Nonperiodic interrupted sampling repeater jamming(ISRJ)against inverse synthetic aperture radar(ISAR)can obtain two-dimensional blanket jamming performance by joint fast and slow time domain interrupted modulation,whi...Nonperiodic interrupted sampling repeater jamming(ISRJ)against inverse synthetic aperture radar(ISAR)can obtain two-dimensional blanket jamming performance by joint fast and slow time domain interrupted modulation,which is obviously dif-ferent from the conventional multi-false-target deception jam-ming.In this paper,a suppression method against this kind of novel jamming is proposed based on inter-pulse energy function and compressed sensing theory.By utilizing the discontinuous property of the jamming in slow time domain,the unjammed pulse is separated using the intra-pulse energy function diffe-rence.Based on this,the two-dimensional orthogonal matching pursuit(2D-OMP)algorithm is proposed.Further,it is proposed to reconstruct the ISAR image with the obtained unjammed pulse sequence.The validity of the proposed method is demon-strated via the Yake-42 plane data simulations.展开更多
Complicated electromagnetic environments of the space situational awareness facilities(i.e.,satellite navigation systems,radar)would significantly impact normal operations.Effective monitoring and the corresponding di...Complicated electromagnetic environments of the space situational awareness facilities(i.e.,satellite navigation systems,radar)would significantly impact normal operations.Effective monitoring and the corresponding diagnosis of the jamming signals are essential to normal opera-tions and the innovations in anti-jamming equipment.This paper demonstrates a comprehensive survey on jamming monitoring algorithms and applications.The methods in dealing with jamming signals are summarized primarily.Subsequently,the jamming detection,identification,and direc-tion finding techniques are addressed separately.Based on the established studies,we also provide some potential trends of the demonstrated jamming monitoring issues.展开更多
Cashew processing in Côte d’Ivoire focuses only on the cashew nut, to the detriment of the apple. Only a very small proportion of the apple is processed into juice. The aim of this work is to enhance the value o...Cashew processing in Côte d’Ivoire focuses only on the cashew nut, to the detriment of the apple. Only a very small proportion of the apple is processed into juice. The aim of this work is to enhance the value of cashew apples by transforming them into jam. Specifically, the aim was first to characterize the sensory properties of cashew apple jam formulations using baobab powder as a source of pectin and then to optimise the formulations. A Box-Behken design with pH, Sugar, and Baobab as factors was used to model and characterize the jam sensory descriptors, and a multivariate analysis with SensomineR was used to characterize the jam formulations. The desirability function was used to optimise the formulations. The results show globally significant regressions at the 0.05 threshold for the sensory descriptors Gelling, Brilliance, Smell, Sweetness, and (-)Astringency, with the exception of (-)Salinity. The R2 coefficients are greater than 80%. The factors studied could have effects on the sensory descriptors of cashew jam formulations. The Baobab had the main effect on the gelling, smell, and astringency of the jams. Brilliance depended on the added sugar. A product effect (p < 0.001) was observed for the descriptors Smell, Gelling, Brilliance, and Sweetness, as these allowed the panelists to find differences between the formulations. Optimum jam formulation can be achieved with 51.56% sugar and 2.12% Baobab at a pH of 3.15. Cashew apple jam using Baobab offers opportunities to add value to apples that have long been abandoned in the field. It would be important to find conditions for prolonged storage of this jam.展开更多
This paper studies the problem of jamming decision-making for dynamic multiple communication links in wireless communication networks(WCNs).We propose a novel jamming channel allocation and power decision-making(JCAPD...This paper studies the problem of jamming decision-making for dynamic multiple communication links in wireless communication networks(WCNs).We propose a novel jamming channel allocation and power decision-making(JCAPD)approach based on multi-agent deep reinforcement learning(MADRL).In high-dynamic and multi-target aviation communication environments,the rapid changes in channels make it difficult for sensors to accurately capture instantaneous channel state information.This poses a challenge to make centralized jamming decisions with single-agent deep reinforcement learning(DRL)approaches.In response,we design a distributed multi-agent decision architecture(DMADA).We formulate multi-jammer resource allocation as a multiagent Markov decision process(MDP)and propose a fingerprint-based double deep Q-Network(FBDDQN)algorithm for solving it.Each jammer functions as an agent that interacts with the environment in this framework.Through the design of a reasonable reward and training mechanism,our approach enables jammers to achieve distributed cooperation,significantly improving the jamming success rate while considering jamming power cost,and reducing the transmission rate of links.Our experimental results show the FBDDQN algorithm is superior to the baseline methods.展开更多
