The traditional orbit determination method based on pulsar profile distortion can determine the six elements of the orbit.However,the estimation accuracies of these methods are limited and the computational load of a ...The traditional orbit determination method based on pulsar profile distortion can determine the six elements of the orbit.However,the estimation accuracies of these methods are limited and the computational load of a six-dimensional search is huge.To solve this problem,the differential-geometry-based Multi-dimensional Joint Position-Velocity Estimation(MJPVE)using Crab pulsar profile distortion is proposed in this paper.Firstly,through theoretical analysis,it is found that the pulsar profile distortion caused by the initial state error in some joint positionvelocity directions is very small.In other words,the accuracies of estimation in these directions are very low.Namely,the search dimension can be reduced,which in turn greatly reduces the computational load.Then,we construct the chi-squared function of the pulsar profile with respect to the estimation error in joint position-velocity direction and use differential geometry to find the joint position-velocity directions corresponding to different degrees of distortion.Finally,we utilize the grid search based on directory folding in these joint position-velocity directions corresponding to large degrees of distortion to obtain the joint position-velocity estimation.The experimental results show that compared with the grouping bi-chi-squared inversion method,MJPVE has high precision and extensive navigation information.展开更多
In order to study the reliability of the empirical estimation of joint shear strength by the JRC(joint roughness coefficient)-JCS(joint compressive strength) model,natural rock joints of dif-ferent lithologic char...In order to study the reliability of the empirical estimation of joint shear strength by the JRC(joint roughness coefficient)-JCS(joint compressive strength) model,natural rock joints of dif-ferent lithologic characteristics and different sizes were selected as samples,and their shear strengths under dry and saturated conditions were measured by direct shear test and compared to those esti-mated by the JRC-JCS model.Comparison results show that for natural rock joints with joint surfaces closely matched,the average relative error of joint shear strength between empirical estimation and direct shear test is 9.9%;the reliability of the empirical estimation of joint shear strength by the JRC-JCS model is good under both dry and saturated conditions if the JRC is determined accounting for directional statistical measurements,scale effect and surface smoothing during shearing.However,for natural rock joints with joint surfaces mismatched,the average relative error of joint shear strength between empirical estimation and direct shear test is 39.9%;the reliability of empirical estimation of joint shear strength by the JRC-JCS model is questionable under both dry and saturated conditions.展开更多
In this paper,we propose a joint channel estimation and symbol detection(JCESD)algorithm relying on message-passing algorithms(MPA)for orthogonal frequency division multiple access(OFDMA)systems.The channel estimation...In this paper,we propose a joint channel estimation and symbol detection(JCESD)algorithm relying on message-passing algorithms(MPA)for orthogonal frequency division multiple access(OFDMA)systems.The channel estimation and symbol detection leverage the framework of expectation propagation(EP)and belief propagation(BP)with the aid of Gaussian approximation,respectively.Furthermore,to reduce the computation complexity involved in channel estimation,the matrix inversion is transformed into a series of diagonal matrix inversions through the Sherman-Morrison formula.Simulation experiments show that the proposed algorithm can reduce the pilot overhead by about 50%,compared with the traditional linear minimum mean square error(LMMSE)algorithm,and can approach to the bit error rate(BER)performance bound of perfectly known channel state information within 0.1 dB.展开更多
A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conven...A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm.展开更多
The optimal estimation performance of target parameters is studied. First, the general form of Cramer-Rao bound (CRB) for joint estimation of target location and velocity is derived for coherent multiple input multi...The optimal estimation performance of target parameters is studied. First, the general form of Cramer-Rao bound (CRB) for joint estimation of target location and velocity is derived for coherent multiple input multiple output (MIMO) radars. To gain some insight into the behavior of the CRB, the CRB with a set of given orthogonal waveforms is studied as a specific case. Second, a maximum likelihood (ML) estimation algorithm is proposed. The mean square error (MSE) of the ML estimation of target location and velocity is obtained by Monte Carlo simulation and it approaches CRB in the high signal-to-noise ratio (SNR) region.展开更多
The problem of joint direction of arrival (DOA) and Doppler frequency estimation in monostatic multiple-input multiple-output (MIMO) radar is studied and a computationally efficient multiple signal classification (CE-...The problem of joint direction of arrival (DOA) and Doppler frequency estimation in monostatic multiple-input multiple-output (MIMO) radar is studied and a computationally efficient multiple signal classification (CE-MUSIC) algorithm is proposed.Conventional MUSIC algorithm for joint DOA and Doppler frequency estimation requires a large computational cost due to the two dimensional (2D) spectral peak searching.Aiming at this shortcoming,the proposed CE-MUSIC algorithm firstly uses a reduced-dimension transformation to reduce the subspace dimension and then obtains the estimates of DOA and Doppler frequency with only one-dimensional (1D) search.The proposed CE-MUSIC algorithm has much lower computational complexity and very close estimation performance when compared to conventional 2D-MUSIC algorithm.Furthermore,it outperforms estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm.Meanwhile,the mean squared error (MSE) and Cramer-Rao bound (CRB) of joint DOA and Doppler frequency estimation are derived.Detailed simulation results illustrate the validity and improvement of the proposed algorithm.展开更多
