Impact dynamics of multi-rigid-body systems with joint friction is considered. Based on the traditional approximate assumption dealing with impact problem, a general numerical method called the sliding state stepping ...Impact dynamics of multi-rigid-body systems with joint friction is considered. Based on the traditional approximate assumption dealing with impact problem, a general numerical method called the sliding state stepping algorithm is introduced. This method can avoid difficulties in solving differential equations with variable scale and its result can avoid energy inconsistency before and after impact from considering complexily of tangential sliding mode. An example is given to describe details using this algorithm.展开更多
This study investigates the corrosion-assisted fatigue crack growth rate(FCGR)of 16 mm thick AA 7075-T651 friction stir welded(FSW)joints.Compact tension(CT)specimens were extracted from both the base material and FSW...This study investigates the corrosion-assisted fatigue crack growth rate(FCGR)of 16 mm thick AA 7075-T651 friction stir welded(FSW)joints.Compact tension(CT)specimens were extracted from both the base material and FSW joints to evaluate FCGR under varying corrosion exposure durations(0,7,30,60,and 90 days)at a constant stress ratio of 0.5.Microstructural analysis of the welds was conducted using optical and transmission electron microscopy(TEM).Results indicate that the critical stress intensity factor range(ΔK_(cr))of FSW joints is lower than that of the base material,primarily due to precipitate dissolution in the weld zone during the FSW process,as confirmed by TEM analysis.The fatigue life of FSW joints was significantly lower than that of the base material,but with prolonged exposure to seawater corrosion,the gap in fatigue life narrowed.Specimens exposed to seawater for more than 60days exhibited minimal differences in fatigue life between the base material and the FSW joints.This was attributed to the higher corrosion rate of the base material compared to the weld nugget,resulting in the formation of deeper pits that facilitated crack initiation and accelerated fatigue failure.The findings conclude that extended corrosion exposure leads to similar fatigue life and crack growth behaviour in both the base material and FSW joints.SEM and EDX analysis of AA7075-T651 revealed corrosion pits and rust products in initiation zones,ductile striations in growth regions,and secondary cracks with micro voids in fracture zones.FSW joints exhibited ultra-fine grains,smooth ductile fracture in initiation and growth regions,and brittle fracture in the fracture zones under both corroded and uncorroded conditions.展开更多
Dynamic models play an important role in robot control and applications.The accurate identification of dynamic models has become crucial to meeting increasing performance requirements.Owing to the inertial forces and ...Dynamic models play an important role in robot control and applications.The accurate identification of dynamic models has become crucial to meeting increasing performance requirements.Owing to the inertial forces and the joint frictions coupling,the identification first requires a parametrized friction model.However,the joint frictions are strongly nonlinear and vary with many factors including posture,velocity and temperature.Hence,all friction models have some deviation from the real values,which reduces the identification accuracy.This paper proposes an identification approach using a baseplate force sensor.It identifies the inertial parameters first and then computes the joint friction values by subtracting the inertial torques from the joint torques.This method has the advantage that it does not require a priori friction model.It can choose or construct a proper model to fit the real values and is thus expected to achieve high performance.Experiments on a 6-DoF robot were conducted to verify the proposed method.展开更多
Joining Mg to Al is challenging because of the deterioration of mechanical properties caused by the formation of intermetallic compounds(IMCs) at the Mg/Al interface. This study aims to improve the mechanical properti...Joining Mg to Al is challenging because of the deterioration of mechanical properties caused by the formation of intermetallic compounds(IMCs) at the Mg/Al interface. This study aims to improve the mechanical properties of welded samples by preventing the fracture location at the Mg/Al interface. Friction stir welding was performed to join Mg to Al at different rotational and travel speeds. The microstructure of the welded samples showed the IMCs layers containing Al12Mg17(γ) and Al3Mg2(β) at the welding zone with a thickness(< 3.5 μm). Mechanical properties were mainly affected by the thickness of the IMCs, which was governed by welding parameters. The highest tensile strength was obtained at 600 r/min and 40 mm/min with a welding efficiency of 80%. The specimens could fracture along the boundary at the thermo-mechanically affected zone in the Mg side of the welded joint.展开更多
An attempt has been made to improve the corrosion resistance of friction stir welded joints of 7075 aluminum alloys by micro-arc oxidation(MAO), and the effects of Na2Si O3 concentration in electrolyte on the corros...An attempt has been made to improve the corrosion resistance of friction stir welded joints of 7075 aluminum alloys by micro-arc oxidation(MAO), and the effects of Na2Si O3 concentration in electrolyte on the corrosion resistance of the coatings were discussed. Morphology and phase constituents of the MAO coatings produced in electrolyte with different Na2SiO3 concentrations were analyzed by scanning electron microscopy, confocal laser scanning microscopy and X-ray diffraction. Electrochemical tests were conducted to evaluate the corrosion resistance of the coatings. The results show that the corrosion resistance of the coated joints is much better than that without the ceramic coating, and the ceramic coating produced in the electrolyte with Na2SiO3 concentration 20 g/L showed better corrosion resistance than the others.展开更多