To overcome the challenges of poor real-time performance,limited scalability,and low intelligence in conventional jamming pattern recognition methods,this paper proposes a method based on Wavelet Packet Decomposition(...To overcome the challenges of poor real-time performance,limited scalability,and low intelligence in conventional jamming pattern recognition methods,this paper proposes a method based on Wavelet Packet Decomposition(WPD)and enhanced deep learning techniques.In the proposed method,an agent at the receiver processes the received signal using WPD to generate an initial Spectrogram Waterfall(SW),which is subsequently segmented using a sliding window to serve as the input for the jamming recognition network.The network employs a bilateral filter to preprocess the input SW,thereby enhancing the edge features of the jamming signals.To extract abstract features,depthwise separable convolution is utilized instead of traditional convolution,thereby reducing the network’s parameter count and enhancing real-time performance.A pyramid pooling layer is integrated before the fully connected layer to enable the network to process input SW of varying sizes,thus enhancing scalability.During network training,adaptive moment estimation is employed as the optimizer,allowing the network to dynamically adjust the learning rate and accelerate convergence.A comprehensive comparison between the proposed jamming recognition network and six other models is conducted,along with Ablation Experiments(AE)based on numerical simulations.Simulation results demonstrate that the proposed method based on WPD and enhanced deep learning achieves high-precision recognition of various jamming patterns while maintaining a favorable balance among prediction accuracy,network complexity,and prediction time.展开更多
Jamming suppression is traditionally achieved through the use of spatial filters based on array signal processing theory.In order to achieve better jamming suppression performance,many studies have applied blind sourc...Jamming suppression is traditionally achieved through the use of spatial filters based on array signal processing theory.In order to achieve better jamming suppression performance,many studies have applied blind source separation(BSS)to jamming suppression.BSS can achieve the separation and extraction of the individual source signals from the mixed signal received by the array.This paper proposes a perspective to recognize BSS as spatial band-pass filters(SBPFs)for jamming suppression applications.The theoretical derivation indicates that the processing of mixed signals by BSS can be perceived as the application of a set of SBPFs that gate the source signals at various angles.Simulations are performed using radar jamming suppression as an example.The simulation results suggest that BSS and SBPFs produce approximately the same effects.Simulation results are consistent with theoretical derivation results.展开更多
The integrated communication and jamming(ICAJ)system recently has been proposed to enable communication and jamming(C&J)to reinforce each other in one system.By exploiting the diversity gain of multiple input mult...The integrated communication and jamming(ICAJ)system recently has been proposed to enable communication and jamming(C&J)to reinforce each other in one system.By exploiting the diversity gain of multiple input multiple output(MIMO)technology,a specific implementation form of ICAJ system,called communication-aided collaborative jamming system,is designed to transmit C&J signals at the same time and frequency.Different from previous studies which overlook the jamming prior information acquisition process and assume that the prior information is perfect or with bounded error,this paper takes the non-cooperative characteristics of jamming and the consequent difficulty in prior information acquisition into consideration.To analyze the tradeoff between C&J,the integration metric is proposed and then the corresponding system design problem is formulated.However,the non-convexity of problem and the lack of jamming prior information make the optimization tricky.In this case,blind channel estimation(BCE)is introduced to obtain an approximate channel state information(CSI)without interacting with jamming targets and then the neural network embedded with system performance calculation model is developed to establish the correspondence between the estimated CSI and optimal beamforming design.Furthermore,a hybrid data-driven and model-based approach,blind channel estimation-deep learning(BCEDL),is proposed to accomplish the beamforming design based on unsupervised learning for ICAJ system in non-cooperative scenarios.The simulation results show that the BCE-DL algorithm outperforms the conventional algorithms in the presence of CSI estimation errors and is a flexible approach which takes the best of both data-driven and model-based methods to design the ICAJ system.展开更多