Effectiveness evaluation of the joint operation system is an important basis for the demonstration and development of weapon equipment.With the consideration that existing models of system effectiveness evaluation sel...Effectiveness evaluation of the joint operation system is an important basis for the demonstration and development of weapon equipment.With the consideration that existing models of system effectiveness evaluation seldom describe the structural relationship among equipment clearly as well as reflect the dynamic,the analog-to-digital converter-graphical evaluation and review technique(ADC-GERT)network parameter estimation model is proposed based on the ADC model and the joint operation system structure.Firstly,analysis of the joint operation system structure and operation process is conducted to build the GERT network,where equipment subsystems are nodes and activities are directed arches.Then the mission effectiveness of equipment subsystems is calculated by the ADC model.The probability transfer parameters are modified by the mission effectiveness of equipment subsystems based on the Bayesian theorem,with the ADC-GERT network parameter estimation model constructed.Finally,a case study is used to validate the efficiency and dynamic of the ADC-GERT network parameter estimation model.展开更多
This paper investigates the problem of synchronization for offset quadrature amplitude modulation based orthogonal frequency division multiplexing(OFDM/OQAM) systems based on the genetic algorithm. In order to increas...This paper investigates the problem of synchronization for offset quadrature amplitude modulation based orthogonal frequency division multiplexing(OFDM/OQAM) systems based on the genetic algorithm. In order to increase the spectrum efficiency,an improved preamble structure without guard symbols is derived at first. On this basis, instead of deriving the log likelihood function of power spectral density, joint estimation of the symbol timing offset and carrier frequency offset based on the preamble proposed is formulated into a bivariate optimization problem. After that, an improved genetic algorithm is used to find its global optimum solution. Conclusions can be drawn from simulation results that the proposed method has advantages in the joint estimation of synchronization.展开更多
In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applicati...In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applications, especially in passive radar systems. In this paper, we propose a joint DOA and polarization estimation method for unequal power sources based on the reconstructed noise subspace. The invariance property of noise subspace(IPNS) to power of sources has been proved an effective method to estimate DOA of unequal power sources. We develop the IPNS method for joint DOA and polarization estimation based on a dual polarized array. Moreover, we propose an improved IPNS method based on the reconstructed noise subspace, which has higher resolution probability than the IPNS method. It is theoretically proved that the IPNS to power of sources is still valid when the eigenvalues of the noise subspace are changed artificially. Simulation results show that the resolution probability of the proposed method is enhanced compared with the methods based on the IPNS and the polarimetric multiple signal classification(MUSIC) method. Meanwhile, the proposed method has approximately the same estimation accuracy as the IPNS method for the weak source.展开更多
A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE...A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE)- based space-alternating generalized expectation-maximization (SAGE) algorithm. In the proposed algorithm, every sub-frame of the MIMO-OFDM system is divided into some OFDM sub-blocks and the LMMSE-based SAGE algorithm in each sub-block is used. At the head of each sub-flame, we insert training symbols which are used in the initial estimation at the beginning. Channel estimation of the previous sub-block is applied to the initial estimation in the current sub-block by the maximum-likelihood (ML) detection to update channel estimatjon and data detection by iteration until converge. Then all the sub-blocks can be finished in turn. Simulation results show that the proposed algorithm can improve the bit error rate (BER) performance.展开更多
Advancements in animal behavior quantification methods have driven the development of computational ethology,enabling fully automated behavior analysis.Existing multianimal pose estimation workflows rely on tracking-b...Advancements in animal behavior quantification methods have driven the development of computational ethology,enabling fully automated behavior analysis.Existing multianimal pose estimation workflows rely on tracking-bydetection frameworks for either bottom-up or top-down approaches,requiring retraining to accommodate diverse animal appearances.This study introduces InteBOMB,an integrated workflow that enhances top-down approaches by incorporating generic object tracking,eliminating the need for prior knowledge of target animals while maintaining broad generalizability.InteBOMB includes two key strategies for tracking and segmentation in laboratory environments and two techniques for pose estimation in natural settings.The“background enhancement”strategy optimizesforeground-backgroundcontrastiveloss,generating more discriminative correlation maps.The“online proofreading”strategy stores human-in-the-loop long-term memory and dynamic short-term memory,enabling adaptive updates to object visual features.The“automated labeling suggestion”technique reuses the visual features saved during tracking to identify representative frames for training set labeling.Additionally,the“joint behavior analysis”technique integrates these features with multimodal data,expanding the latent space for behavior classification and clustering.To evaluate the framework,six datasets of mice and six datasets of nonhuman primates were compiled,covering laboratory and natural scenes.Benchmarking results demonstrated a24%improvement in zero-shot generic tracking and a 21%enhancement in joint latent space performance across datasets,highlighting the effectiveness of this approach in robust,generalizable behavior analysis.展开更多
