessary stress-strain ...Experimental tests are essential for evaluating S-N curves and assessing the fatigue life of welded joints.However,in the case of complex geometries,experimental tests often cannot provide the necessary stress-strain data for specific materials and welded joints.Therefore,finite element(FE)analyses are frequently utilized to assess fatigue behavior in complex geometries and address the discontinuities induced by welding processes.In this study,the fatigue properties of titanium welded joints,produced using an innovative laser source and welded without the use of filler materials,were analyzed through numerical methods.Two different FEmethodswere applied to T-specimens fabricated from Ti6Al4V sheets:the hot-spot stress and notch-stress approach.The FE fatigue life predictions were validated using experimental fatigue test results.The Hot-Spot Stress method yielded a fatigue limit slightly below 100 MPa,demonstrating a consistent slope in the S-N response.Conversely,the Notch Stress method,using a 1 mm fictitious notch radius,indicated a higher fatigue strength corresponding to a range between 225 and 250MPa,providing amore conservative and localized fatigue estimate.Fatigue resistance in welded joints of steel and aluminum is commonly assessed using specific fatigue classes called“Fatigue Strength Classes(FAT)curves”and their associated S-N curves as recommended by the International Institute of Welding(IIW).However,no such FAT class assignments currently exist for titanium alloys.To address this gap,strain-based FAT curves were proposed by normalizing steel FAT curves using titanium’s elastic properties.This strain-based framework enables direct comparison across materials and provides a foundation for fatigue evaluation of titanium weldments.The author proposed a procedure to normalize steel FAT curves considering the different elastic material properties,enabling a comparison with Ti6Al4V data in terms of hot spot strain or notch strain.This approach facilitates the development of a universal framework for strain-based fatigue evaluation across different materials.展开更多
基金Project(52278421)supported by the National Natural Science Foundation of ChinaProject(2024ZZTS0754)supported by the Fundamental Research Funds for the Central Universities of Central South University,China+2 种基金Project(2023CXQD067)supported by the Central South University Innovation-Driven Research Programme,ChinaProject(2022QNRC001)supported by Young Elite Scientists Sponsorship Program by CASTProject(2023TJ-N24)supported by the Youth Talent Program by China Railway Society and the Hunan Provincial Science and Technology Promotion Talent Project。
文摘Waterproof performance of gaskets between segments is the focus of shield tunnels.This paper proposed an analytical method for determining seepage characteristics at tunnel-gasketed joints based on the hydraulic fracturing theories.First,the mathematical model was established,and the seepage governing equation and boundary conditions were obtained.Second,three dimensionless parameters were introduced for simplifying the expressions,and the seepage governing equations were normalized.Third,analytical expressions were derived for the interface opening and liquid pressure.Moreover,the influencing factors of seepage process at the gasketed interface were analyzed.Parametric analyses revealed that,in the normalized criterion of liquid viscosity,the liquid tip coordinate was influenced by the degree of negative pressure in the liquid lag region,which was related to the initial contact stress.The coordinate of the liquid tip affected the liquid pressure distribution and the interface opening,which were analyzed under different liquid tip coordinate conditions.Finally,under two limit states,comparative analysis showed that the results of the variation trend of the proposed method agree well with those of previous research.Overall,the proposed analytical method provides a novel solution for the design of the waterproof in shield tunnels.
基金financially supported by the National Natural Science Foundation of China(Grant No.42172292)Taishan Scholars Project Special Funding,and Shandong Energy Group(Grant No.SNKJ 2022A01-R26).