The corrosion behavior of friction-stir-welded 2A14-T6 aluminum alloy was investigated by immersion testing in immersion exfoliation corrosion(EXCO) solution. Electrochemical measurements(open circuit potential, po...The corrosion behavior of friction-stir-welded 2A14-T6 aluminum alloy was investigated by immersion testing in immersion exfoliation corrosion(EXCO) solution. Electrochemical measurements(open circuit potential, potentiodynamic polarization curves, and electrochemical impedance spectroscopy), scanning electron microscopy, and energy dispersive spectroscopy were employed for analyzing the corrosion mechanism. The results show that, compared to the base material, the corrosion resistance of the friction-stir welds is greatly improved, and the weld nugget has the highest corrosion resistance. The pitting susceptibility originates from the edge of Al-Cu-Fe-Mn-Si phase particles as the cathode compared to the matrix due to their high self-corrosion potential. No corrosion activity is observed around the θ phase(Al2Cu) after 2 h of immersion in EXCO solution.展开更多
In this work, the joining of aluminum to steel was conducted by ultrasound enhanced friction stir weld- ing (USE-FSW). The power ultrasound was introduced into one of the metal sheets by an ultrasonic roll seam modu...In this work, the joining of aluminum to steel was conducted by ultrasound enhanced friction stir weld- ing (USE-FSW). The power ultrasound was introduced into one of the metal sheets by an ultrasonic roll seam module synchronously to the FSW-process. The effect of the ultrasound on the resulting welds, their microstructure and their corrosion properties was investigated by light and scanning electron microscopy and corrosion investigations. The USE-FSW-joints showed less and smaller steel particles in the nugget zone as well as a thinner continuous intermetallic phase of FeAl3 at the interface. The nondestructive testing method of computed laminography proved the observations made by optic microscopy due to non-porous joints for both techniques. Corrosion investigations showed only low corrosion current densities and no enhanced galvanic corrosion for the EN AW-6061/DC04-hybrid joints in sodium chloride solution.展开更多
Defects in kinematic joints can sometimes highly influence the simulation response of the whole multibody system within which these joints are included. For instance, the clearance, the friction, the lubrication and t...Defects in kinematic joints can sometimes highly influence the simulation response of the whole multibody system within which these joints are included. For instance, the clearance, the friction, the lubrication and the flexibility affect the transient behaviour, reduce the component life and produce noise and vibration for classical joints such as prismatics, cylindrics or universal joints.In this work, a new 3D cylindrical joint model which accounts for the clearance, the misalignment and the friction is presented. This formulation has been used to represent the link between the planet gears and the planet carrier in an automotive differential model. C 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1301303]展开更多
The fatigue properties of friction stir welded (FSW) butt joint and base metal of MB8 magnesium alloy were investigated. The comparative fatigue tests were carried out using EHF-EM2OOK2-070-IA fatigue testing machin...The fatigue properties of friction stir welded (FSW) butt joint and base metal of MB8 magnesium alloy were investigated. The comparative fatigue tests were carried out using EHF-EM2OOK2-070-IA fatigue testing machine for both FSW butt joint and base metal specimens. The fatigue fractures were observed and analyzed using a scanning electron microscope of JSM-6063LA type. The experimental results show that the fatigue performance of the FSW butt joint of MB8 magnesium alloy is sharply decreased. The conditional fatigue limit (2 x 106) of base metal and welded butt joint is about 77.44 MPa and 49. 91 MPa, respectively. The conditional fatigue limit (2 x 106 ) of the welded butt joint is 64.45% of that of base metal. The main reasons are that the welding can lead to stress concentration in the flash area, tensile welding residual stress in the welded joint( The residual stress value was 30. 5 MPa), as well as the grain size is not uniform in the heat-affected zone. The cleavage steps or quasi-cleavage patterns present on the fatigue fracture surface, the fracture type of the FSW butt joint belongs to a brittle fracture.展开更多
Friction stir lap joints of LY12 aluminum alloy plates with a thickness of 3 mm were fabricated using several tools with different pin profiles. The effects of tool pin profile on the interface migration of friction s...Friction stir lap joints of LY12 aluminum alloy plates with a thickness of 3 mm were fabricated using several tools with different pin profiles. The effects of tool pin profile on the interface migration of friction stir lap joints were investigated with the comparison of weld morphologies. The results show that the screw thread of the pin plays an important role in the migration of weld interface in the thickness direction. The interface between the sheets will move upwards to the top of the plate when the pin with left hand thread was used. Conversely, the interface will move downwards to the tip of the pin when the pin with right hand thread was used: As for a stir pin with smooth surface was used, the upward or downward migration of the weld interface was largely reduced, but the extension of weld interface to the weld center line from the retreating side becomes more serious. By analyzing the force on the pin according to the sucking-extruding theory for the weld formation, the obtained results have been well explained.展开更多
A robust controller method for flexible joint robot considering the effect caused by nonlinear friction was presented.The nonlinear friction was denoted as inverse additive output uncertainty relative to the nominal m...A robust controller method for flexible joint robot considering the effect caused by nonlinear friction was presented.The nonlinear friction was denoted as inverse additive output uncertainty relative to the nominal model in our work,based on which the describing function was analyzed in frequency domain,and the weighting function of nonlinear friction was further calculated as well. By combining the friction uncertainty,the mixed sensitivity H∞optimization was proposed as the benchmark for controller design, which also leaded to good performance of robustness. Furthermore,unstructured perturbation to the system was analyzed so that the stability was guaranteed. Simulation results show that the proposed controller can provide excellent tracking and regulation performance.展开更多