In this paper,we examine an illegal wireless communication network consisting of an illegal user receiving illegal signals from an illegal station and propose an active reconfigurable intelligent surface(ARIS)-assiste...In this paper,we examine an illegal wireless communication network consisting of an illegal user receiving illegal signals from an illegal station and propose an active reconfigurable intelligent surface(ARIS)-assisted multi-antenna jamming(MAJ)scheme denoted by ARIS-MAJ to interfere with the illegal signal transmission.In order to strike a balance between the jamming performance and the energy consumption,we consider a so-called jamming energy efficiency(JEE)which is defined as the ratio of achievable rate reduced by the jamming system to the corresponding power consumption.We formulate an optimization problem to maximize the JEE for the proposed ARIS-MAJ scheme by jointly optimizing the jammer’s beamforming vector and ARIS’s reflecting coefficients under the constraint that the jamming power received at the illegal user is lower than the illegal user’s detection threshold.To address the non-convex optimization problem,we propose the Dinkelbach-based alternating optimization(AO)algorithm by applying the semidefinite relaxation(SDR)algorithm with Gaussian randomization method.Numerical results validate that the proposed ARIS-MAJ scheme outperforms the passive reconfigurable intelligent surface(PRIS)-assisted multi-antenna jamming(PRIS-MAJ)scheme and the conventional multiantenna jamming scheme without RIS(NRIS-MAJ)in terms of the JEE.展开更多
Aim To get the theory base of designing FM fuze's jamming signal, its jamming mechanism was studied. Methods A sinusoidal FM fuze was analyzed in time domain and frequency domain and the concept of channel lea...Aim To get the theory base of designing FM fuze's jamming signal, its jamming mechanism was studied. Methods A sinusoidal FM fuze was analyzed in time domain and frequency domain and the concept of channel leak was presented. Results It was proved that information channel leak exists in FM fuze because of the nonlinear property of the mixer. The jamming signal was designed based on the channel leak and the jamming mechanism was analyzed in detail. Conclusion This kind of jamming signal can jam the sinusoidal FM fuzes effectively just depending on the jamming signal's feature itself. It's different from the traditional jamming way of simulating echo. Though the sinusoidal FM fuze was just analyzed, the principle is applicable to all FM fuzes. At the same time, it may be used as the reference for FM radar and communication countermeasures.展开更多
In order to solve the problem that the traditional space jamming countermeasure cannot deal with the mainlobe self-protecting jammings,a polarization-space joint mainlobe jamming countermeasure technique based on divi...In order to solve the problem that the traditional space jamming countermeasure cannot deal with the mainlobe self-protecting jammings,a polarization-space joint mainlobe jamming countermeasure technique based on divided dimensions is proposed.Specifically,the digital beam of each row and column is firstly formed by using dual polarization digital receiving in multi-channel.Then,the polarization-space joint cancellation in both azimuth and elevation dimensions is carried out based on the polarization-space joint difference between the target echo and the jamming,as well as the divided dimension feature of the row and column beams.Finally,the sum and difference beams of the full array in the elevation or azimuth dimension are formed by the beams after jamming cancelling,and the monopulse angle measurement is further employed to obtain target angles.The effectiveness of the proposed technique is verified by simulations,indicating that the self-protecting jamming and multiple mainlobe following jammings can be both cancelled simultaneously with the angle measurement unchanged.展开更多
The problem of optimal periodic pulse jamming design for a quadrature phase shift keying(QPSK)communication system is investigated.First a closed-form bit-error-rate(BER)of QPSK system under the jamming of pulse s...The problem of optimal periodic pulse jamming design for a quadrature phase shift keying(QPSK)communication system is investigated.First a closed-form bit-error-rate(BER)of QPSK system under the jamming of pulse signal is derived.Then the asymptotic performance of the derived BER is analyzed as the signal-to-noise ratio(SNR)grows to infinity.In order to maximize the BER of the QPSK system,the optimal parameters of periodic pulse jamming signal,including the duty cycle and signal-tojamming power ratio(SJR),are found out.Numerical results are presented to verify our analytical results and the optimality of our design.展开更多
提出一种基于几何覆盖理论的Jamming攻击定位(GCL,geometry-covering based localization)算法。GCL算法利用计算几何中的凸壳理论,特别是最小包容圆方法,对Jamming攻击者进行定位。理论证明了该算法的正确性和较低的时间复杂度(O(nlogn...提出一种基于几何覆盖理论的Jamming攻击定位(GCL,geometry-covering based localization)算法。GCL算法利用计算几何中的凸壳理论,特别是最小包容圆方法,对Jamming攻击者进行定位。理论证明了该算法的正确性和较低的时间复杂度(O(nlogn));模拟实验表明,该算法在攻击者攻击范围、网络节点密度以及攻击者位置等度量值变化的情况下,比已有算法具有更好的定位准确度。展开更多
Based on the M-ary spread spectrum (M-ary-SS), direct sequence spread spectrum (DS-SS), and orthogonal frequency division multiplex (OFDM), a novel anti-jamming scheme, named orthogonal code time division multi-...Based on the M-ary spread spectrum (M-ary-SS), direct sequence spread spectrum (DS-SS), and orthogonal frequency division multiplex (OFDM), a novel anti-jamming scheme, named orthogonal code time division multi-subchannels spread spectrum modulation (OC-TDMSCSSM), is proposed to enhance the anti-jamming ability of the unmanned aerial vehicle (UAV) data link. The anti-jamming system with its mathematical model is presented first, and then the signal formats of transmitter and receiver are derived. The receiver's bit error rate (BER) is demonstrated and anti-jamming performance analysis is carded out in an additive white Ganssian noise (AWGN) channel. Theoretical research and simulation results show the anti-jamming performance of the proposed scheme better than that of the hybrid direct sequence frequency hopping spread spectrum (DS/FH SS) system. The jamming margin of the OC-TDMSCSSM system is 5 dB higher than that of DS/FH SS system under the condition of Rician channel and full-band jamming, and 6 dB higher under the condition of Rician channel environment and partial-band jamming.展开更多