文摘A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that the loading parameters(initial normal stress,normal stiffness,and shear velocity)determine propagation paths of the wing and secondary cracks in rock bridges during the initial shear cycle,creating different morphologies of macroscopic step-path rupture surfaces and asperities on them.The differences in stress state and rupture surface induce different cyclic shear responses.It shows that high initial normal stress accelerates asperity degradation,raises shear resistance,and promotes compression of intermittent joints.In addition,high normal stiffness provides higher normal stress and shear resistance during the initial cycles and inhibits the dilation and compression of intermittent joints.High shear velocity results in a higher shear resistance,greater dilation,and greater compression.Finally,shear strength is most sensitive to initial normal stress,followed by shear velocity and normal stiffness.Moreover,average dilation angle is most sensitive to initial normal stress,followed by normal stiffness and shear velocity.During the shear cycles,frictional coefficient is affected by asperity degradation,backfilling of rock debris,and frictional area,exhibiting a non-monotonic behavior.
文摘[Objective]Traditional structural geology textbooks often provide outdated treatments of joints and veins,failing to reflect the significant advances made in the past three decades.This review seeks to address part of this gap by highlighting the significance of barren joints and veins in reconstructing both the directions and magnitudes of geological paleostresses.[Conclusion]Conjugate shear joints not only indicate the orientation of the three effective principal stresses but also imply differential stresses at least four times greater than the tensile strength of the brittle host rock.Exfoliation joints form under stress states ofσ_(1)≈σ_(2)>0>σ_(3),whereas polygonal columnar joints in sedimentary rocks reflectσ_(1)^(*)>>σ_(2)^(*)=σ_(3)^(*),allowing the tensile strength of rocks to be estimated.Tensile joints in brittle strong beds interlayered with ductile soft layers are primarily driven by tensile stresses transferred from interfacial shear stresses between the hard and soft layers,with joint saturation mainly controlled by tectonic strain.Under natural strain-rate conditions,the Weibull modulus and tensile strength of the strong layers,as well as the shear-flow strength of the ductile layers,can be inferred from the nonlinear relationship between joint spacing and bed thickness.Ladder-like orthogonal joints,which form under a stress state ofσ_(1)^(*)>>σ_(2)^(*)>σ_(3)^(*),divide strata into blocky units and,after weathering and erosion,give rise to characteristic castle-and tower-like landforms.Veins,as mineral-filled joints,provide spacing and thickness data that allow estimates of layer strain.Moreover,the nonlinear relationship between vein spacing and bed thickness permits quantification of the extent to which mineral precipitation restores the tensile strength of rock beds.The absence of ladder-like orthogonal veins is attributed to this strength recovery.[Significance]Collectively,these observations demonstrate the critical role of joints and veins in constraining both the magnitudes and orientations of geological paleostress fields.
基金supported by the National Natural Science Foundation of China(Nos.12172019 and 42477210).
文摘We present a grid-growth method to reconstruct 3D rock joints with arbitrary joint roughness and persistence.In the first step of this workflow,the joint model is divided into uniform grids.Then by adjusting the positions of the grids,the joint morphology can be modified to construct models with desired joint roughness and persistence.Accordingly,numerous joint models with different joint roughness and persistence were built.The effects of relevant parameters(such as the number,height,slope of asperities,and the number,area of rock bridges)on the joint roughness coefficient(JRC)and joint persistence were investigated.Finally,an artificially split joint was reconstructed using the method,and the method's accuracy was evaluated by comparing the JRC of the models with that of the artificially split joint.The results showed that the proposed method can effectively control the JRC of joint models by adjusting the number,height,and slope of asperities.The method can also modify the joint persistence of joint models by adjusting the number and area of rock bridges.Additionally,the JRC of models obtained by our method agrees with that of the artificially split surface.Overall,the method demonstrated high accuracy for 3D rock joint reconstruction.