High depth-to-width ratio friction stir welding is an attractive method for the joining demands of alum inum profiles, which is sparked with its extrem ely low heat input and high mechanical performance. In this study...High depth-to-width ratio friction stir welding is an attractive method for the joining demands of alum inum profiles, which is sparked with its extrem ely low heat input and high mechanical performance. In this study, the joint form ation mechanism was studied by a num erical model of plastic flow combined with experim ental approaches. A fluid-solid-interaction algorithm was proposed to establish the coupling model, and the material to be welded was treated as non-New tonian fluid. The thread structure and the milling facets on tool pin prom oted drastic turbulence of material. The thread structure converged the plasticized material by its inclined plane, and then drove the attached material to refill the welds. The milling facets brought about the periodic dynamic material flow. The thread structure and the milling facets increased the strain rate greatly under the extremely low heat input, which avoided the welding defects. The condition of the peak tem perature of 648 K and the strain rate of 151 s^-1 attributed to the lowest coarsening degree of precipitate. The tensile strength of the joint reached 265 MPa, equivalent to 86% of base material. The amelioration via the material flow model inhibits the welding defects and optimizes the param eter intervals, providing references to extracting process-structure-property linkages for friction stir welding.展开更多
Joints between two different grades of aluminium alloys are need of the hour in many light weight military structures.In this investigation,an attempt has been made to join the heat treatable(AA 6061) and non-heat tre...Joints between two different grades of aluminium alloys are need of the hour in many light weight military structures.In this investigation,an attempt has been made to join the heat treatable(AA 6061) and non-heat treatable(AA 5086) aluminium alloys by friction stir welding(FSW)process using three different tool pin profiles like straight cylindrical,taper cylindrical and threaded cylindrical.The microstructures of various regions were observed and analyzed by means of optical and scanning electron microscope.The tensile properties and microhardness were evaluated for the welded joint.From this investigation it is founded that the use of threaded pin profile of tool contributes to better flow of materials between two alloys and the generation of defect free stir zone.It also resulted in higher hardness values of 83 HV in the stir zone and higher tensile strength of 169 MPa compared to other two profiles.The increase in hardness is attributed to the formation of fine grains and intermetallics in the stir zone,and in addition,the reduced size of weaker regions,such as TMAZ and HAZ regions,results in higher tensile properties.展开更多
The objective of this study is to investigate the effects of the Coulomb dry friction model versus the modified Coulomb friction model on the dynamic behavior of the slider-crank mechanism with a revolute clearance jo...The objective of this study is to investigate the effects of the Coulomb dry friction model versus the modified Coulomb friction model on the dynamic behavior of the slider-crank mechanism with a revolute clearance joint. The normal and tangential forces acting on the contact points between the journal and the bearing are described by using a Hertzian-based contact force model and the Coulomb friction models, respectively.The dynamic equations of the mechanism are derived based on the Lagrange equations of the first kind and the Baumgarte stabilization method. The frictional force is solved via the linear complementarity problem(LCP) algorithm and the trial-and-error algorithm.Finally, three numerical examples are given to show the influence of the two Coulomb friction models on the dynamic behavior of the mechanism. Numerical results show that due to the stick friction, the slider-crank mechanism may exhibit stick-slip motion and can balance at some special positions, while the mechanism with ideal joints cannot.展开更多
Dissimilar welded joints of reduced activation ferritic/martensitic(RAFM)steel and 316 L austenitic stainless steel were prepared by friction stir welding with different butt joining modes and welding parameters.The w...Dissimilar welded joints of reduced activation ferritic/martensitic(RAFM)steel and 316 L austenitic stainless steel were prepared by friction stir welding with different butt joining modes and welding parameters.The weld quality of the joint was improved by placing the 316 L steel on the advancing side and the RAFM steel on the retreating side,and using a relatively high rotational speed of 400 rpm.The microstructure of the stir zone on the 316 L steel side consisted of single-phase austenite,and the microstructure of the stir zone on the RAFM steel side mainly consisted of lath martensite and equiaxed ferrite.A mechanical mixture of the two steels and diffusion of Cr and Ni could be detected near the bonding interface.Diffusion of Ni from the 316 L steel to the RAFM steel resulted in the formation of a dual-phase structure consisting of austenite and ferrite.The as-welded joints showed good strength and ductility at room temperature and 550°C,which were nearly equal to those of the 316 L base material.The heat-affected zone on the RAFM side had the lowest impact toughness throughout the weld with a value of 13.2 J at-40°C,~52%that of the RAFM base material.展开更多
9. 6 mm thick 1060-H24 aluminum alloy plates were friction stir welded and the influencing factors on groove and tunnel defects were examined. Results show that the welding speed range for achieving a groove-free join...9. 6 mm thick 1060-H24 aluminum alloy plates were friction stir welded and the influencing factors on groove and tunnel defects were examined. Results show that the welding speed range for achieving a groove-free joint is enlarged with increasing the rotating speed. The tunnel size decreases with decreasing the welding speed under the same rotating speed. Excessive or insufficient shoulder plunge depth will cause defective joints. At a relatively low rotating speed and high welding speed, the tool having a larger shoulder diameter has a larger range of processing parameters to obtain a groove-free joint. Moreover, the tensile fracture behaviors of the defective and defect-free samples are different.展开更多