Joint power control has advantages of multi-user detection and power control; and it can combat the multi-access interference and the near-far problem. A novel adaptive joint power control algorithm with channel estim...Joint power control has advantages of multi-user detection and power control; and it can combat the multi-access interference and the near-far problem. A novel adaptive joint power control algorithm with channel estimation in a CDMA cellular system was designed. Simulation results show that the algorithm can control the power not only quickly but also precisely with a time change. The method is useful for increasing system capacity.展开更多
It is always a challenging issue for radar systems to estimate the height of a low-angle target in the multipath propagation environment.The highly deterministic maximum likelihood estimator has a high accuracy,but th...It is always a challenging issue for radar systems to estimate the height of a low-angle target in the multipath propagation environment.The highly deterministic maximum likelihood estimator has a high accuracy,but the errors of the ground reflection coefficient and the reflecting surface height have serious influence on the method.In this paper,a robust es-timation method with less computation burden is proposed based on the compound reflection coefficient multipath model for low-angle targets.The compound reflection coefficient is es-timated from the received data of the array and then a one-di-mension generalized steering vector is constructed to estimate the target height.The algorithm is robust to the reflecting sur-face height error and the ground reflection coefficient error.Fi-nally,the experiment and simulation results demonstrate the validity of the proposed method.展开更多
Estimation of construction parameters is crucial for optimizing tunnel construction schedule.Due to the influence of routine activities and occasional risk events,these parameters are usually correlated and imbalanced...Estimation of construction parameters is crucial for optimizing tunnel construction schedule.Due to the influence of routine activities and occasional risk events,these parameters are usually correlated and imbalanced.To solve this issue,an improved bidirectional generative adversarial network(BiGAN)model with a joint discriminator structure and zero-centered gradient penalty(0-GP)is proposed.In this model,in order to improve the capability of original BiGAN in learning imbalanced parameters,the joint discriminator separately discriminates the routine activities and risk event durations to balance their influence weights.Then,the self-attention mechanism is embedded so that the discriminator can pay more attention to the imbalanced parameters.Finally,the 0-GP is adapted for the loss of the discrimi-nator to improve its convergence and stability.A case study of a tunnel in China shows that the improved BiGAN can obtain parameter estimates consistent with the classical Gauss mixture model,without the need of tedious and complex correlation analysis.The proposed joint discriminator can increase the ability of BiGAN in estimating imbalanced construction parameters,and the 0-GP can ensure the stability and convergence of the model.展开更多
Studies have indicated that the distributed compressed sensing based(DCSbased) channel estimation can decrease the length of the reference signals effectively. In block transmission, a unique word(UW) can be used as a...Studies have indicated that the distributed compressed sensing based(DCSbased) channel estimation can decrease the length of the reference signals effectively. In block transmission, a unique word(UW) can be used as a cyclic prefix and reference signal. However, the DCS-based channel estimation requires diversity sequences instead of UW. In this paper, we proposed a novel method that employs a training sequence(TS) whose duration time is slightly longer than the maximum delay spread time. Based on proposed TS, the DCS approach perform perfectly in multipath channel estimation. Meanwhile, a cyclic prefix construct could be formed, which reduces the complexity of the frequency domain equalization(FDE) directly. Simulation results demonstrate that, by using the method of simultaneous orthogonal matching pursuit(SOMP), the required channel overhead has been reduced thanks to the proposed TS.展开更多
The turbulence or gust in quadrotor flight environment causes drastic changes in the unmanned aerial vehicle(UAV)aerodynamic parameters.Especially,rotor thrust coefficient and reaction torque coefficient of the UAV en...The turbulence or gust in quadrotor flight environment causes drastic changes in the unmanned aerial vehicle(UAV)aerodynamic parameters.Especially,rotor thrust coefficient and reaction torque coefficient of the UAV encounter uncertainty fluctuation,which may undermine the control performance.A real-time estimation strategy for these aerodynamic parameters is proposed to improve the identification on the disturbance.First,the unscented Kalman filter(UKF)algorithm is used to estimate the UAV states and aerodynamic parameters.Then,a double-loop structure,consisting of position and attitude,is designed for the trajectory tracking control.In the outer loop,a proportional-derivative controller is adopted to carry out position tracking and provide Euler angle references for the inner loop,called attitude controller.Moreover,the attitude controller is designed using an inverse dynamic technique.The main contribution of this study is to propose a joint estimation on the aerodynamic parameters with wind disturbance as well as the UAV states.This strategy plays an important role in refining time-varying parameters of wind disturbance.A number of simulations are executed to verify the effectiveness of the proposed method.展开更多