基金Project(GZB202405561)supported by the Postdoctoral Fellowship Program of China Postdoctoral Science FoundationProject(42377154)supported by the National Natural Science Foundation of China。
文摘The shear performance of bolts plays a crucial role in controlling rock mass stability,and the roughness of the joint surface is one of the main factors affecting the mechanical properties of anchored joints.The 2nd generation of negative Poisson ratio(2G-NPR)bolt is a new independently developed material characterized by high strength and toughness.However,the influence of joint surface roughness on its anchorage shear performance remains unexplored.This study involves preparing regular saw-tooth jointed rock masses and conducting laboratory shear comparison tests on unbolted samples,2G-NPR bolts,and Q235 steel anchors.A three-dimensional finite element method,developed by the author,was employed for numerical simulations to analyze the influence of saw-tooth angles on the shear resistance of anchored bolts.The findings show that the anchorage of bolts enhances the shear strength and deformation of saw-tooth rock joints.The 2G-NPR bolts demonstrate superior performance in shear strength and deformation enhancement compared to Q235 steel anchors,including improved toughening and crack-arresting effects.Furthermore,the improvement of the shear strength and displacement of the bolt decreases with the increase of the joint saw-tooth angle.These findings provide a valuable test basis for the engineering application of 2G-NPR bolts in rock mass stabilization.
文摘Purpose–This study aims to investigate the fatigue behavior and failure modes of bolted lap joints using Modified Tensile Specimens(MTS)under various cyclic load conditions.Emphasis is placed on identifying the relationship between load amplitude,fatigue life,and damage progression in low-carbon steel assemblies.Design/methodology/approach–An experimental approach was adopted using MTS specimens fabricated from St 1203 cold-rolled steel,joined with Grade 8.8 M4 bolts.Cyclic fatigue tests were conducted under zerobased loading at seven distinct force levels.Fracture surfaces were visually analyzed to identify dominant failure mechanisms.Findings–The results revealed a strong inverse correlation between applied cyclic load and fatigue life.Three distinct failure modes were identified:bolt shear at high loads(5.4 kN),interface cracking and slippage at moderate loads(4.9–5.1 kN),and plate tearing or stable fatigue behavior at lower loads(54.1 kN).The results highlight a progressive transition in failure mechanisms,from bolt shear at high loads to plate tearing and interface cracking at lower loads,providing essential insights for fatigue-resistant bolted joint design.Originality/value–This study offers original insights into the fatigue behavior of bolted lap joints using MTS,a relatively underexplored configuration in fatigue assessment.By experimentally evaluating failure modes under varied cyclic load levels,the authors uncover critical transitions in damage mechanisms—from bolt shear to interface cracking and plate tearing—depending on the applied load.Unlike many existing studies focused on numerical modeling or bonded joints alone,this work provides empirical data rooted in real-world fastening conditions using cold-rolled low-carbon steel.
基金funded by the National Natural Science Foundation of China (Grant nos. 42272333 and 42377154)the China Association for Science and Technology Youth Talent Support Program for PhD Students.
文摘The primary objective of this work is to improve our understanding of the mechanical involvements of two-order roughness in shear.First,wavelet analysis is used to separate the waviness(first-order)and unevenness(second-order)from four granite joint surfaces,with roughness characterized using Grasselli’s 3D morphology parameters.The results reveal that first-order roughness is more pronounced than second-order roughness,highlighting the dominant role of waviness in joint surface roughness.Additionally,the variation in first-order roughness with strike direction corresponds to the total roughness,while second-order roughness remains largely constant,indicating that roughness anisotropy is primarily driven by waviness.Then,direct shear tests on joint replicas are performed to investigate the contributions of both roughness orders to peak shear strength.The results show that the peak dilation angle is closely related to first-order roughness,while the shear component angle is closely associated with second-order roughness,both exhibiting a linear correlation.Based on these findings,relationships are established between the angles and their respective roughness orders.Finally,a joint shear strength criterion based on two-order roughness is proposed.A comparative analysis of prediction accuracy reveals that the average relative error for the proposed criterion is 13.79%,while the errors for Xia's,Yang's,and Ban's criteria are 15.19%,16.29%,and 13.87%,respectively.It demonstrates the proposed criterion can predict the peak shear strength of rock joints.
