期刊文献+
共找到82篇文章
< 1 2 5 >
每页显示 20 50 100
Energy Efficient Clustering and Sink Mobility Protocol Using Hybrid Golden Jackal and Improved Whale Optimization Algorithm for Improving Network Longevity in WSNs
1
作者 S B Lenin R Sugumar +2 位作者 J S Adeline Johnsana N Tamilarasan R Nathiya 《China Communications》 2025年第3期16-35,共20页
Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability... Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability.In this paper,Hybrid Golden Jackal,and Improved Whale Optimization Algorithm(HGJIWOA)is proposed as an effective and optimal routing protocol that guarantees efficient routing of data packets in the established between the CHs and the movable sink.This HGJIWOA included the phases of Dynamic Lens-Imaging Learning Strategy and Novel Update Rules for determining the reliable route essential for data packets broadcasting attained through fitness measure estimation-based CH selection.The process of CH selection achieved using Golden Jackal Optimization Algorithm(GJOA)completely depends on the factors of maintainability,consistency,trust,delay,and energy.The adopted GJOA algorithm play a dominant role in determining the optimal path of routing depending on the parameter of reduced delay and minimal distance.It further utilized Improved Whale Optimisation Algorithm(IWOA)for forwarding the data from chosen CHs to the BS via optimized route depending on the parameters of energy and distance.It also included a reliable route maintenance process that aids in deciding the selected route through which data need to be transmitted or re-routed.The simulation outcomes of the proposed HGJIWOA mechanism with different sensor nodes confirmed an improved mean throughput of 18.21%,sustained residual energy of 19.64%with minimized end-to-end delay of 21.82%,better than the competitive CH selection approaches. 展开更多
关键词 Cluster Heads(CHs) Golden jackal Optimization Algorithm(GJOA) Improved Whale Optimization Algorithm(IWOA) unequal clustering
在线阅读 下载PDF
An Efficient Multi-objective Approach Based on Golden Jackal Search for Dynamic Economic Emission Dispatch
2
作者 Keyu Zhong Fen Xiao Xieping Gao 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第3期1541-1566,共26页
Dynamic Economic Emission Dispatch(DEED)aims to optimize control over fuel cost and pollution emission,two conflicting objectives,by scheduling the output power of various units at specific times.Although many methods... Dynamic Economic Emission Dispatch(DEED)aims to optimize control over fuel cost and pollution emission,two conflicting objectives,by scheduling the output power of various units at specific times.Although many methods well-performed on the DEED problem,most of them fail to achieve expected results in practice due to a lack of effective trade-off mechanisms between the convergence and diversity of non-dominated optimal dispatching solutions.To address this issue,a new multi-objective solver called Multi-Objective Golden Jackal Optimization(MOGJO)algorithm is proposed to cope with the DEED problem.The proposed algorithm first stores non-dominated optimal solutions found so far into an archive.Then,it chooses the best dispatching solution from the archive as the leader through a selection mechanism designed based on elite selection strategy and Euclidean distance index method.This mechanism can guide the algorithm to search for better dispatching solutions in the direction of reducing fuel costs and pollutant emissions.Moreover,the basic golden jackal optimization algorithm has