In order to solve the rainfall estimation error caused by various noise factors such as clutter,super refraction,and raindrops during the detection process of Doppler weather radar.This paper proposes to improve the r...In order to solve the rainfall estimation error caused by various noise factors such as clutter,super refraction,and raindrops during the detection process of Doppler weather radar.This paper proposes to improve the rainfall estimation model of radar combined with rain gauge which calibrated by common Kalman filter.After data preprocessing,the radar data should be classified according to the precipitation intensity.And then,they are respectively substituted into the improved filter for calibration.The state noise variance Q(k)and the measurement noise variance R(k)can be adaptively calculated and updated according to the input observation data during this process.Then the optimal parameter value of each type of precipitation intensity can be obtained.The state noise variance Q(k)and the measurement noise variance R(k)could be assigned optimal values when filtering the remaining data.This rainfall estimation based on semiadaptive Kalman filter calibration not only improves the accuracy of rainfall estimation,but also greatly reduces the amount of calculation.It avoids errors caused by repeated calculations,and improves the efficiency of the rainfall estimation at the same time.展开更多
ABSTRACT The accurate state-of-charge(SOC)estimation of sodium-ion batteries is the basis for their efficient application.In this paper,a new SOC estimation method suitable for sodium-ion batteries and their applicati...ABSTRACT The accurate state-of-charge(SOC)estimation of sodium-ion batteries is the basis for their efficient application.In this paper,a new SOC estimation method suitable for sodium-ion batteries and their application conditions is proposed,which considers the combination of open circuit voltage(OCV)and internal resistance correction.First,the optimal order of equivalent circuit model is analyzed and selected,and the monotonic and stable mapping relationships between OCV and SOC,as well as between ohmic internal resistance and SOC are determined.Then,a joint estimation algorithm for battery model parameters and SOC is estab-lished,and a joint SOC correction strategy based on OCV and ohmic internal resistance is established.The test results show that OCV correction is reliable when polarization is small,that the ohmic internal resistance correction is reliable when the current fluctuation is large,and that the maximum absolute error of SOC estimation of the proposed method is not more than 2.6%.展开更多
Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and miss...Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and mission trajectory planning method is proposed to meet the requirements of cross-domain unmanned swarm mission planning.Firstly,the different performances of cross-domain heterogeneous platforms and mission requirements of targets are characterised by using a collection of operational resources.Secondly,an algorithmic framework for joint target assignment and mission trajectory planning is proposed,in which the initial planning of the trajectory is performed in the target assignment phase,while the trajectory is further optimised afterwards.Next,the estimation of the distribution algorithms is combined with the genetic algorithm to solve the objective function.Finally,the algorithm is numerically simulated by specific cases.Simulation results indicate that the proposed algorithm can perform effective task assignment and trajectory planning for cross-domain unmanned swarms.Furthermore,the solution performance of the hybrid estimation of distribution algorithm(EDA)-genetic algorithm(GA)algorithm is better than that of GA and EDA.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.61873196,62373030,61772187)the Innovation Program for Quantum Science and Technology(No.2021ZD0303400)。
文摘The traditional orbit determination method based on pulsar profile distortion can determine the six elements of the orbit.However,the estimation accuracies of these methods are limited and the computational load of a six-dimensional search is huge.To solve this problem,the differential-geometry-based Multi-dimensional Joint Position-Velocity Estimation(MJPVE)using Crab pulsar profile distortion is proposed in this paper.Firstly,through theoretical analysis,it is found that the pulsar profile distortion caused by the initial state error in some joint positionvelocity directions is very small.In other words,the accuracies of estimation in these directions are very low.Namely,the search dimension can be reduced,which in turn greatly reduces the computational load.Then,we construct the chi-squared function of the pulsar profile with respect to the estimation error in joint position-velocity direction and use differential geometry to find the joint position-velocity directions corresponding to different degrees of distortion.Finally,we utilize the grid search based on directory folding in these joint position-velocity directions corresponding to large degrees of distortion to obtain the joint position-velocity estimation.The experimental results show that compared with the grouping bi-chi-squared inversion method,MJPVE has high precision and extensive navigation information.