By means of numerical simulation, the roadway deformation affected by joints was analyzed and the pre-tensioned bolts for reinforcing roadway roof in jointed rock mass was studied. The results show that the roadway ro...By means of numerical simulation, the roadway deformation affected by joints was analyzed and the pre-tensioned bolts for reinforcing roadway roof in jointed rock mass was studied. The results show that the roadway roof deformation increases gradually with the accretion of joint length, the increase of joint number, the de- crease of intervals, angles and friction angles of joints. The increase is obvious at beginning and then tends slowly. After pre-tensioned bolts are used, roadway roof deformations reduce obviously, and the supporting action of pre-tensioned bolts is more remarkable with accretion of joint length, increasing of joint number, reducing of joint interval, decreasing of joints angle and joint friction angle, and increasing of joint number that bolts drilling through. With comparison of different cases, the joints supporting effect is more remarkable at a small angel. It indicates that the supporting mechanism of pre-tensioned bolts is to reinforce weak faces, such as joints. The more joints the roof includes, the more visible the pre-tensioned bolts strengthening effect is.展开更多
Although many intact rock types can be very strong,a critical confining pressure can eventually be reached in triaxial testing,such that the Mohr shear strength envelope becomes horizontal.This critical state has rece...Although many intact rock types can be very strong,a critical confining pressure can eventually be reached in triaxial testing,such that the Mohr shear strength envelope becomes horizontal.This critical state has recently been better defined,and correct curvature or correct deviation from linear Mohr-Coulomb(MC) has finally been found.Standard shear testing procedures for rock joints,using multiple testing of the same sample,in case of insufficient samples,can be shown to exaggerate apparent cohesion.Even rough joints do not have any cohesion,but instead have very high friction angles at low stress,due to strong dilation.Rock masses,implying problems of large-scale interaction with engineering structures,may have both cohesive and frictional strength components.However,it is not correct to add these,following linear M-C or nonlinear Hoek-Brown(H-B) standard routines.Cohesion is broken at small strain,while friction is mobilized at larger strain and remains to the end of the shear deformation.The criterion 'c then σn tan φ' should replace 'c plus σn tan φ' for improved fit to reality.Transformation of principal stresses to a shear plane seems to ignore mobilized dilation,and caused great experimental difficulties until understood.There seems to be plenty of room for continued research,so that errors of judgement of the last 50 years can be corrected.展开更多
The Hopkinson pressure bar tests for base metal and friction stir jointing ( FSJ ) jointed region of 7022aluminum alloy are carried out at different temperatures and strain rates.The temperature is 30 - 400°C and...The Hopkinson pressure bar tests for base metal and friction stir jointing ( FSJ ) jointed region of 7022aluminum alloy are carried out at different temperatures and strain rates.The temperature is 30 - 400°C and the strain rate is 1 200 - 5 000s -1 .High strain rate for base metal and FSJ jointed region of 7022aluminum alloy are studied.The corresponding stress-strain curves are obtained.The results show that the flow stresses of base metal and FSJ jointed region of 7022aluminum alloy decline with the increase of temperature and increase with the increase of strain rate.Furthermore , the constitutive equation for base metal and FSJ jointed region of 7022aluminum alloy at high temperature and high strain rate is obtained based on Johnson-Cook model.展开更多
Experiments on rock joint behaviors have shown that joint surface roughness is mobilized under shearing,inducing dilation and resulting in nonlinear joint shear strength and shear stress vs.shear displacement behavior...Experiments on rock joint behaviors have shown that joint surface roughness is mobilized under shearing,inducing dilation and resulting in nonlinear joint shear strength and shear stress vs.shear displacement behaviors.The Barton-Bandis(B-B) joint model provides the most realistic prediction for the nonlinear shear behavior of rock joints.The B-B model accounts for asperity roughness and strength through the joint roughness coefficient(JRC) and joint wall compressive strength(JCS) parameters.Nevertheless,many computer codes for rock engineering analysis still use the constant shear strength parameters from the linear Mohr-Coulomb(M-C) model,which is only appropriate for smooth and non-dilatant joints.This limitation prevents fractured rock models from capturing the nonlinearity of joint shear behavior.To bridge the B-B and the M C models,this paper aims to provide a linearized implementation of the B-B model using a tangential technique to obtain the equivalent M-C parameters that can satisfy the nonlinear shear behavior of rock joints.These equivalent parameters,namely the equivalent peak cohesion,friction angle,and dilation angle,are then converted into their mobilized forms to account for the mobilization and degradation of JRC under shearing.The conversion is done by expressing JRC in the equivalent peak parameters as functions of joint shear displacement using proposed hyperbolic and logarithmic functions at the pre-and post-peak regions of shear displacement,respectively.Likewise,the pre-and post-peak joint shear stiffnesses are derived so that a complete shear stress-shear displacement relationship can be established.Verifications of the linearized implementation of the B-B model show that the shear stress-shear displacement curves,the dilation behavior,and the shear strength envelopes of rock joints are consistent with available experimental and numerical results.展开更多
基金the National Natural Science Foundation of China(No.10532050)the Na-tional Science Fund for Distinguished Young Scholars(No.10625211)the Science Development Foundation of Shandong University of Science and Techonogy(No.05g017)
文摘Impact dynamics of multi-rigid-body systems with joint friction is considered. Based on the traditional approximate assumption dealing with impact problem, a general numerical method called the sliding state stepping algorithm is introduced. This method can avoid difficulties in solving differential equations with variable scale and its result can avoid energy inconsistency before and after impact from considering complexily of tangential sliding mode. An example is given to describe details using this algorithm.