the drawback of insufficient search,which hinders its ability to effectively discover more Pareto solutions.To this end,a non-linear control parameter based on the cosine function is introduced to enhance global exploration of the dispatching space,thus improving the efficiency of finding the optimal dispatching solutions.The proposed MOGJO is evaluated on the latest CEC benchmark test functions,and its superiority over the state-of-the-art multi-objective optimizers is highlighted by performance indicators.Also,empirical results on 5-unit,10-unit,IEEE 30-bus,and 30-unit systems show that the MOGJO can provide competitive compromise scheduling solutions compared to published DEED methods.Finally,in the analysis of the Pareto dominance relationship and the Euclidean distance index,the optimal dispatching solutions provided by MOGJO are the closest to the ideal solutions for minimizing fuel costs and pollution emissions simultaneously,compared to the latest published DEED solutions. 展开更多
关键词 Dynamic economic emission dispatch Multi-objective optimization Golden jackal Euclidean distance index
在线阅读 下载PDF
An Efficient Multilevel Threshold Image Segmentation Method for COVID-19 Imaging Using Q-Learning Based Golden Jackal Optimization 被引量:1
3
作者 Zihao Wang Yuanbin Mo Mingyue Cui 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第5期2276-2316,共41页
From the end of 2019 until now,the Coronavirus Disease 2019(COVID-19)has been rampaging around the world,posing a great threat to people's lives and health,as well as a serious impact on economic development.Consi... From the end of 2019 until now,the Coronavirus Disease 2019(COVID-19)has been rampaging around the world,posing a great threat to people's lives and health,as well as a serious impact on economic development.Considering the severely infectious nature of COVID-19,the diagnosis of COVID-19 has become crucial.Identification through the use of Computed Tomography(CT)images is an efficient and quick means.Therefore,scientific researchers have proposed numerous segmentation methods to improve the diagnosis of CT images.In this paper,we propose a reinforcement learning-based golden jackal optimization algorithm,which is named QLGJO,to segment CT images in furtherance of the diagnosis of COVID-19.Reinforcement learning is combined for the first time with meta-heuristics in segmentation problem.This strategy can effectively overcome the disadvantage that the original algorithm tends to fall into local optimum.In addition,one hybrid model and three different mutation strategies were applied to the update part of the algorithm in order to enrich the diversity of the population.Two experiments were carried out to test the performance of the proposed algorithm.First,compare QLGJO with other advanced meta-heuristics using the IEEE CEC2022 benchmark functions.Secondly,QLGJO was experimentally evaluated on CT images of COVID-19 using the Otsu method and compared with several well-known meta-heuristics.It is shown that QLGJO is very competitive in benchmark function and image segmentation experiments compared with other advanced meta-heuristics.Furthermore,the source code of the QLGJO is publicly available at https://github.com/Vang-z/QLGJO. 展开更多
关键词 COVID-19 Bionic algorithm Golden jackal optimization Image segmentation Otsu and Kapur method
在线阅读 下载PDF
Cytological Features of the Normal Ear Canal of Wild Jackals (<i>Canis aureus</i>) and Domesticated Dogs (<i>C. domesticus</i>) 被引量:1
4