基金supported by the National Natural Science Foundation of China (Nos. 40672186, 50809059)the Natural Science Foundation of Zhejiang Province (No. Y505008), China
文摘In order to study the reliability of the empirical estimation of joint shear strength by the JRC(joint roughness coefficient)-JCS(joint compressive strength) model,natural rock joints of dif-ferent lithologic characteristics and different sizes were selected as samples,and their shear strengths under dry and saturated conditions were measured by direct shear test and compared to those esti-mated by the JRC-JCS model.Comparison results show that for natural rock joints with joint surfaces closely matched,the average relative error of joint shear strength between empirical estimation and direct shear test is 9.9%;the reliability of the empirical estimation of joint shear strength by the JRC-JCS model is good under both dry and saturated conditions if the JRC is determined accounting for directional statistical measurements,scale effect and surface smoothing during shearing.However,for natural rock joints with joint surfaces mismatched,the average relative error of joint shear strength between empirical estimation and direct shear test is 39.9%;the reliability of empirical estimation of joint shear strength by the JRC-JCS model is questionable under both dry and saturated conditions.
文摘In this paper,we propose a joint channel estimation and symbol detection(JCESD)algorithm relying on message-passing algorithms(MPA)for orthogonal frequency division multiple access(OFDMA)systems.The channel estimation and symbol detection leverage the framework of expectation propagation(EP)and belief propagation(BP)with the aid of Gaussian approximation,respectively.Furthermore,to reduce the computation complexity involved in channel estimation,the matrix inversion is transformed into a series of diagonal matrix inversions through the Sherman-Morrison formula.Simulation experiments show that the proposed algorithm can reduce the pilot overhead by about 50%,compared with the traditional linear minimum mean square error(LMMSE)algorithm,and can approach to the bit error rate(BER)performance bound of perfectly known channel state information within 0.1 dB.
文摘A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(61171120)the Key National Ministry Foundation of China(9140A07020212JW0101)the Foundation of Tsinghua University(20101081772)
文摘The optimal estimation performance of target parameters is studied. First, the general form of Cramer-Rao bound (CRB) for joint estimation of target location and velocity is derived for coherent multiple input multiple output (MIMO) radars. To gain some insight into the behavior of the CRB, the CRB with a set of given orthogonal waveforms is studied as a specific case. Second, a maximum likelihood (ML) estimation algorithm is proposed. The mean square error (MSE) of the ML estimation of target location and velocity is obtained by Monte Carlo simulation and it approaches CRB in the high signal-to-noise ratio (SNR) region.