文摘This study investigates the corrosion-assisted fatigue crack growth rate(FCGR)of 16 mm thick AA 7075-T651 friction stir welded(FSW)joints.Compact tension(CT)specimens were extracted from both the base material and FSW joints to evaluate FCGR under varying corrosion exposure durations(0,7,30,60,and 90 days)at a constant stress ratio of 0.5.Microstructural analysis of the welds was conducted using optical and transmission electron microscopy(TEM).Results indicate that the critical stress intensity factor range(ΔK_(cr))of FSW joints is lower than that of the base material,primarily due to precipitate dissolution in the weld zone during the FSW process,as confirmed by TEM analysis.The fatigue life of FSW joints was significantly lower than that of the base material,but with prolonged exposure to seawater corrosion,the gap in fatigue life narrowed.Specimens exposed to seawater for more than 60days exhibited minimal differences in fatigue life between the base material and the FSW joints.This was attributed to the higher corrosion rate of the base material compared to the weld nugget,resulting in the formation of deeper pits that facilitated crack initiation and accelerated fatigue failure.The findings conclude that extended corrosion exposure leads to similar fatigue life and crack growth behaviour in both the base material and FSW joints.SEM and EDX analysis of AA7075-T651 revealed corrosion pits and rust products in initiation zones,ductile striations in growth regions,and secondary cracks with micro voids in fracture zones.FSW joints exhibited ultra-fine grains,smooth ductile fracture in initiation and growth regions,and brittle fracture in the fracture zones under both corroded and uncorroded conditions.
基金supported in part by the National Natural Science Foundation of China(Grant No.91848106)the Program of Shanghai Academic/Technology Research Leader(Grant No.18XD1401700)。
文摘Dynamic models play an important role in robot control and applications.The accurate identification of dynamic models has become crucial to meeting increasing performance requirements.Owing to the inertial forces and the joint frictions coupling,the identification first requires a parametrized friction model.However,the joint frictions are strongly nonlinear and vary with many factors including posture,velocity and temperature.Hence,all friction models have some deviation from the real values,which reduces the identification accuracy.This paper proposes an identification approach using a baseplate force sensor.It identifies the inertial parameters first and then computes the joint friction values by subtracting the inertial torques from the joint torques.This method has the advantage that it does not require a priori friction model.It can choose or construct a proper model to fit the real values and is thus expected to achieve high performance.Experiments on a 6-DoF robot were conducted to verify the proposed method.
基金Universiti Kebangsaan Malaysia for supporting this research project through the research funding (AP-2015-016)
文摘Joining Mg to Al is challenging because of the deterioration of mechanical properties caused by the formation of intermetallic compounds(IMCs) at the Mg/Al interface. This study aims to improve the mechanical properties of welded samples by preventing the fracture location at the Mg/Al interface. Friction stir welding was performed to join Mg to Al at different rotational and travel speeds. The microstructure of the welded samples showed the IMCs layers containing Al12Mg17(γ) and Al3Mg2(β) at the welding zone with a thickness(< 3.5 μm). Mechanical properties were mainly affected by the thickness of the IMCs, which was governed by welding parameters. The highest tensile strength was obtained at 600 r/min and 40 mm/min with a welding efficiency of 80%. The specimens could fracture along the boundary at the thermo-mechanically affected zone in the Mg side of the welded joint.
基金supported by the Program for New Century Excellent Talents from the Ministry of Education (Grant No. NCET-11-0984)
文摘An attempt has been made to improve the corrosion resistance of friction stir welded joints of 7075 aluminum alloys by micro-arc oxidation(MAO), and the effects of Na2Si O3 concentration in electrolyte on the corrosion resistance of the coatings were discussed. Morphology and phase constituents of the MAO coatings produced in electrolyte with different Na2SiO3 concentrations were analyzed by scanning electron microscopy, confocal laser scanning microscopy and X-ray diffraction. Electrochemical tests were conducted to evaluate the corrosion resistance of the coatings. The results show that the corrosion resistance of the coated joints is much better than that without the ceramic coating, and the ceramic coating produced in the electrolyte with Na2SiO3 concentration 20 g/L showed better corrosion resistance than the others.