作者 Gila Zur Roni King Tali Bdolah-Abram 《Open Journal of Veterinary Medicine》 2012年第2期84-87,共4页
This is the first reported study in which various cytological and microbial components of the ear canal of wild jackals (Canis aureus) were examined and compared with those of domesticated dogs (C. domesticus). It is ... This is the first reported study in which various cytological and microbial components of the ear canal of wild jackals (Canis aureus) were examined and compared with those of domesticated dogs (C. domesticus). It is proposed that the differences between them might be attributable to domestication. The normal cytology of the jackals' ears includes cerumen, keratinous debris, coccoid bacteria and yeast-like organisms similar to domesticated dogs, but the frequencies of these findings differed significantly between the two species. In the jackals the incidences of ceruminous debris and yeasts were significantly lower (p p = 0.004 respectively), while keratinous debris and coccoid bacteria were significantly higher (p < 0.001). During domestication some changes have probably occurred in the dogs' lifestyle that predisposed them to the growth of yeasts in their ears but less to bacterial growth. It is possible that the higher numbers of bacteria might be a result of environmental contamination, because some of the jackals lived near urban centers and feed on garbage. 展开更多
关键词 CANINE Golden jackal OTITIS Externa Cocci Yeast
暂未订购
Occurrence and Some Ecological Aspects of the Golden Jackal (<i>Canis aureus</i>Linnaeus, 1758) in the Gaza Strip, Palestine
5
作者 Abdel Fattah N. Abd Rabou Kamal E. Elkahlout +12 位作者 Fayez A. Almabhouh Walid F. Mohamed Norman A. Khalaf Mona A. Al-Sadek Randa N. Alfarra Lamis T. Al-Moqayed Ashraf A. Shafei Nedal A. Fayyad Belal S. Adeem Ayman W. Dardona Abdallah S. Awad Mohammed R. Al-Agha Mohammed A. Abd Rabou 《Open Journal of Ecology》 2021年第2期105-125,共21页
The Golden Jackal (Canis aureus Linnaeus, 1758), which belongs to the Canidae family, is an opportunist carnivore in the Gaza Strip (365 square kilometers). The current study aims at giving notes on the occurrence and... The Golden Jackal (Canis aureus Linnaeus, 1758), which belongs to the Canidae family, is an opportunist carnivore in the Gaza Strip (365 square kilometers). The current study aims at giving notes on the occurrence and some ecological aspects of the species in the Gaza Strip, Palestine. The study, which lasted 14 years (2007-2020), is descriptive and cumulative in its style. It was based on frequent field visits, direct observations and meetings and discussions with wildlife hunters, farmers and other stakeholders. The findings of the study show that Gazans are familiar with the Golden Jackal to the extent that a Gazan family holds the Arabic name of the animal, which is “Wawi”. The Golden Jackal was sometimes encountered and hunted in the eastern parts of the Gaza Strip, which are characterized by the presence of wilderness areas, intensive agriculture, poultry pens and solid waste landfills. Like other a few mammalian faunas, the adult Golden Jackals enter the Gaza Strip through gaps in or burrows beneath the metal borders separating the Gaza Strip from the rest of the Palestinian Territories and Egypt. Gaza zoos were found to harbor tens of Golden Jackals trapped or hunted by clever wildlife hunters using different means such as wire cages known locally as “maltash” and foothold traps with metal jaws that may cause lesions to the trapped animals. Poisoning and shooting were also common methods used to control the jackals and other carnivores causing harm to agriculture and livestock. The animal was known among the Gazans as an omnivore, feeding on wild and domestic animals in addition to plant materials, garbage and carrions. In conclusion, the study recommends the need to raise ecological awareness to preserve the Golden jackal and to adopt safe control measures for jackals and other carnivores, including the construction of protective fences for agricultural fields and animal pens. 展开更多