基金financial support from the National Natural Science Foundation of China(Grant Nos.52479108,52408391)the Fundamental Research Funds for the Central Universities(2042024kf0032)+1 种基金the Postdoctoral Fellowship Program(Grade C)of China Postdoctoral Science Foundation(Grant No.GZC20241283)the Natural Science Foundation of Hubei Province,China(No.2024AFB160)。
文摘Numerous slope failures have been reported during periods of water level fluctuations.Understanding the influence of water on the creep behavior of joints is essential for evaluating the long-term stability of slopes.This study focuses on the effects of drying-wetting cycles and soaking conditions on the long-term behavior of sandstone joints.A total of 12 multi-stage shear creep tests are carried out on sandstone joints subjected to varying drying-wetting cycles under both soaking and un-soaking conditions.Based on the experimental results,the influences of drying-wetting cycles as well as soaking conditions on the microstructure,shear creep displacement,strength,and failure morphologies of sandstone joints are investigated comprehensively.Results indicate that increasing drying-wetting cycles not only yields larger shear creep displacements but also leads to a negative exponential decrease in the strength of sandstone joints.Besides,soaking conditions strongly influence the creep behavior of sandstone joints.The failure strength and long-term strength of sandstone joints for soaked samples decrease by 13.6%–29.0%and 19.4%–37.5%,respectively,as compared to unsoaked samples.Furthermore,four distinct stages in the shear creep process were identified according to the results obtained from multi-stage shear creep tests and computerized tomography scans,and three creep failure modes of sandstone joints are thus determined.Finally,the influence mechanism of drying-wetting cycles and soaking conditions on the creep failure modes of sandstone joints is revealed.Drying-wetting cycles and soaking conditions diminish the influence of asperities on the shear creep behavior of joints,thereby reducing the resistance of joints to long-term deformation.
基金the China Scholarship Council(No.201708510113)for fellowship and funding.
文摘Plasma electrolytic oxidation(PEO)processing of light metals has been established for decades and is in increasing industrial use,even as an alternative surface treatment to produce multifunctional coatings with environmental-friendly processing concept.One of the benefits of PEO processing claimed already a couple of years ago was the ability to treat dissimilar metal joints,which can obviously improve the surface homogeneity and stability at the interface of the dissimilar components,especially impeding the galvanic corrosion due to the different electrochemical properties of each component.However,the progress and breakthrough develop slowly especially for the macro scales due to the much larger gap between each component.This literature review firstly demonstrates the still low number of studies reporting successful PEO treatment of material combination such as Mg/Al,Mg/Ti,Al/Ti and scarcely light metal combinations with steel.The main issues and challenges to performing PEO processing on the macroscale dissimilar weldments were stated.On the other hand,dissimilar metal joints also widely exist in micrometer scale in alloys and metal matrix composites(MMCs).Moreover,there is a huge knowledge base on PEO treatment of such multiphase substrates.PEO processing of such complicated mixed microstructures is reviewed as well to reveal the basic problems.To some certain degree,these PEO-related studies on alloys and MMCs can be good examples to have an insight into the coating formation mechanism on macro-scaled dissimilar metal joints.Conclusions are drawn from the micro-to macroscale.Finally,critical access to the problems is given and possible solutions and reaming limitations are discussed.
基金funding support from the National Natural Science Foundation of China(Grant Nos.52174092 and 51904290)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20220157).