基金financially supported by the National Natural Science Foundation of China (No. 51105030)
文摘The corrosion behavior of friction-stir-welded 2A14-T6 aluminum alloy was investigated by immersion testing in immersion exfoliation corrosion(EXCO) solution. Electrochemical measurements(open circuit potential, potentiodynamic polarization curves, and electrochemical impedance spectroscopy), scanning electron microscopy, and energy dispersive spectroscopy were employed for analyzing the corrosion mechanism. The results show that, compared to the base material, the corrosion resistance of the friction-stir welds is greatly improved, and the weld nugget has the highest corrosion resistance. The pitting susceptibility originates from the edge of Al-Cu-Fe-Mn-Si phase particles as the cathode compared to the matrix due to their high self-corrosion potential. No corrosion activity is observed around the θ phase(Al2Cu) after 2 h of immersion in EXCO solution.
基金supported by the DFG Priority Program 1640:“Joining by plastic deformation”
文摘In this work, the joining of aluminum to steel was conducted by ultrasound enhanced friction stir weld- ing (USE-FSW). The power ultrasound was introduced into one of the metal sheets by an ultrasonic roll seam module synchronously to the FSW-process. The effect of the ultrasound on the resulting welds, their microstructure and their corrosion properties was investigated by light and scanning electron microscopy and corrosion investigations. The USE-FSW-joints showed less and smaller steel particles in the nugget zone as well as a thinner continuous intermetallic phase of FeAl3 at the interface. The nondestructive testing method of computed laminography proved the observations made by optic microscopy due to non-porous joints for both techniques. Corrosion investigations showed only low corrosion current densities and no enhanced galvanic corrosion for the EN AW-6061/DC04-hybrid joints in sodium chloride solution.
基金the Belgian National Fund for Scientific research (FRIA) for its financial support
文摘Defects in kinematic joints can sometimes highly influence the simulation response of the whole multibody system within which these joints are included. For instance, the clearance, the friction, the lubrication and the flexibility affect the transient behaviour, reduce the component life and produce noise and vibration for classical joints such as prismatics, cylindrics or universal joints.In this work, a new 3D cylindrical joint model which accounts for the clearance, the misalignment and the friction is presented. This formulation has been used to represent the link between the planet gears and the planet carrier in an automotive differential model. C 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1301303]
基金supported by the National Natural Science Foundation(No.51265013)the Natural Science Foundation of Jiangxi Province(No.20151BAB206007)
文摘The fatigue properties of friction stir welded (FSW) butt joint and base metal of MB8 magnesium alloy were investigated. The comparative fatigue tests were carried out using EHF-EM2OOK2-070-IA fatigue testing machine for both FSW butt joint and base metal specimens. The fatigue fractures were observed and analyzed using a scanning electron microscope of JSM-6063LA type. The experimental results show that the fatigue performance of the FSW butt joint of MB8 magnesium alloy is sharply decreased. The conditional fatigue limit (2 x 106) of base metal and welded butt joint is about 77.44 MPa and 49. 91 MPa, respectively. The conditional fatigue limit (2 x 106 ) of the welded butt joint is 64.45% of that of base metal. The main reasons are that the welding can lead to stress concentration in the flash area, tensile welding residual stress in the welded joint( The residual stress value was 30. 5 MPa), as well as the grain size is not uniform in the heat-affected zone. The cleavage steps or quasi-cleavage patterns present on the fatigue fracture surface, the fracture type of the FSW butt joint belongs to a brittle fracture.
基金This work was sponsored by the National Natural Science Foundation of China (50875119 ) , the Aerospace Science Foundation of China (20081156009) and the Natural Science Foundation of Jiangxi Province, China (0450090).
文摘Friction stir lap joints of LY12 aluminum alloy plates with a thickness of 3 mm were fabricated using several tools with different pin profiles. The effects of tool pin profile on the interface migration of friction stir lap joints were investigated with the comparison of weld morphologies. The results show that the screw thread of the pin plays an important role in the migration of weld interface in the thickness direction. The interface between the sheets will move upwards to the top of the plate when the pin with left hand thread was used. Conversely, the interface will move downwards to the tip of the pin when the pin with right hand thread was used: As for a stir pin with smooth surface was used, the upward or downward migration of the weld interface was largely reduced, but the extension of weld interface to the weld center line from the retreating side becomes more serious. By analyzing the force on the pin according to the sucking-extruding theory for the weld formation, the obtained results have been well explained.
基金National Natural Science Foundation of China(No.61273339)
文摘A robust controller method for flexible joint robot considering the effect caused by nonlinear friction was presented.The nonlinear friction was denoted as inverse additive output uncertainty relative to the nominal model in our work,based on which the describing function was analyzed in frequency domain,and the weighting function of nonlinear friction was further calculated as well. By combining the friction uncertainty,the mixed sensitivity H∞optimization was proposed as the benchmark for controller design, which also leaded to good performance of robustness. Furthermore,unstructured perturbation to the system was analyzed so that the stability was guaranteed. Simulation results show that the proposed controller can provide excellent tracking and regulation performance.
