期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
A Review of Joint Extraction Techniques for Relational Triples Based on NYT and WebNLG Datasets
1
作者 Chenglong Mi Huaibin Qin +1 位作者 Quan Qi Pengxiang Zuo 《Computers, Materials & Continua》 2025年第3期3773-3796,共24页
In recent years,with the rapid development of deep learning technology,relational triplet extraction techniques have also achieved groundbreaking progress.Traditional pipeline models have certain limitations due to er... In recent years,with the rapid development of deep learning technology,relational triplet extraction techniques have also achieved groundbreaking progress.Traditional pipeline models have certain limitations due to error propagation.To overcome the limitations of traditional pipeline models,recent research has focused on jointly modeling the two key subtasks-named entity recognition and relation extraction-within a unified framework.To support future research,this paper provides a comprehensive review of recently published studies in the field of relational triplet extraction.The review examines commonly used public datasets for relational triplet extraction techniques and systematically reviews current mainstream joint extraction methods,including joint decoding methods and parameter sharing methods,with joint decoding methods further divided into table filling,tagging,and sequence-to-sequence approaches.In addition,this paper also conducts small-scale replication experiments on models that have performed well in recent years for each method to verify the reproducibility of the code and to compare the performance of different models under uniform conditions.Each method has its own advantages in terms of model design,task handling,and application scenarios,but also faces challenges such as processing complex sentence structures,cross-sentence relation extraction,and adaptability in low-resource environments.Finally,this paper systematically summarizes each method and discusses the future development prospects of joint extraction of relational triples. 展开更多
关键词 Relation triplet extraction joint extraction methods named entity recognition relation extraction
在线阅读 下载PDF
Joint Extraction of Uygur Medicine Knowledge with Edge Computing
2
作者 Fan Lu Quan Qi Huaibin Qin 《Tsinghua Science and Technology》 2025年第2期782-795,共14页
Edge computing,a novel paradigm for performing computations at the network edge,holds significant relevance in the healthcare domain for extracting medical knowledge from traditional Uygur medical texts.Medical knowle... Edge computing,a novel paradigm for performing computations at the network edge,holds significant relevance in the healthcare domain for extracting medical knowledge from traditional Uygur medical texts.Medical knowledge extraction methods based on edge computing deploy deep learning models on edge devices to achieve localized entity and relation extraction.This approach avoids transferring substantial sensitive data to cloud data centers,effectively safeguarding the privacy of healthcare services.However,existing relation extraction methods mainly employ a sequential pipeline approach,which classifies relations between determined entities after entity recognition.This mode faces challenges such as error propagation between tasks,insufficient consideration of dependencies between the two subtasks,and the neglect of interrelations between different relations within a sentence.To address these challenges,a joint extraction model with parameter sharing in edge computing is proposed,named CoEx-Bert.This model leverages shared parameterization between two models to jointly extract entities and relations.Specifically,CoEx-Bert employs two models,each separately sharing hidden layer parameters,and combines these two loss functions for joint backpropagation to optimize the model parameters.Additionally,it effectively resolves the issue of entity overlapping when extracting knowledge from unstructured Uygur medical texts by considering contextual relations.Finally,this model is deployed on edge devices for real-time extraction and inference of Uygur medical knowledge.Experimental results demonstrate that CoEx-Bert outperforms existing state-of-the-art methods,achieving accuracy,recall,and F1-score of 90.65%,92.45%,and 91.54%,respectively,in the Uygur traditional medical literature dataset.These improvements represent a 6.45%increase in accuracy,a 9.45%increase in recall,and a 7.95%increase in F1-score compared to the baseline. 展开更多
关键词 BERT pre-training joint extraction edge computing
原文传递
Joint Biomedical Entity and Relation Extraction Based on Multi-Granularity Convolutional Tokens Pairs of Labeling
3
作者 Zhaojie Sun Linlin Xing +2 位作者 Longbo Zhang Hongzhen Cai Maozu Guo 《Computers, Materials & Continua》 SCIE EI 2024年第9期4325-4340,共16页
Extracting valuable information frombiomedical texts is one of the current research hotspots of concern to a wide range of scholars.The biomedical corpus contains numerous complex long sentences and overlapping relati... Extracting valuable information frombiomedical texts is one of the current research hotspots of concern to a wide range of scholars.The biomedical corpus contains numerous complex long sentences and overlapping relational triples,making most generalized domain joint modeling methods difficult to apply effectively in this field.For a complex semantic environment in biomedical texts,in this paper,we propose a novel perspective to perform joint entity and relation extraction;existing studies divide the relation triples into several steps or modules.However,the three elements in the relation triples are interdependent and inseparable,so we regard joint extraction as a tripartite classification problem.At the same time,fromthe perspective of triple classification,we design amulti-granularity 2D