文摘In rock engineering,the cyclic shear characteristics of rough joints under dynamic disturbances are still insufficiently studied.This study conducted cyclic shear experiments on rough joints under dynamic normal loads to assess the impact of shear frequency(f_(h))and shear displacement amplitude(u_(d))on the frictional properties of the joint.The results reveal that within a single shearing cycle,the normal displacement negatively correlates with the dynamic normal force.As the shear cycle number increases,the joint surface undergoes progressive wear,resulting in an exponential decrease in the peak normal displacement.In the cyclic shearing procedure,the forward peak values of shear force and friction coefficient display larger fluctuations at either lower or higher shear frequencies.However,under moderate shear frequency conditions,the changes in the shear strength of the joint surface are smaller,and the degree of degradation post-shearing is relatively limited.As the shear displacement amplitude increases,the range of normal deformation within the joint widens.Furthermore,after shearing,the corresponding joint roughness coefficient trend shows a gradual decrease with an increasing shear displacement amplitude,while varying with the shearing frequency in a pattern that initially rises and then falls,with a turning point at 0.05 Hz.The findings of this research contribute to a profound comprehension of the cyclic frictional properties of rock joints under dynamic disturbances.
基金funded by the National Natural Science Foundation of China(Grant Nos.52364005,51934003)Yunnan major scientific and technological special project(202202AG050014).This support is gratefully acknowledged.
文摘To investigate the influence of different joint conditions on the rockburst of a circular tunnel,a true-triaxial test of rockburst with a single set of joint conditions was conducted.The rockburst incubation and evolution characteristics and acoustic emission evolution characteristics under different joint directions and joint dip angles were studied.The Weibull function was used to fit rockburst debris with different particle sizes and a single set of joints to obtain statistical results.The experimental results revealed that shear fracture rockburst occurred in samples with joints aligned with the tunnel strike as well as joints with inclination angles of 45°,60°,and 90°.Slab buckling–shear fracture rockburst was more likely to occur in samples with inclination angles of 0°and 30°.Slab buckling–shear fracture rockburst occurred in samples with joints crossing the tunnel strike as well as in samples with joints with inclination angles of 0°,30°,45°,60°,and 90°.The location of the rockburst pit was influenced by the joint inclination angle when the joints aligned with the tunnel strike.In contrast,when the joints crossed the tunnel strike,the location of the rockburst pit was independent of the joint inclination angle.The cumulative absolute energy of acoustic emission(AE)exhibited an overall upward trend with the increase in joint dip angle.The cumulative absolute energy of the AE of the jointed samples was greater than that of intact samples(without joints).Loading reached the rockburst stage in the samples with joints aligned with the tunnel strike and dip angles of 45°,60°,and 90°.Moreover,the peak value of AE cumulative absolute energy was the highest.These results can elucidate the evolution mechanism of rockburst in the surrounding rock of circular tunnels with a single set of joints in deep underground engineering.
基金financially supported by the Science and Technology Innovation Program of Hunan Province,China(No.2023RC3055)the Natural Science Foundation of Hunan Province,China(Nos.2023JJ30671,2020JJ4114)+5 种基金the Natural Science Foundation of Changsha City,China(No.Kq2208264)National Key Project of Research and Development Plan of China(Nos.2021YFC1910505,2021YFC1910504)the Young Core Teacher Foundation of Hunan Province,China(No.150220001)Key Research and Development Program of Guangdong Province,China(No.2020B010186002)the National Natural Science Foundation of China(No.51601229)the Key-Area Research and Development Program of Foshan City,China(No.2230032004640).
文摘The corrosion behavior and microstructure characteristics of metal inert gas(MIG)welded dissimilar joints of the 6005A alloy modified with Sc(designated as 6005A+Sc)and the 5083 alloy were investigated using corrosion tests and microscopy techniques.Results show that the dissimilar joints exhibit strong stress corrosion cracking(SCC)resistance,maintaining substantial strength during slow strain rate tensile tests.Notably,the heat-affected zone(HAZ)and base metal(BM)on the 6005A+Sc side show superior performance in terms of inter-granular corrosion(IGC)and exfoliation corrosion(EXCO)compared to the corresponding zones on the 5083 side.The lower corrosion resistance of the 5083-BM and the 5083-HAZ can be attributed to the presence of numerous Al_(2)Mg_(3)phases and micro-scaled Al_(6)(Mn,Fe)intermetallics,mainly distributed along the rolling direction.Conversely,the enhanced corrosion resistance of the 6005A+Sc-BM and the 6005A+Sc-HAZ can be attributed to the discontinuously distributed grain boundary precipitates(β-Mg_(2)Si),the smaller grain size,and the reduced corrosive current density.