基金supported by the National Natural Science Foundation of China (No. 51575132)
文摘High depth-to-width ratio friction stir welding is an attractive method for the joining demands of alum inum profiles, which is sparked with its extrem ely low heat input and high mechanical performance. In this study, the joint form ation mechanism was studied by a num erical model of plastic flow combined with experim ental approaches. A fluid-solid-interaction algorithm was proposed to establish the coupling model, and the material to be welded was treated as non-New tonian fluid. The thread structure and the milling facets on tool pin prom oted drastic turbulence of material. The thread structure converged the plasticized material by its inclined plane, and then drove the attached material to refill the welds. The milling facets brought about the periodic dynamic material flow. The thread structure and the milling facets increased the strain rate greatly under the extremely low heat input, which avoided the welding defects. The condition of the peak tem perature of 648 K and the strain rate of 151 s^-1 attributed to the lowest coarsening degree of precipitate. The tensile strength of the joint reached 265 MPa, equivalent to 86% of base material. The amelioration via the material flow model inhibits the welding defects and optimizes the param eter intervals, providing references to extracting process-structure-property linkages for friction stir welding.
基金the support extended by the Centre for Materials Joining & Research (CEMAJOR), Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar, India to carry out this research
文摘Joints between two different grades of aluminium alloys are need of the hour in many light weight military structures.In this investigation,an attempt has been made to join the heat treatable(AA 6061) and non-heat treatable(AA 5086) aluminium alloys by friction stir welding(FSW)process using three different tool pin profiles like straight cylindrical,taper cylindrical and threaded cylindrical.The microstructures of various regions were observed and analyzed by means of optical and scanning electron microscope.The tensile properties and microhardness were evaluated for the welded joint.From this investigation it is founded that the use of threaded pin profile of tool contributes to better flow of materials between two alloys and the generation of defect free stir zone.It also resulted in higher hardness values of 83 HV in the stir zone and higher tensile strength of 169 MPa compared to other two profiles.The increase in hardness is attributed to the formation of fine grains and intermetallics in the stir zone,and in addition,the reduced size of weaker regions,such as TMAZ and HAZ regions,results in higher tensile properties.
基金Project supported by the National Natural Science Foundation of China(No.11772021)
文摘The objective of this study is to investigate the effects of the Coulomb dry friction model versus the modified Coulomb friction model on the dynamic behavior of the slider-crank mechanism with a revolute clearance joint. The normal and tangential forces acting on the contact points between the journal and the bearing are described by using a Hertzian-based contact force model and the Coulomb friction models, respectively.The dynamic equations of the mechanism are derived based on the Lagrange equations of the first kind and the Baumgarte stabilization method. The frictional force is solved via the linear complementarity problem(LCP) algorithm and the trial-and-error algorithm.Finally, three numerical examples are given to show the influence of the two Coulomb friction models on the dynamic behavior of the mechanism. Numerical results show that due to the stick friction, the slider-crank mechanism may exhibit stick-slip motion and can balance at some special positions, while the mechanism with ideal joints cannot.
基金financially supported by the National Natural Science Foundation of China(Nos.517011741,U1660201)the National Magnetic Confinement Fusion Energy Research Project(No.2015GB119001).
文摘Dissimilar welded joints of reduced activation ferritic/martensitic(RAFM)steel and 316 L austenitic stainless steel were prepared by friction stir welding with different butt joining modes and welding parameters.The weld quality of the joint was improved by placing the 316 L steel on the advancing side and the RAFM steel on the retreating side,and using a relatively high rotational speed of 400 rpm.The microstructure of the stir zone on the 316 L steel side consisted of single-phase austenite,and the microstructure of the stir zone on the RAFM steel side mainly consisted of lath martensite and equiaxed ferrite.A mechanical mixture of the two steels and diffusion of Cr and Ni could be detected near the bonding interface.Diffusion of Ni from the 316 L steel to the RAFM steel resulted in the formation of a dual-phase structure consisting of austenite and ferrite.The as-welded joints showed good strength and ductility at room temperature and 550°C,which were nearly equal to those of the 316 L base material.The heat-affected zone on the RAFM side had the lowest impact toughness throughout the weld with a value of 13.2 J at-40°C,~52%that of the RAFM base material.
基金The work is supported by the National Natural Science Foundation of China (51005180) and the Research Fund of the State Key Laboratory of Solidification Processing (69-QP-2011 ).
文摘9. 6 mm thick 1060-H24 aluminum alloy plates were friction stir welded and the influencing factors on groove and tunnel defects were examined. Results show that the welding speed range for achieving a groove-free joint is enlarged with increasing the rotating speed. The tunnel size decreases with decreasing the welding speed under the same rotating speed. Excessive or insufficient shoulder plunge depth will cause defective joints. At a relatively low rotating speed and high welding speed, the tool having a larger shoulder diameter has a larger range of processing parameters to obtain a groove-free joint. Moreover, the tensile fracture behaviors of the defective and defect-free samples are different.