关键词 CARNIVORES Golden jackals Trapping Foothold Traps Wildlife Hunters ZOOS Gaza Strip
在线阅读 下载PDF
Optimization of Chiller Loading Problem Using Improved Golden Jackal Optimization Algorithm Leads to Reduction in Energy Consumption
6
作者 Na Dong Xiao Yang Nasser Yousefi 《Energy Engineering》 EI 2023年第11期2565-2583,共19页
This paper proposes a modified golden jackal optimization(IGJO)algorithm to solve the OCL(which stands for optimal cooling load)problem to minimize energy consumption.In this algorithm,many tools have been developed,s... This paper proposes a modified golden jackal optimization(IGJO)algorithm to solve the OCL(which stands for optimal cooling load)problem to minimize energy consumption.In this algorithm,many tools have been developed,such as numerical visualization,local field method,competitive selectionmethod,and iterative strategy.The IGJO algorithm is used to improve the research capabilities of the algorithm in terms of global tuning and rotation speed.In order to fully utilize the effectiveness of the proposed algorithm,three famous examples of OCL problems in basic ventilation systems were studied and compared with some previously published works.The results show that the IGJO algorithm can find solutions equal to or better than other methods.Underpinning these studies is the need to reduce energy consumption in air conditioning systems,which is a critical business and environmental decision.The Optimal Chiller Load(OCL)problem is well-known in the industry.It is the best method of operation for the refrigeration plant to satisfy the requirement of cooling.In order to solve the OCL problem,an improved Golden Jackal optimization algorithm(IGJO)was proposed.The IGJO algorithm consists of a number of parts to improve the global optimization and rotation speed.These studies are intended to address more effectively the issue of OCL,which results in energy savings in air-conditioning systems.The performance of the proposed IGJO algorithm is evaluated,and the results are compared with the results of three known OCL problems in the ventilation system.The results indicate that the IGJO method has the same or better optimization ability as other methods and can improve the energy efficiency of the system’s cold air. 展开更多
关键词 Optimal chiller loading improved version of golden jackal optimization energy consumption
在线阅读 下载PDF
Optimal capacity planning with economic emission considerations in isolated solar-wind-diesel microgrid using combined arithmetic-golden jackal optimization
7
作者 Sujoy Barua Adel Merabet +2 位作者 Ahmed Al-Durra Tarek El Fouly Ehab F.El-Saadany 《Energy and AI》 2025年第1期164-179,共16页