Traffic wave theory is used to study the critical conditions for traffic jams according to their features. First, the characteristics of traffic wave propagation is analyzed for the simple signal-controlled lane and t...Traffic wave theory is used to study the critical conditions for traffic jams according to their features. First, the characteristics of traffic wave propagation is analyzed for the simple signal-controlled lane and the critical conditions for oversaturation is established. Then, the basic road is decomposed into a series of one-way links according to its topological characteristics. Based on the decomposition, traffic wave propagation under complex conditions is studied. Three complicated factors are considered to establish the corresponding critical conditions of jam formation, namely, dynamic and insufficient split, channelized section spillover and endogenous traffic flow. The results show that road geometric features, traffic demand structures and signal settings influence the formation and propagation of traffic congestion. These findings can serve as a theoretical basis for future network jam control.展开更多
Jammers can awfully interfere with the wireless communications. The transmission and reception of wireless communication is blocked by the jammer. The intruder will place the jammer in a well topological network area ...Jammers can awfully interfere with the wireless communications. The transmission and reception of wireless communication is blocked by the jammer. The intruder will place the jammer in a well topological network area and they can easily track the information. It will help them to block the signal transmission and reception. Now, the intention is to track the position of the jammer where it is fixed. The existing methods rely on the indirect measurements and the boundary node to find the jammer’s position which degrades the accuracy of the localization. To improve the efficiency, this paper proposed an efficient method namely Coincered Node Based Localization of jammers to find the position of the jammer with high level of accuracy. The proposed system uses the direct measurements, which is the jammer signal strength. The effectiveness can also be increased by using the coincered node that will stumble across the true position of the jammer. The proposed work is compared with existing methods. Then the proposed mechanism proves better to find the jammer location. The simulation results estimate that the accuracy of the localization achieves better performance than the existing schemes.展开更多
The total cross-eye gain of multiple-element retrodirective cross-eye jamming(MRCJ) in the presence of the platform skin return is a distribution rather than a constant value, due to the random variation in the phase ...The total cross-eye gain of multiple-element retrodirective cross-eye jamming(MRCJ) in the presence of the platform skin return is a distribution rather than a constant value, due to the random variation in the phase of the skin return. Although the median value of the total cross-eye gain distribution had been analyzed in previous studies, the extreme values providing useful indications of the upper and lower bounds of the total cross-eye gain have not been analyzed until now. In this paper, the cumulative distribution function and the extreme values of the total cross-eye gain of MRCJ are derived. The angular error induced in threat monopulse radar as a figure of merit is used to analyze the performance of MRCJ system. Simulation results demonstrate the variation of the angular error and discuss the proper value of jamming-to-signal ratio(JSR) making the MRCJ system more effective in consideration of the whole distribution of the total cross-eye gain.展开更多
Tolerance sensitivity limits the practical application of the cross-eye jammer.Previous literature has demonstrated that retrodirective cross-eye jamming with multiple antenna elements possesses the advantage of loose...Tolerance sensitivity limits the practical application of the cross-eye jammer.Previous literature has demonstrated that retrodirective cross-eye jamming with multiple antenna elements possesses the advantage of loose tolerance requirements compared to traditional cross-eye jamming.However,the previous analysis was limited,because there are still some factors affecting the parameter tolerance of the multiple-element retrodirective cross-eye jamming(MRCJ)system and they have not been investigated completely,such as the loop difference,the baseline ratio and the jammer-to-signal ratio.This paper performs a comprehensive tolerance analysis of the MRCJ system with a nonuniformspacing linear array.Simulation results demonstrate the tolerance effects of the above influence factors and give reasonable advice for easing tolerance sensitivity.展开更多
基金supported by the National Natural Science Foundation of China(62001481,61890542,62071475)the Natural Science Foundation of Hunan Province(2022JJ40561)the Research Program of National University of Defense Technology(ZK22-46).