convolution to refine the word pair table and better utilize the dependencies between biomedical word pairs.Finally,we use a biaffine predictor to assist in predicting the labels of word pairs for relation extraction.Our model(MCTPL)Multi-granularity Convolutional Tokens Pairs of Labeling better utilizes the elements of triples and improves the ability to extract overlapping triples compared to previous approaches.Finally,we evaluated our model on two publicly accessible datasets.The experimental results show that our model’s ability to extract relation triples on the CPI dataset improves the F1 score by 2.34%compared to the current optimal model.On the DDI dataset,the F1 value improves the F1 value by 1.68%compared to the current optimal model.Our model achieved state-of-the-art performance compared to other baseline models in biomedical text entity relation extraction. 展开更多
关键词 Deep learning BIOMEDICAL joint extraction triple classification multi-granularity 2D convolution
在线阅读 下载PDF
A Two-Phase Paradigm for Joint Entity-Relation Extraction 被引量:2
4
作者 Bin Ji Hao Xu +4 位作者 Jie Yu Shasha Li JunMa Yuke Ji Huijun Liu 《Computers, Materials & Continua》 SCIE EI 2023年第1期1303-1318,共16页
An exhaustive study has been conducted to investigate span-based models for the joint entity and relation extraction task.However,these models sample a large number of negative entities and negative relations during t... An exhaustive study has been conducted to investigate span-based models for the joint entity and relation extraction task.However,these models sample a large number of negative entities and negative relations during the model training,which are essential but result in grossly imbalanced data distributions and in turn cause suboptimal model performance.In order to address the above issues,we propose a two-phase paradigm for the span-based joint entity and relation extraction,which involves classifying the entities and relations in the first phase,and predicting the types of these entities and relations in the second phase.The two-phase paradigm enables our model to significantly reduce the data distribution gap,including the gap between negative entities and other entities,aswell as the gap between negative relations and other relations.In addition,we make the first attempt at combining entity type and entity distance as global features,which has proven effective,especially for the relation extraction.Experimental results on several datasets demonstrate that the span-based joint extraction model augmented with the two-phase paradigm and the global features consistently outperforms previous state-ofthe-art span-based models for the joint extraction task,establishing a new standard benchmark.Qualitative and quantitative analyses further validate the effectiveness the proposed paradigm and the global features. 展开更多
关键词 joint extraction span-based named entity recognition relation extraction data distribution global features
在线阅读 下载PDF
Annotation and Joint Extraction of Scientific Entities and Relationships in NSFC Project Texts
5
作者 Zhiyuan GE Xiaoxi QI +5 位作者 Fei WANG Tingli LIU Jun GUAN Xiaohong HUANG Yong SHAO Yingmin WU 《Journal of Systems Science and Information》 CSCD 2023年第4期466-487,共22页
Aiming at the lack of classification and good standard corpus in the task of joint entity and relationship extraction in the current Chinese academic field, this paper builds a dataset in management science that can b... Aiming at the lack of classification and good standard corpus in the task of joint entity and relationship extraction in the current Chinese academic field, this paper builds a dataset in management science that can be used for joint entity and relationship extraction, and establishes a deep learning model to extract entity and relationship information from scientific texts. With the definition of entity and relation classification, we build a Chinese scientific text corpus dataset based on the abstract texts of projects funded by the National Natural Science Foundation of China(NSFC) in 2018–2019. By combining the word2vec features with the clue word feature which is a kind of special style in scientific documents, we establish a joint entity relationship extraction model based on the Bi LSTM-CNN-CRF model for scientific information extraction. The dataset we constructed contains 13060 entities(not duplicated) and 9728 entity relation labels. In terms of entity prediction effect, the accuracy rate of the constructed model reaches 69.15%, the recall rate reaches 61.03%, and the F1 value reaches 64.83%. In terms of relationship prediction effect, the accuracy rate is higher than that of entity prediction, which reflects the effectiveness of the input mixed features and the integration of local features with CNN layer in the model. 展开更多
关键词 joint extraction of entities and relations deep learning Chinese scientific information extraction
原文传递
Deep learning models for spatial relation extraction in text
6
作者 Kehan Wu Xueying Zhang +1 位作者 Yulong Dang Peng Ye 《Geo-Spatial Information Science》 SCIE EI CSCD 2023年第1期58-70,共13页