This study aims to optimize an isolated solar-wind-diesel microgrid to reduce reliance on diesel generators,lower operational costs,and mitigate environmental pollution in remote areas.In this optimization,arithmetic ... This study aims to optimize an isolated solar-wind-diesel microgrid to reduce reliance on diesel generators,lower operational costs,and mitigate environmental pollution in remote areas.In this optimization,arithmetic opti-mization algorithm and golden jackal optimization are combined for achieving optimal capacity planning,considering economic and emission dispatch factors.This combination enhances the optimization by considering the balance in exploration and exploitation offered by the arithmetic operators of the arithmetic optimization algorithm and the dynamic adjustment by the adaptive search of the golden jackal optimization.Performance analysis is conducted by simulating and comparing three scenarios of only diesel generators,solar-wind-diesel and solar-wind with low number of diesel generators.The results demonstrate significant cost savings using the solar-wind-diesel microgrid under the proposed combined optimization compared to the arithmetic opti-mization algorithm and golden jackal algorithm and conventional metaheuristic optimization based on genetic algorithms. 展开更多
关键词 Economic emission dispatch Capacity planning Operational cost Golden jackal ARITHMETIC OPTIMIZATION
在线阅读 下载PDF
意大利Davide Pedersoli公司 JACKAL44唧筒式步枪
8
《轻兵器》 2025年第6期F0002-F0002,共1页
2025年初,以生产高品质枪械闻名的意大利制造商Davide Pedersoli公司正式宣布推出新款JACKAL44唧筒式步枪,其设计灵感源自柯尔特闪电系列唧筒式步枪,并进行现代化改进,主要面向狩猎及运动射击市场。其机匣、枪管及筒式弹仓全部由钢材制... 2025年初,以生产高品质枪械闻名的意大利制造商Davide Pedersoli公司正式宣布推出新款JACKAL44唧筒式步枪,其设计灵感源自柯尔特闪电系列唧筒式步枪,并进行现代化改进,主要面向狩猎及运动射击市场。其机匣、枪管及筒式弹仓全部由钢材制成,机匣采用经久耐用的Cerakote涂层处理,枪管、机匣和击锤经抛光和发蓝处理,使枪支光滑而富有弹性。 展开更多
关键词 Davide Pedersoli 钢材 jackal44 唧筒式步枪
原文传递
An Improved Golden Jackal Optimization Algorithm Based on Multi-strategy Mixing for Solving Engineering Optimization Problems
9
作者 Jun Wang Wen-chuan Wang +4 位作者 Kwok-wing Chau Lin Qiu Xiao-xue Hu Hong-fei Zang Dong-mei Xu 《Journal of Bionic Engineering》 SCIE EI 2024年第2期1092-1115,共24页
Nowadays,optimization techniques are required in various engineering domains to find optimal solutions for complex problems.As a result,there is a growing tendency among scientists to enhance existing nature-inspired ... Nowadays,optimization techniques are required in various engineering domains to find optimal solutions for complex problems.As a result,there is a growing tendency among scientists to enhance existing nature-inspired algorithms using various evolutionary strategies and to develop new nature-inspired optimization methods that can properly explore the feature space.The recently designed nature-inspired meta-heuristic,named the Golden Jackal Optimization(GJO),was inspired by the collaborative hunting actions of the golden jackal in nature to solve various challenging problems.However,like other approaches,the GJO has the limitations of poor exploitation ability,the ease of getting stuck in a local optimal region,and an improper balancing of exploration and exploitation.To overcome these limitations,this paper proposes an improved GJO algorithm based on multi-strategy mixing(LGJO).First,using a chaotic mapping strategy to initialize the population instead of using random parameters,this algorithm can generate initial solutions with good diversity in the search space.Second,a dynamic inertia weight based on cosine variation is proposed to make the search process more realistic and effectively balance the algorithm's global and local search capabilities.Finally,a position update strategy based on Gaussian mutation was introduced,fully utilizing the guidance role of the optimal individual to improve population diversity,effectively exploring unknown regions,and avoiding the algorithm falling into local optima.To evaluate the proposed algorithm,23 