基金Supported by the National Natural Science Foundation of China(50674063, 50534080) the Special Expense of"Taishan Scholar" Conslxuction in Shandong Province.
文摘By means of numerical simulation, the roadway deformation affected by joints was analyzed and the pre-tensioned bolts for reinforcing roadway roof in jointed rock mass was studied. The results show that the roadway roof deformation increases gradually with the accretion of joint length, the increase of joint number, the de- crease of intervals, angles and friction angles of joints. The increase is obvious at beginning and then tends slowly. After pre-tensioned bolts are used, roadway roof deformations reduce obviously, and the supporting action of pre-tensioned bolts is more remarkable with accretion of joint length, increasing of joint number, reducing of joint interval, decreasing of joints angle and joint friction angle, and increasing of joint number that bolts drilling through. With comparison of different cases, the joints supporting effect is more remarkable at a small angel. It indicates that the supporting mechanism of pre-tensioned bolts is to reinforce weak faces, such as joints. The more joints the roof includes, the more visible the pre-tensioned bolts strengthening effect is.
文摘Although many intact rock types can be very strong,a critical confining pressure can eventually be reached in triaxial testing,such that the Mohr shear strength envelope becomes horizontal.This critical state has recently been better defined,and correct curvature or correct deviation from linear Mohr-Coulomb(MC) has finally been found.Standard shear testing procedures for rock joints,using multiple testing of the same sample,in case of insufficient samples,can be shown to exaggerate apparent cohesion.Even rough joints do not have any cohesion,but instead have very high friction angles at low stress,due to strong dilation.Rock masses,implying problems of large-scale interaction with engineering structures,may have both cohesive and frictional strength components.However,it is not correct to add these,following linear M-C or nonlinear Hoek-Brown(H-B) standard routines.Cohesion is broken at small strain,while friction is mobilized at larger strain and remains to the end of the shear deformation.The criterion 'c then σn tan φ' should replace 'c plus σn tan φ' for improved fit to reality.Transformation of principal stresses to a shear plane seems to ignore mobilized dilation,and caused great experimental difficulties until understood.There seems to be plenty of room for continued research,so that errors of judgement of the last 50 years can be corrected.
基金Supported by the National Natural Science Foundation of China(51175255)the University Natural Science Foundation of Anhui Province(KJ2012Z388)the Scientific Research Starting Foundation for Talent of Huang-shan University(2012xkjq001)
文摘The Hopkinson pressure bar tests for base metal and friction stir jointing ( FSJ ) jointed region of 7022aluminum alloy are carried out at different temperatures and strain rates.The temperature is 30 - 400°C and the strain rate is 1 200 - 5 000s -1 .High strain rate for base metal and FSJ jointed region of 7022aluminum alloy are studied.The corresponding stress-strain curves are obtained.The results show that the flow stresses of base metal and FSJ jointed region of 7022aluminum alloy decline with the increase of temperature and increase with the increase of strain rate.Furthermore , the constitutive equation for base metal and FSJ jointed region of 7022aluminum alloy at high temperature and high strain rate is obtained based on Johnson-Cook model.
基金support from the University Transportation Center for Underground Transportation Infrastructure at the Colorado School of Mines for partially funding this research under Grant No.69A3551747118 of the Fixing America's Surface Transportation Act(FAST Act) of U.S.DoT FY2016
文摘Experiments on rock joint behaviors have shown that joint surface roughness is mobilized under shearing,inducing dilation and resulting in nonlinear joint shear strength and shear stress vs.shear displacement behaviors.The Barton-Bandis(B-B) joint model provides the most realistic prediction for the nonlinear shear behavior of rock joints.The B-B model accounts for asperity roughness and strength through the joint roughness coefficient(JRC) and joint wall compressive strength(JCS) parameters.Nevertheless,many computer codes for rock engineering analysis still use the constant shear strength parameters from the linear Mohr-Coulomb(M-C) model,which is only appropriate for smooth and non-dilatant joints.This limitation prevents fractured rock models from capturing the nonlinearity of joint shear behavior.To bridge the B-B and the M C models,this paper aims to provide a linearized implementation of the B-B model using a tangential technique to obtain the equivalent M-C parameters that can satisfy the nonlinear shear behavior of rock joints.These equivalent parameters,namely the equivalent peak cohesion,friction angle,and dilation angle,are then converted into their mobilized forms to account for the mobilization and degradation of JRC under shearing.The conversion is done by expressing JRC in the equivalent peak parameters as functions of joint shear displacement using proposed hyperbolic and logarithmic functions at the pre-and post-peak regions of shear displacement,respectively.Likewise,the pre-and post-peak joint shear stiffnesses are derived so that a complete shear stress-shear displacement relationship can be established.Verifications of the linearized implementation of the B-B model show that the shear stress-shear displacement curves,the dilation behavior,and the shear strength envelopes of rock joints are consistent with available experimental and numerical results.