Spatial relation extraction is the process of identifying geographic entities from text and determining their corresponding spatial relations.Traditional spatial relation extraction mainly uses rule-based pattern matc... Spatial relation extraction is the process of identifying geographic entities from text and determining their corresponding spatial relations.Traditional spatial relation extraction mainly uses rule-based pattern matching,supervised learning-based or unsupervised learning-based methods.However,these methods suffer from poor time-sensitive,high labor cost and high dependence on large-scale data.With the development of pre-trained language models greatly alleviating the shortcomings of traditional methods,supervised learning methods incorporating pre-trained language models have become the mainstream relation extraction methods.Pipeline extraction and joint extraction,as the two most dominant ideas of relation extraction,both have obtained good performance on different datasets,and whether to share the contextual information of entities and relations is the main differences between the two ideas.In this paper,we compare the performance of two ideas oriented to spatial relation extraction based on Chinese corpus data in the field of geography and verify which method based on pre-trained language models is more suitable for Chinese spatial relation extraction.We fine-tuned the hyperparameters of the two models to optimize the extraction accuracy before the comparison experiments.The results of the comparison experiments show that pipeline extraction performs better than joint extraction of spatial relation extraction for Chinese text data with sentence granularity,because different tasks have different focus on contextual information,and it is difficult to take account into the needs of both tasks by sharing contextual information.In addition,we further compare the performance of the two models with the rule-based template approach in extracting topological,directional and distance relations,summarize the shortcomings of this experiment and provide an outlook for future work. 展开更多
关键词 Spatial relation extraction pre-trained language model pipeline extraction joint extraction
原文传递
Chinese relation extraction for constructing satellite frequency and orbit knowledge graph:A survey
7
作者 Yuanzhi He Zhiqiang Li Zheng Dou 《Digital Communications and Networks》 2025年第5期1305-1317,共13页
As Satellite Frequency and Orbit(SFO)constitute scarce natural resources,constructing a Satellite Frequency and Orbit Knowledge Graph(SFO-KG)becomes crucial for optimizing their utilization.In the process of building ... As Satellite Frequency and Orbit(SFO)constitute scarce natural resources,constructing a Satellite Frequency and Orbit Knowledge Graph(SFO-KG)becomes crucial for optimizing their utilization.In the process of building the SFO-KG from Chinese unstructured data,extracting Chinese entity relations is the fundamental step.Although Relation Extraction(RE)methods in the English field have been extensively studied and developed earlier than their Chinese counterparts,their direct application to Chinese texts faces significant challenges due to linguistic distinctions such as unique grammar,pictographic characters,and prevalent polysemy.The absence of comprehensive reviews on Chinese RE research progress necessitates a systematic investigation.A thorough review of Chinese RE has been conducted from four methodological approaches:pipeline RE,joint entityrelation extraction,open domain RE,and multimodal RE techniques.In addition,we further analyze the essential research infrastructure,including specialized datasets,evaluation benchmarks,and competitions within Chinese RE research.Finally,the current research challenges and development trends in the field of Chinese RE were summarized and analyzed from the perspectives of ecological construction methods for datasets,open domain RE,N-ary RE,and RE based on large language models.This comprehensive review aims to facilitate SFO-KG construction and its practical applications in SFO resource management. 展开更多
关键词 Relation extraction Information extraction Distant supervision Parsing tree joint entity-relation extraction
在线阅读 下载PDF
JMoE-FAP:A novel model for telecom network fraud victimization pattern analysis
8
作者 Tuo Shi Jing Hu +1 位作者 Danyang Li Min Chen 《Journal of Safety Science and Resilience》 2025年第3期474-484,共11页
A comprehensive examination of the victimization process,coupled with the development of effective preventive strategies,represents the most promising approach for mitigating telecom network fraud.However,the limited ... A comprehensive examination of the victimization process,coupled with the development of effective preventive strategies,represents the most promising approach for mitigating telecom network fraud.However,the limited availability of telecom fraud case text data hinders the advancement of robust data extraction algorithms,thereby complicating the identification of victimization patterns.To address this gap,this study proposes a victimization process analysis model that leverages mixed expert event joint extraction,utilizing real telecom fraud case data.The model integrates LERT-MoE to extract trigger words and arguments related to the victimization process from law enforcement reports,followed by the application of a dot-product attention mechanism for argument role classification.To the best of our knowledge,this represents the first attempt to apply a mixture-of-experts model with a purpose-built dot-product attention mechanism for the in-depth analysis of telecom network fraud victimization patterns,overcoming the limitations of previous methods in managing the complexity and diversity of fraudulent behaviors.Additionally,the Apriori method is employed to uncover prevalent behavioral patterns in the victimization process.Experimental results demonstrate that the proposed model outperforms baseline models in precision,accuracy,and F1-score for event extraction tasks in telecom fraud instances.Furthermore,the model identifies more granular fraud patterns within the victimization process,offering a valuable knowledge base for the development of targeted preventive strategies.The identified patterns can be used to design focused awareness campaigns,enhance fraud detection algorithms,and improve law enforcement training,thereby significantly increasing the effectiveness of anti-fraud initiatives. 展开更多
关键词 LERTMOE joint extraction Attention mechanism APRIORI
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部