基金supported in part by the Funding for Outstanding Doctoral Dissertation in NUAA (No.BCXJ1503)the Funding of Jiangsu Innovation Program for Graduate Education(No.KYLX15_0281)the Fundamental Research Funds for the Central Universities
文摘The problem of joint direction of arrival (DOA) and Doppler frequency estimation in monostatic multiple-input multiple-output (MIMO) radar is studied and a computationally efficient multiple signal classification (CE-MUSIC) algorithm is proposed.Conventional MUSIC algorithm for joint DOA and Doppler frequency estimation requires a large computational cost due to the two dimensional (2D) spectral peak searching.Aiming at this shortcoming,the proposed CE-MUSIC algorithm firstly uses a reduced-dimension transformation to reduce the subspace dimension and then obtains the estimates of DOA and Doppler frequency with only one-dimensional (1D) search.The proposed CE-MUSIC algorithm has much lower computational complexity and very close estimation performance when compared to conventional 2D-MUSIC algorithm.Furthermore,it outperforms estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm.Meanwhile,the mean squared error (MSE) and Cramer-Rao bound (CRB) of joint DOA and Doppler frequency estimation are derived.Detailed simulation results illustrate the validity and improvement of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(72071111,71801127,71671091)the NSFC and the UK Royal Society joint project(71811530338)+2 种基金the Special Postdoctoral Fund of China(2019TQ0150)the Fundamental Research Funds for the Central Universities of China(NC2019003)the Intelligence Introduction Base of the Ministry of Science and Technology(G20190010178)。
文摘Effectiveness evaluation of the joint operation system is an important basis for the demonstration and development of weapon equipment.With the consideration that existing models of system effectiveness evaluation seldom describe the structural relationship among equipment clearly as well as reflect the dynamic,the analog-to-digital converter-graphical evaluation and review technique(ADC-GERT)network parameter estimation model is proposed based on the ADC model and the joint operation system structure.Firstly,analysis of the joint operation system structure and operation process is conducted to build the GERT network,where equipment subsystems are nodes and activities are directed arches.Then the mission effectiveness of equipment subsystems is calculated by the ADC model.The probability transfer parameters are modified by the mission effectiveness of equipment subsystems based on the Bayesian theorem,with the ADC-GERT network parameter estimation model constructed.Finally,a case study is used to validate the efficiency and dynamic of the ADC-GERT network parameter estimation model.
基金supported by the National Natural Science Foundation of China(61671468)。
文摘This paper investigates the problem of synchronization for offset quadrature amplitude modulation based orthogonal frequency division multiplexing(OFDM/OQAM) systems based on the genetic algorithm. In order to increase the spectrum efficiency,an improved preamble structure without guard symbols is derived at first. On this basis, instead of deriving the log likelihood function of power spectral density, joint estimation of the symbol timing offset and carrier frequency offset based on the preamble proposed is formulated into a bivariate optimization problem. After that, an improved genetic algorithm is used to find its global optimum solution. Conclusions can be drawn from simulation results that the proposed method has advantages in the joint estimation of synchronization.
基金supported by the National Natural Science Foundation of China(61501142)the China Postdoctoral Science Foundation(2015M571414)+3 种基金the Fundamental Research Funds for the Central Universities(HIT.NSRIF.2016102)Shandong Provincial Natural Science Foundation(ZR2014FQ003)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(HIT.NSRIF 2013130HIT(WH)XBQD 201022)
文摘In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applications, especially in passive radar systems. In this paper, we propose a joint DOA and polarization estimation method for unequal power sources based on the reconstructed noise subspace. The invariance property of noise subspace(IPNS) to power of sources has been proved an effective method to estimate DOA of unequal power sources. We develop the IPNS method for joint DOA and polarization estimation based on a dual polarized array. Moreover, we propose an improved IPNS method based on the reconstructed noise subspace, which has higher resolution probability than the IPNS method. It is theoretically proved that the IPNS to power of sources is still valid when the eigenvalues of the noise subspace are changed artificially. Simulation results show that the resolution probability of the proposed method is enhanced compared with the methods based on the IPNS and the polarimetric multiple signal classification(MUSIC) method. Meanwhile, the proposed method has approximately the same estimation accuracy as the IPNS method for the weak source.
基金Supported by the National Natural Science Foundation of China (No. 61001105), the National Science and Technology Major Projects (No. 2011ZX03001- 007- 03) and Beijing Natural Science Foundation (No. 4102043).
文摘A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE)- based space-alternating generalized expectation-maximization (SAGE) algorithm. In the proposed algorithm, every sub-frame of the MIMO-OFDM system is divided into some OFDM sub-blocks and the LMMSE-based SAGE algorithm in each sub-block is used. At the head of each sub-flame, we insert training symbols which are used in the initial estimation at the beginning. Channel estimation of the previous sub-block is applied to the initial estimation in the current sub-block by the maximum-likelihood (ML) detection to update channel estimatjon and data detection by iteration until converge. Then all the sub-blocks can be finished in turn. Simulation results show that the proposed algorithm can improve the bit error rate (BER) performance.