基金National Natural Science Foundation of China (No. 52206180)Fundamental Research Funds for the Central Universities,China (No. WK2320000050)。
文摘The corrosion behavior and life of Sn−3.0Ag−0.5Cu solder joints were investigated through fire smoke exposure experiments within the temperature range of 45−80℃.The nonlinear Wiener process and Arrhenius equation were used to establish the probability distribution function and prediction model of the solder joint’s average life and individual remaining useful life.The results indicate that solder joint resistance shows a nonlinear growth trend with time increasing.After 24 h,the solder joint transforms from spherical to rose-like shapes.Higher temperatures accelerate solder joint failure,and the relationship between failure time and temperature conforms to the Arrhenius equation.The predicted life of the model is in good agreement with experimental results,demonstrating the effectiveness and accuracy of the model.
基金supported by the National Natural Science Foundation of China(No.52175270)the Project of Scientific and Technological Development Plan of Jilin Province(No.20220508130RC).
文摘The human thumb plays a crucial role in performing coordinated hand movements for precise tool use.However,quantifying and interpreting the kinematics and couplings of the six degrees of freedom(6DOF)between the interphalangeal(IP)and metacarpophalangeal(MCP)joints during hand functional tasks remains challenging.To address this issue,advanced dynamic biplane radiography combined with a model-based 2D–3D tracking technique was employed to decode the inherent kinematics of the thumb IP and MCP joints during key pinch,tip pinch,palmar pinch and wide grasp.The results indicate that the functional tasks of the thumb are intricately modulated by the 3D rotational and translational motions of the IP and MCP joints.The IP joint exhibited the greatest flexion/extension range of motion during the tip pinch task(67.2°±8.4°),compared to smaller ranges in key pinch(27.6°±3.8°)and wide grasp(16.2°±7.1°)tasks.In the wide grasp task,the IP joint showed more movement in the radius/ulna direction(3.4±1.2 mm)compared to tip pinch(3.1±0.8 mm).Furthermore,the kinematic data of the IP joint challenge the traditional notion that the IP joint normally acts as a hinge mechanism.The results of this study help to elucidate the kinematics of human thumb IP and MCP joints and may provide new inspiration for the design of high-performance bionic hands or thumb prosthetics as well as for evaluating the outcomes of thumb therapeutic interventions and surgical procedures.
基金supported by the National Natural Science Foundation of China(No.52075330)the Interdisciplinary Program of Shanghai Jiao Tong University(No.YG2019QNA15)the Foundation of National Facility for Translational Medicine(Shanghai)(No.TMSK-2020-107)。
文摘Thickness of the intermetallic compounds(IMC)layer at the interface has a significant effect on the mechanical properties of Mg/Al dissimilar joints.However,the thickness of IMC layer can be only obtained by metallurgical microscopy,which is destructive and has to break down the weld.Therefore,it is crucial to find a reliable approach that can non-destructively predict the thickness of IMC layer in practical application.In the current study,Mg alloy and Al alloy were friction stir butt welded(FSW)under different tool rotation speeds(TRS)to obtain different thicknesses of IMC layers.As the TRS increased from 400 rpm to 1000 rpm,thickness of the IMC layer increased from 0.4μm to 1.3μm,the peak welding temperatures increased from 259℃to 402℃,and the Z-axis downforces decreased from10.5 kN to 3.2 k N during welding process.Higher TRS would generally induce higher welding heat input,which promotes the growth of the IMC layer and the softening of base materials.The IMC layer formed through solid-state diffusion and transformation instead of eutectic reaction according to the welding temperature history and interfacial microstructure,and its evolution process was clearly observed by plan view.In order to incorporate the effect of dramatic change of welding temperature which is the characteristic feature of FSW,Psd Voigt function was used to fit the welding temperature histories.A new prediction formula was then established to predict thicknesses of IMC layers with considering sharp welding temperature change.Predicted thicknesses gave good agreement with measured thicknesses obtained experimentally under different welding parameters,which confirmed the accuracy and reliability of the new prediction formula.Based on this prediction formula,the time period of temperature higher than 200℃during welding was found critical for the thickening of interfacial IMC layers.