文摘Nonperiodic interrupted sampling repeater jamming(ISRJ)against inverse synthetic aperture radar(ISAR)can obtain two-dimensional blanket jamming performance by joint fast and slow time domain interrupted modulation,which is obviously dif-ferent from the conventional multi-false-target deception jam-ming.In this paper,a suppression method against this kind of novel jamming is proposed based on inter-pulse energy function and compressed sensing theory.By utilizing the discontinuous property of the jamming in slow time domain,the unjammed pulse is separated using the intra-pulse energy function diffe-rence.Based on this,the two-dimensional orthogonal matching pursuit(2D-OMP)algorithm is proposed.Further,it is proposed to reconstruct the ISAR image with the obtained unjammed pulse sequence.The validity of the proposed method is demon-strated via the Yake-42 plane data simulations.
基金supported by the National Key Research and De-velopment Program of China(2020YFB0505601)。
文摘Complicated electromagnetic environments of the space situational awareness facilities(i.e.,satellite navigation systems,radar)would significantly impact normal operations.Effective monitoring and the corresponding diagnosis of the jamming signals are essential to normal opera-tions and the innovations in anti-jamming equipment.This paper demonstrates a comprehensive survey on jamming monitoring algorithms and applications.The methods in dealing with jamming signals are summarized primarily.Subsequently,the jamming detection,identification,and direc-tion finding techniques are addressed separately.Based on the established studies,we also provide some potential trends of the demonstrated jamming monitoring issues.
文摘Cashew processing in Côte d’Ivoire focuses only on the cashew nut, to the detriment of the apple. Only a very small proportion of the apple is processed into juice. The aim of this work is to enhance the value of cashew apples by transforming them into jam. Specifically, the aim was first to characterize the sensory properties of cashew apple jam formulations using baobab powder as a source of pectin and then to optimise the formulations. A Box-Behken design with pH, Sugar, and Baobab as factors was used to model and characterize the jam sensory descriptors, and a multivariate analysis with SensomineR was used to characterize the jam formulations. The desirability function was used to optimise the formulations. The results show globally significant regressions at the 0.05 threshold for the sensory descriptors Gelling, Brilliance, Smell, Sweetness, and (-)Astringency, with the exception of (-)Salinity. The R2 coefficients are greater than 80%. The factors studied could have effects on the sensory descriptors of cashew jam formulations. The Baobab had the main effect on the gelling, smell, and astringency of the jams. Brilliance depended on the added sugar. A product effect (p < 0.001) was observed for the descriptors Smell, Gelling, Brilliance, and Sweetness, as these allowed the panelists to find differences between the formulations. Optimum jam formulation can be achieved with 51.56% sugar and 2.12% Baobab at a pH of 3.15. Cashew apple jam using Baobab offers opportunities to add value to apples that have long been abandoned in the field. It would be important to find conditions for prolonged storage of this jam.
基金supported in part by the National Natural Science Foundation of China(No.61906156).