基金supported by the STI 2030-Major Projects(2022ZD0211900,2022ZD0211902)STI 2030-Major Projects(2021ZD0204500,2021ZD0204503)+1 种基金National Natural Science Foundation of China(32171461)National Key Research and Development Program of China(2023YFC3208303)。
文摘Advancements in animal behavior quantification methods have driven the development of computational ethology,enabling fully automated behavior analysis.Existing multianimal pose estimation workflows rely on tracking-bydetection frameworks for either bottom-up or top-down approaches,requiring retraining to accommodate diverse animal appearances.This study introduces InteBOMB,an integrated workflow that enhances top-down approaches by incorporating generic object tracking,eliminating the need for prior knowledge of target animals while maintaining broad generalizability.InteBOMB includes two key strategies for tracking and segmentation in laboratory environments and two techniques for pose estimation in natural settings.The“background enhancement”strategy optimizesforeground-backgroundcontrastiveloss,generating more discriminative correlation maps.The“online proofreading”strategy stores human-in-the-loop long-term memory and dynamic short-term memory,enabling adaptive updates to object visual features.The“automated labeling suggestion”technique reuses the visual features saved during tracking to identify representative frames for training set labeling.Additionally,the“joint behavior analysis”technique integrates these features with multimodal data,expanding the latent space for behavior classification and clustering.To evaluate the framework,six datasets of mice and six datasets of nonhuman primates were compiled,covering laboratory and natural scenes.Benchmarking results demonstrated a24%improvement in zero-shot generic tracking and a 21%enhancement in joint latent space performance across datasets,highlighting the effectiveness of this approach in robust,generalizable behavior analysis.
文摘Joint power control has advantages of multi-user detection and power control; and it can combat the multi-access interference and the near-far problem. A novel adaptive joint power control algorithm with channel estimation in a CDMA cellular system was designed. Simulation results show that the algorithm can control the power not only quickly but also precisely with a time change. The method is useful for increasing system capacity.
基金supported by the National Natural Science Foundation of China(61771367)the Science and Technology on Communication Networks Laboratory(6142104190204).
文摘It is always a challenging issue for radar systems to estimate the height of a low-angle target in the multipath propagation environment.The highly deterministic maximum likelihood estimator has a high accuracy,but the errors of the ground reflection coefficient and the reflecting surface height have serious influence on the method.In this paper,a robust es-timation method with less computation burden is proposed based on the compound reflection coefficient multipath model for low-angle targets.The compound reflection coefficient is es-timated from the received data of the array and then a one-di-mension generalized steering vector is constructed to estimate the target height.The algorithm is robust to the reflecting sur-face height error and the ground reflection coefficient error.Fi-nally,the experiment and simulation results demonstrate the validity of the proposed method.
基金supported by National Natural Science Foundation of China(Grant Nos.52279137,52009090).
文摘Estimation of construction parameters is crucial for optimizing tunnel construction schedule.Due to the influence of routine activities and occasional risk events,these parameters are usually correlated and imbalanced.To solve this issue,an improved bidirectional generative adversarial network(BiGAN)model with a joint discriminator structure and zero-centered gradient penalty(0-GP)is proposed.In this model,in order to improve the capability of original BiGAN in learning imbalanced parameters,the joint discriminator separately discriminates the routine activities and risk event durations to balance their influence weights.Then,the self-attention mechanism is embedded so that the discriminator can pay more attention to the imbalanced parameters.Finally,the 0-GP is adapted for the loss of the discrimi-nator to improve its convergence and stability.A case study of a tunnel in China shows that the improved BiGAN can obtain parameter estimates consistent with the classical Gauss mixture model,without the need of tedious and complex correlation analysis.The proposed joint discriminator can increase the ability of BiGAN in estimating imbalanced construction parameters,and the 0-GP can ensure the stability and convergence of the model.
基金support by National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2015BAK05B01)
文摘Studies have indicated that the distributed compressed sensing based(DCSbased) channel estimation can decrease the length of the reference signals effectively. In block transmission, a unique word(UW) can be used as a cyclic prefix and reference signal. However, the DCS-based channel estimation requires diversity sequences instead of UW. In this paper, we proposed a novel method that employs a training sequence(TS) whose duration time is slightly longer than the maximum delay spread time. Based on proposed TS, the DCS approach perform perfectly in multipath channel estimation. Meanwhile, a cyclic prefix construct could be formed, which reduces the complexity of the frequency domain equalization(FDE) directly. Simulation results demonstrate that, by using the method of simultaneous orthogonal matching pursuit(SOMP), the required channel overhead has been reduced thanks to the proposed TS.