基金supported by the Nagasaki University Global Human Resource Development Scholarship and the Support for Pioneering Research Initiated by the Next Generation.
文摘Understanding the rate-dependent shear behavior of rough joints is crucial.This study explores the ratedependent shear behavior of rough joints through direct shear tests conducted under constant normal stiffness(CNS)boundary conditions,with the shear failure process monitored using acoustic emission(AE)technology.As the shear rate increases,both the peak and ultimate shear stresses of rough joints exhibit a decrease,highlighting a pronounced rate-dependent behavior.Asperity degradation under different shear rates is effectively characterized by normalized AE counts,exhibiting a three-stage Sshaped trend:Stage I(quiescent),Stage II(growth),and Stage III(stable).The simultaneous occurrence of the lowest AE b-value and the highest AE amplitude closely aligns with the moment of peak shear stress.This synchronization suggests that AE events of significant energy are predominantly clustered around the peak shear stress,which critically influences the overall progression of failure.Three failure modes of asperities were categorized,including the biting-off failure mode(BFM),the climbing-sliding failure mode(CFM),and the hybrid biting-off and climbing-sliding failure mode(HFM).Analysis of the multifractal spectra reveals that both the multifractal spectrum width(Δα)and the fractal dimension variability(Δf)diminish as the shear rate increases,suggesting that the complexity of the failure modes is inversely related to the shear rate.With increasing shear rates,the dominant failure mode evolves from BFM to CFM.The research findings facilitate a comprehensive understanding of the ratedependent shear behavior of rough joints,providing valuable guidance for rational support in underground engineering.
文摘The design principles for conventional reinforced concrete structures have gradually transitioned to seismic-resistant design since the 1970s.However,until recently,the implementation of strength capacity and ductility design has not been rigorously enforced inmany developing countries that are prone to seismic risks.Numerous studies have evaluated the effectiveness of joint behavior based on both ductile and non-ductile designs under cyclic loading.Previous research has demonstrated that enhancing joint regions with Ultra-High Performance Steel Fiber Reinforced Concrete(UHPSFRC)significantly improves the seismic resistance of structural components.This paper presents a detailed analysis of the considerable improvements in energy dissipation capacity and stiffness degradation observed in both reinforced test samples compared to the control sample.Furthermore,assessing the effective performance of enhanced reinforced concrete joints is a critical parameter for evaluating the feasibility of this approach.The findings highlight the potential for UHPSFRC to enhance the resilience of concrete structures under seismic loads,providing a viable solution to improve the safety and durability of infrastructure in earthquake-prone regions.This study aims to inform future design methodologies and standards in seismic-resistant construction in developing nations,emphasizing the importance of adopting innovative materials to mitigate earthquake risks effectively.
文摘The effects of tungsten inert gas arc-assisted friction stir welding(TIG-FSW)on the microstructure,tensile properties and corrosion resistance of AA6016 and AA2519 alloys lap joints were investigated by means of optical microscope,scanning electron microscope,tensile test at room temperature,corrosion immersion tests and electrochemical measurements.The results show that the introduction of TIG arc during FSW process results in a more uniform microstructure of the joint with no tunnel hole defects.Furthermore,it enhances tensile strength and elongation of the joint with increased rates of 11.5%and 50.0%,respectively;meanwhile,the corrosion current density and largest corrosion depth are decreased with reduction rates of 78.2%and 45.7%,respectively.TIG-FSW can promote flow,contact and diffusion of materials,thus improving microstructure of the joint.Additionally,it reduces the size and number of secondary phase particles.Consequently,these factors contribute to the higher tensile properties and corrosion resistance of the joints.