文摘This paper studies the problem of jamming decision-making for dynamic multiple communication links in wireless communication networks(WCNs).We propose a novel jamming channel allocation and power decision-making(JCAPD)approach based on multi-agent deep reinforcement learning(MADRL).In high-dynamic and multi-target aviation communication environments,the rapid changes in channels make it difficult for sensors to accurately capture instantaneous channel state information.This poses a challenge to make centralized jamming decisions with single-agent deep reinforcement learning(DRL)approaches.In response,we design a distributed multi-agent decision architecture(DMADA).We formulate multi-jammer resource allocation as a multiagent Markov decision process(MDP)and propose a fingerprint-based double deep Q-Network(FBDDQN)algorithm for solving it.Each jammer functions as an agent that interacts with the environment in this framework.Through the design of a reasonable reward and training mechanism,our approach enables jammers to achieve distributed cooperation,significantly improving the jamming success rate while considering jamming power cost,and reducing the transmission rate of links.Our experimental results show the FBDDQN algorithm is superior to the baseline methods.
基金supported by National Natural Science Foundation of China under Grant U23A20279China Electronics Tian’ao Innovation Theory and Technology Group Fund under Grand 20221193-04-04.
文摘To overcome the challenges of poor real-time performance,limited scalability,and low intelligence in conventional jamming pattern recognition methods,this paper proposes a method based on Wavelet Packet Decomposition(WPD)and enhanced deep learning techniques.In the proposed method,an agent at the receiver processes the received signal using WPD to generate an initial Spectrogram Waterfall(SW),which is subsequently segmented using a sliding window to serve as the input for the jamming recognition network.The network employs a bilateral filter to preprocess the input SW,thereby enhancing the edge features of the jamming signals.To extract abstract features,depthwise separable convolution is utilized instead of traditional convolution,thereby reducing the network’s parameter count and enhancing real-time performance.A pyramid pooling layer is integrated before the fully connected layer to enable the network to process input SW of varying sizes,thus enhancing scalability.During network training,adaptive moment estimation is employed as the optimizer,allowing the network to dynamically adjust the learning rate and accelerate convergence.A comprehensive comparison between the proposed jamming recognition network and six other models is conducted,along with Ablation Experiments(AE)based on numerical simulations.Simulation results demonstrate that the proposed method based on WPD and enhanced deep learning achieves high-precision recognition of various jamming patterns while maintaining a favorable balance among prediction accuracy,network complexity,and prediction time.
基金supported by the National Natural Science Foundation of China(6237104662201048)the Natural Science Foundation of Chongqing,China(cstc2020jcyj-msxmX0260).
文摘Jamming suppression is traditionally achieved through the use of spatial filters based on array signal processing theory.In order to achieve better jamming suppression performance,many studies have applied blind source separation(BSS)to jamming suppression.BSS can achieve the separation and extraction of the individual source signals from the mixed signal received by the array.This paper proposes a perspective to recognize BSS as spatial band-pass filters(SBPFs)for jamming suppression applications.The theoretical derivation indicates that the processing of mixed signals by BSS can be perceived as the application of a set of SBPFs that gate the source signals at various angles.Simulations are performed using radar jamming suppression as an example.The simulation results suggest that BSS and SBPFs produce approximately the same effects.Simulation results are consistent with theoretical derivation results.
基金supported by the National Natural Science Foundation of China(No.62171462,No.62401626,No.62271501)the Key Technologies R&D Program of Jiangsu(Prospective and Key Technologies for Industry)under Grants BE2023022 and BE2023022-4the Natural Science Foundation of Jiangsu Province(No.BK20240200)。
文摘The integrated communication and jamming(ICAJ)system recently has been proposed to enable communication and jamming(C&J)to reinforce each other in one system.By exploiting the diversity gain of multiple input multiple output(MIMO)technology,a specific implementation form of ICAJ system,called communication-aided collaborative jamming system,is designed to transmit C&J signals at the same time and frequency.Different from previous studies which overlook the jamming prior information acquisition process and assume that the prior information is perfect or with bounded error,this paper takes the non-cooperative characteristics of jamming and the consequent difficulty in prior information acquisition into consideration.To analyze the tradeoff between C&J,the integration metric is proposed and then the corresponding system design problem is formulated.However,the non-convexity of problem and the lack of jamming prior information make the optimization tricky.In this case,blind channel estimation(BCE)is introduced to obtain an approximate channel state information(CSI)without interacting with jamming targets and then the neural network embedded with system performance calculation model is developed to establish the correspondence between the estimated CSI and optimal beamforming design.Furthermore,a hybrid data-driven and model-based approach,blind channel estimation-deep learning(BCEDL),is proposed to accomplish the beamforming design based on unsupervised learning for ICAJ system in non-cooperative scenarios.The simulation results show that the BCE-DL algorithm outperforms the conventional algorithms in the presence of CSI estimation errors and is a flexible approach which takes the best of both data-driven and model-based methods to design the ICAJ system.