基金Supported by the National Natural Science Foundation of China(No.61703314,61573263)National Key Research and Development Program of China(No.2017YFC0806503)
文摘The turbulence or gust in quadrotor flight environment causes drastic changes in the unmanned aerial vehicle(UAV)aerodynamic parameters.Especially,rotor thrust coefficient and reaction torque coefficient of the UAV encounter uncertainty fluctuation,which may undermine the control performance.A real-time estimation strategy for these aerodynamic parameters is proposed to improve the identification on the disturbance.First,the unscented Kalman filter(UKF)algorithm is used to estimate the UAV states and aerodynamic parameters.Then,a double-loop structure,consisting of position and attitude,is designed for the trajectory tracking control.In the outer loop,a proportional-derivative controller is adopted to carry out position tracking and provide Euler angle references for the inner loop,called attitude controller.Moreover,the attitude controller is designed using an inverse dynamic technique.The main contribution of this study is to propose a joint estimation on the aerodynamic parameters with wind disturbance as well as the UAV states.This strategy plays an important role in refining time-varying parameters of wind disturbance.A number of simulations are executed to verify the effectiveness of the proposed method.
基金This work was supported by the National Natural Science Foundation of China(Grant No.42075007)the Open Grants of the State Key Laboratory of Severe Weather(No.2021LASW-B19).
文摘In order to solve the rainfall estimation error caused by various noise factors such as clutter,super refraction,and raindrops during the detection process of Doppler weather radar.This paper proposes to improve the rainfall estimation model of radar combined with rain gauge which calibrated by common Kalman filter.After data preprocessing,the radar data should be classified according to the precipitation intensity.And then,they are respectively substituted into the improved filter for calibration.The state noise variance Q(k)and the measurement noise variance R(k)can be adaptively calculated and updated according to the input observation data during this process.Then the optimal parameter value of each type of precipitation intensity can be obtained.The state noise variance Q(k)and the measurement noise variance R(k)could be assigned optimal values when filtering the remaining data.This rainfall estimation based on semiadaptive Kalman filter calibration not only improves the accuracy of rainfall estimation,but also greatly reduces the amount of calculation.It avoids errors caused by repeated calculations,and improves the efficiency of the rainfall estimation at the same time.
基金supported by the Key Science and Technology Project of China Southern Power Grid Corporation:Sodium-ion Battery Energy Storage System Multi-Scenario Demonstration Application Project-Topic 2 Research on Safety Application Technology of Sodium-ion Battery Energy Storage(STKJXM 20210104)the National Natural Science Foundation of China under Grant 52307233.
文摘ABSTRACT The accurate state-of-charge(SOC)estimation of sodium-ion batteries is the basis for their efficient application.In this paper,a new SOC estimation method suitable for sodium-ion batteries and their application conditions is proposed,which considers the combination of open circuit voltage(OCV)and internal resistance correction.First,the optimal order of equivalent circuit model is analyzed and selected,and the monotonic and stable mapping relationships between OCV and SOC,as well as between ohmic internal resistance and SOC are determined.Then,a joint estimation algorithm for battery model parameters and SOC is estab-lished,and a joint SOC correction strategy based on OCV and ohmic internal resistance is established.The test results show that OCV correction is reliable when polarization is small,that the ohmic internal resistance correction is reliable when the current fluctuation is large,and that the maximum absolute error of SOC estimation of the proposed method is not more than 2.6%.
文摘Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and mission trajectory planning method is proposed to meet the requirements of cross-domain unmanned swarm mission planning.Firstly,the different performances of cross-domain heterogeneous platforms and mission requirements of targets are characterised by using a collection of operational resources.Secondly,an algorithmic framework for joint target assignment and mission trajectory planning is proposed,in which the initial planning of the trajectory is performed in the target assignment phase,while the trajectory is further optimised afterwards.Next,the estimation of the distribution algorithms is combined with the genetic algorithm to solve the objective function.Finally,the algorithm is numerically simulated by specific cases.Simulation results indicate that the proposed algorithm can perform effective task assignment and trajectory planning for cross-domain unmanned swarms.Furthermore,the solution performance of the hybrid estimation of distribution algorithm(EDA)-genetic algorithm(GA)algorithm is better than that of GA and EDA.