基金financially supported by the National Natural Science Foundation of China (No.42172292)Taishan Scholars Project Special Funding,and Shandong Energy Group (No.SNKJ2022A01-R26)funded by the China Scholarship Council (CSC No.202006220274)。
文摘Understanding the anchorage performance of en-echelon joints under cyclic shear loading is crucial for optimizing support strategies in jointed rock masses.This study examines the anchorage effects on enechelon joints with various orientations using laboratory cyclic shear tests.By comparing unbolted and bolted en-echelon joints,we analyze shear zone damage,shear properties,dilatancy,energy absorption,and acoustic emission characteristics to evaluate anchoring effects across shear cycles and joint orientations.Results reveal that bolted en-echelon joints experience more severe shear zone damage after cycles,with bolt deformation correlating to shear zone width.Bolted en-echelon joints exhibit faster shear strength deterioration and higher cumulative strength loss compared to unbolted ones,with losses ranging from 20.04%to 72.76%.The compressibility of en-echelon joints reduces the anchoring effect during shear cycles,leading to lower shear strength of bolted en-echelon joints in later stages of shear cycles compared to unbolted ones.Bolts reinforce en-echelon joints more effectively at non-positive angles,with the best performance observed at 0°and-60°.Anchorage accelerates the transition from rolling friction to sliding friction in the shear zone,enhancing energy absorption,which is crucial for rock projects under dynamic shear loading.Additionally,rock bolts expedite the transition of the cumulative AE hits and cumulative AE energy curves from rapid to steady growth,indicating that strong bolt-rock interactions accelerate crack initiation,propagation,and energy release.
基金supported by the project PRIN_2022PNRR_P2022Y3PBY_001“MADLEINE,CUP:J53D23015830001”.Project funded under the National Recovery and Resilience Plan(NRRP),Mission 4 Component C2 Investment 1.1 by the European Union-NextGenerationEU.
文摘Experimental tests are essential for evaluating S-N curves and assessing the fatigue life of welded joints.However,in the case of complex geometries,experimental tests often cannot provide the necessary stress-strain data for specific materials and welded joints.Therefore,finite element(FE)analyses are frequently utilized to assess fatigue behavior in complex geometries and address the discontinuities induced by welding processes.In this study,the fatigue properties of titanium welded joints,produced using an innovative laser source and welded without the use of filler materials,were analyzed through numerical methods.Two different FEmethodswere applied to T-specimens fabricated from Ti6Al4V sheets:the hot-spot stress and notch-stress approach.The FE fatigue life predictions were validated using experimental fatigue test results.The Hot-Spot Stress method yielded a fatigue limit slightly below 100 MPa,demonstrating a consistent slope in the S-N response.Conversely,the Notch Stress method,using a 1 mm fictitious notch radius,indicated a higher fatigue strength corresponding to a range between 225 and 250MPa,providing amore conservative and localized fatigue estimate.Fatigue resistance in welded joints of steel and aluminum is commonly assessed using specific fatigue classes called“Fatigue Strength Classes(FAT)curves”and their associated S-N curves as recommended by the International Institute of Welding(IIW).However,no such FAT class assignments currently exist for titanium alloys.To address this gap,strain-based FAT curves were proposed by normalizing steel FAT curves using titanium’s elastic properties.This strain-based framework enables direct comparison across materials and provides a foundation for fatigue evaluation of titanium weldments.The author proposed a procedure to normalize steel FAT curves considering the different elastic material properties,enabling a comparison with Ti6Al4V data in terms of hot spot strain or notch strain.This approach facilitates the development of a universal framework for strain-based fatigue evaluation across different materials.