基金supported in part by the National Natural Science Foundation of China under Grant 62071253,Grant 62371252 and Grant 62271268in part by the Jiangsu Provincial Key Research and Development Program under Grant BE2022800in part by the Jiangsu Provincial 333 Talent Project.
文摘In this paper,we examine an illegal wireless communication network consisting of an illegal user receiving illegal signals from an illegal station and propose an active reconfigurable intelligent surface(ARIS)-assisted multi-antenna jamming(MAJ)scheme denoted by ARIS-MAJ to interfere with the illegal signal transmission.In order to strike a balance between the jamming performance and the energy consumption,we consider a so-called jamming energy efficiency(JEE)which is defined as the ratio of achievable rate reduced by the jamming system to the corresponding power consumption.We formulate an optimization problem to maximize the JEE for the proposed ARIS-MAJ scheme by jointly optimizing the jammer’s beamforming vector and ARIS’s reflecting coefficients under the constraint that the jamming power received at the illegal user is lower than the illegal user’s detection threshold.To address the non-convex optimization problem,we propose the Dinkelbach-based alternating optimization(AO)algorithm by applying the semidefinite relaxation(SDR)algorithm with Gaussian randomization method.Numerical results validate that the proposed ARIS-MAJ scheme outperforms the passive reconfigurable intelligent surface(PRIS)-assisted multi-antenna jamming(PRIS-MAJ)scheme and the conventional multiantenna jamming scheme without RIS(NRIS-MAJ)in terms of the JEE.
文摘Aim To get the theory base of designing FM fuze's jamming signal, its jamming mechanism was studied. Methods A sinusoidal FM fuze was analyzed in time domain and frequency domain and the concept of channel leak was presented. Results It was proved that information channel leak exists in FM fuze because of the nonlinear property of the mixer. The jamming signal was designed based on the channel leak and the jamming mechanism was analyzed in detail. Conclusion This kind of jamming signal can jam the sinusoidal FM fuzes effectively just depending on the jamming signal's feature itself. It's different from the traditional jamming way of simulating echo. Though the sinusoidal FM fuze was just analyzed, the principle is applicable to all FM fuzes. At the same time, it may be used as the reference for FM radar and communication countermeasures.
文摘In order to solve the problem that the traditional space jamming countermeasure cannot deal with the mainlobe self-protecting jammings,a polarization-space joint mainlobe jamming countermeasure technique based on divided dimensions is proposed.Specifically,the digital beam of each row and column is firstly formed by using dual polarization digital receiving in multi-channel.Then,the polarization-space joint cancellation in both azimuth and elevation dimensions is carried out based on the polarization-space joint difference between the target echo and the jamming,as well as the divided dimension feature of the row and column beams.Finally,the sum and difference beams of the full array in the elevation or azimuth dimension are formed by the beams after jamming cancelling,and the monopulse angle measurement is further employed to obtain target angles.The effectiveness of the proposed technique is verified by simulations,indicating that the self-protecting jamming and multiple mainlobe following jammings can be both cancelled simultaneously with the angle measurement unchanged.
基金Supported by the National Natural Science Foundation of China(61271258)
文摘The problem of optimal periodic pulse jamming design for a quadrature phase shift keying(QPSK)communication system is investigated.First a closed-form bit-error-rate(BER)of QPSK system under the jamming of pulse signal is derived.Then the asymptotic performance of the derived BER is analyzed as the signal-to-noise ratio(SNR)grows to infinity.In order to maximize the BER of the QPSK system,the optimal parameters of periodic pulse jamming signal,including the duty cycle and signal-tojamming power ratio(SJR),are found out.Numerical results are presented to verify our analytical results and the optimality of our design.
文摘提出一种基于几何覆盖理论的Jamming攻击定位(GCL,geometry-covering based localization)算法。GCL算法利用计算几何中的凸壳理论,特别是最小包容圆方法,对Jamming攻击者进行定位。理论证明了该算法的正确性和较低的时间复杂度(O(nlogn));模拟实验表明,该算法在攻击者攻击范围、网络节点密度以及攻击者位置等度量值变化的情况下,比已有算法具有更好的定位准确度。
基金Aeronautical Science Foundation of China (2007ZC53030)
文摘Based on the M-ary spread spectrum (M-ary-SS), direct sequence spread spectrum (DS-SS), and orthogonal frequency division multiplex (OFDM), a novel anti-jamming scheme, named orthogonal code time division multi-subchannels spread spectrum modulation (OC-TDMSCSSM), is proposed to enhance the anti-jamming ability of the unmanned aerial vehicle (UAV) data link. The anti-jamming system with its mathematical model is presented first, and then the signal formats of transmitter and receiver are derived. The receiver's bit error rate (BER) is demonstrated and anti-jamming performance analysis is carded out in an additive white Ganssian noise (AWGN) channel. Theoretical research and simulation results show the anti-jamming performance of the proposed scheme better than that of the hybrid direct sequence frequency hopping spread spectrum (DS/FH SS) system. The jamming margin of the OC-TDMSCSSM system is 5 dB higher than that of DS/FH SS system under the condition of Rician channel and full-band jamming, and 6 dB higher under the condition of Rician channel environment and partial-band jamming.
基金The National Basic Research Program of China(973 Program)(No.2006CB705505)the Basic Scientific Research Fund of Jilin University(No.200903209)
文摘Traffic wave theory is used to study the critical conditions for traffic jams according to their features. First, the characteristics of traffic wave propagation is analyzed for the simple signal-controlled lane and the critical conditions for oversaturation is established. Then, the basic road is decomposed into a series of one-way links according to its topological characteristics. Based on the decomposition, traffic wave propagation under complex conditions is studied. Three complicated factors are considered to establish the corresponding critical conditions of jam formation, namely, dynamic and insufficient split, channelized section spillover and endogenous traffic flow. The results show that road geometric features, traffic demand structures and signal settings influence the formation and propagation of traffic congestion. These findings can serve as a theoretical basis for future network jam control.
文摘Jammers can awfully interfere with the wireless communications. The transmission and reception of wireless communication is blocked by the jammer. The intruder will place the jammer in a well topological network area and they can easily track the information. It will help them to block the signal transmission and reception. Now, the intention is to track the position of the jammer where it is fixed. The existing methods rely on the indirect measurements and the boundary node to find the jammer’s position which degrades the accuracy of the localization. To improve the efficiency, this paper proposed an efficient method namely Coincered Node Based Localization of jammers to find the position of the jammer with high level of accuracy. The proposed system uses the direct measurements, which is the jammer signal strength. The effectiveness can also be increased by using the coincered node that will stumble across the true position of the jammer. The proposed work is compared with existing methods. Then the proposed mechanism proves better to find the jammer location. The simulation results estimate that the accuracy of the localization achieves better performance than the existing schemes.
基金supported by the Weapons and Equipment Research Foundation of China(304070102)
文摘The total cross-eye gain of multiple-element retrodirective cross-eye jamming(MRCJ) in the presence of the platform skin return is a distribution rather than a constant value, due to the random variation in the phase of the skin return. Although the median value of the total cross-eye gain distribution had been analyzed in previous studies, the extreme values providing useful indications of the upper and lower bounds of the total cross-eye gain have not been analyzed until now. In this paper, the cumulative distribution function and the extreme values of the total cross-eye gain of MRCJ are derived. The angular error induced in threat monopulse radar as a figure of merit is used to analyze the performance of MRCJ system. Simulation results demonstrate the variation of the angular error and discuss the proper value of jamming-to-signal ratio(JSR) making the MRCJ system more effective in consideration of the whole distribution of the total cross-eye gain.
基金the National Natural Science Foundation of China(61801488,61921001,61601008).
文摘Tolerance sensitivity limits the practical application of the cross-eye jammer.Previous literature has demonstrated that retrodirective cross-eye jamming with multiple antenna elements possesses the advantage of loose tolerance requirements compared to traditional cross-eye jamming.However,the previous analysis was limited,because there are still some factors affecting the parameter tolerance of the multiple-element retrodirective cross-eye jamming(MRCJ)system and they have not been investigated completely,such as the loop difference,the baseline ratio and the jammer-to-signal ratio.This paper performs a comprehensive tolerance analysis of the MRCJ system with a nonuniformspacing linear array.Simulation results demonstrate the tolerance effects of the above influence factors and give reasonable advice for easing tolerance sensitivity.