mathematical benchmark functions,CEC-2019 and CEC2021 tests are employed.The results are compared to high-quality,well-known optimization methods.The results of the proposed method are compared from different points of view,including the quality of the results,convergence behavior,and robustness.The superiority and high-quality performance of the proposed method are demonstrated by comparing the results.Furthermore,to demonstrate its applicability,it is employed to solve four constrained industrial applications.The outcomes of the experiment reveal that the proposed algorithm can solve challenging,constrained problems and is very competitive compared with other optimization algorithms.This article provides a new approach to solving real-world optimization problems. 展开更多
关键词 Golden jackal optimization Chaotic mapping Dynamic inertia weight Dimensional Gaussian variation Muskingum
在线阅读 下载PDF
考虑复合指标优化模态分解和Stacking集成的综合能源系统多元负荷预测 被引量:1
10
作者 冉启武 石卓见 +2 位作者 刘阳 黄杰 张宇航 《电网技术》 北大核心 2025年第3期1098-1108,I0071-I0075,共16页
为提高综合能源系统多元负荷分解水平及预测模型的整体性能,提出考虑复合指标优化模态分解和Stacking集成的综合能源系统多元负荷预测方法。首先以排列熵结合互信息为适应度函数,利用金豺优化算法自适应获取变分模态分解的最优参数组合... 为提高综合能源系统多元负荷分解水平及预测模型的整体性能,提出考虑复合指标优化模态分解和Stacking集成的综合能源系统多元负荷预测方法。首先以排列熵结合互信息为适应度函数,利用金豺优化算法自适应获取变分模态分解的最优参数组合,进而将多元负荷序列分解为本征模态函数集合;其次,通过基于反向传播(back propagation,BP)神经网络扰动的平均影响值(mean impact value,MIV)算法对与多元负荷相关的气象、日期及负荷因素进行特征筛选,从而为多元负荷构建高耦合度的特征矩阵;充分考虑到各单一模型的差异性及优势性,在采用k折交叉验证法减少过拟合的基础上,构建Stacking集成学习模型对多元负荷进行预测;最后采用美国亚利桑那州立大学坦佩校区多元负荷数据集进行实例验证,结果显示所提方法在电、冷、热负荷预测中的平均绝对百分比误差分别达到了0.903%、2.713%和1.616%,预测精度相比其他预测模型具有较大提升。 展开更多
关键词 多元负荷预测 综合能源系统 平均影响值算法 Stacking集成学习 金豺优化算法 复合指标
原文传递
基于改进金豺算法优化最小二乘法支持向量机的磨削表面粗糙度预测
11
作者 朱文博 张淑权 +1 位作者 张梦梦 迟玉伦 《表面技术》 北大核心 2025年第16期165-181,共17页
目的磨削过程中粗糙度直接影响产品质量,为有效预测工件磨削表面粗糙度,基于声发射和振动信号提出一种改进金豺算法(IGJO)优化最小二乘法支持向量(LSSVM)的磨削表面粗糙度预测方法。方法为增强信号特征与磨削表面粗糙度相关性,利用皮尔... 目的磨削过程中粗糙度直接影响产品质量,为有效预测工件磨削表面粗糙度,基于声发射和振动信号提出一种改进金豺算法(IGJO)优化最小二乘法支持向量(LSSVM)的磨削表面粗糙度预测方法。方法为增强信号特征与磨削表面粗糙度相关性,利用皮尔逊相关分析和主成分分析(PCA)对信号特征进行筛选,降低特征之间的多重共线性,降低模型复杂度;为改善磨削表面粗糙度预测模型的性能,对于金豺算法(GJO)易陷入局部最优问题,在GJO基础上引入佳点集初始化种群、非线性能量因子更新策略以及融合鲸鱼优化算法改进搜索策略,提升算法的初始种群多样性、收敛精度和全局搜索能力;为提高磨削表面粗糙度预测模型有效性,利用IGJO对LSSVM进行参数寻优,建立磨削表面粗糙度预测模型。结果通过轴承套圈内滚道磨削加工实验数据进行验证,结果表明IGJO-LSSVM磨削表面粗糙度预测模型能有效预测粗糙度值,预测精度为95.223%,RMSE值为0.0133,MAPE值为4.776%,R2值为0.956,均优于GJO-LSSVM、LSSVM和BP神经网络模型。结论通过IGJO优化后的LSSVM模型可实现磨削表面粗糙度有效预测,同时能够避免传统LSSVM容易陷入局部极小值的问题,对提高产品磨削质量具有重要意义。 展开更多
关键词 磨削表面粗糙度 轴承套圈 最小二乘法支持向量机 金豺算法
在线阅读 下载PDF
融合IGJO与TEB算法的移动机器人路径规划
12
作者 段震 袁源 +1 位作者 李原 李胜利 《传感器与微系统》 北大核心 2025年第4期132-136,共5页
针对当前移动机器人路径规划中存在规划效率低、动态性差的问题,提出了一种融合改进金豺优化(IGJO)算法和时间弹性带(TEB)法的路径规划方法。首先,在IGJO算法种群初始化中,引入了Tent映射逆向学习,从而增强算法的寻优能力;其次,引入柯... 针对当前移动机器人路径规划中存在规划效率低、动态性差的问题,提出了一种融合改进金豺优化(IGJO)算法和时间弹性带(TEB)法的路径规划方法。首先,在IGJO算法种群初始化中,引入了Tent映射逆向学习,从而增强算法的寻优能力;其次,引入柯西突变,对最优解进行扰动和更新,从而提升算法的寻优精度。最后,引入TEB算法作为动态规划算法,帮助移动机器人避开移动障碍,同时结合IGJO算法,提升算法的综合规划性能。仿真结果表明:在不同仿真环境中IGJO-TEB算法相较其他算法在路径距离、运行时间两方面分别减短了1.37%~2.65%和10.26%~21.77%。真实场景实验果表明:本文算法能够在各类实际场景下完成路径规划任务,较其他算法具有显著的优越性。 展开更多
关键词 金豺优化算法 时间弹性带算法 路径规划 移动机器人
在线阅读 下载PDF
热浸镀锌钢管涂层厚度预测与工艺参数优化
13
作者 张俊红 孟峻巍 +3 位作者 李相东 戴胡伟 张学玲 于洋洋 《机械科学与技术》 北大核心 2025年第9期1491-1498,共8页
以企业的指定某规格镀锌钢管为研究对象,测试167根大生产钢管外表面镀锌层厚度,以167根钢管的厚度参数为建模与验证数据,选取镀锌钢管生产的排料时间、压下时间、浸锌时间、锌液温度、引出速度、引上速度、拔料时间、外吹压力和风环位... 以企业的指定某规格镀锌钢管为研究对象,测试167根大生产钢管外表面镀锌层厚度,以167根钢管的厚度参数为建模与验证数据,选取镀锌钢管生产的排料时间、压下时间、浸锌时间、锌液温度、引出速度、引上速度、拔料时间、外吹压力和风环位置作为敏感性评价因子。建立了基于支持向量机(SVM)的镀锌钢管外表面锌层厚度预测模型,运用Sobol方法对计算模型进行了敏感性分析,确定了各工艺参数对钢管镀锌层厚度的影响程度;分别采用4种群体智能优化算法对SVM模型进行了优化,以预测精度作为评价指标,获得最优钢管镀锌层厚度预测模型,并对此模型运用遗传算法进行寻优,得到了最优热浸镀锌工艺参数。结果表明:风环位置、浸锌时间、锌液温度、压下时间和引出速度是影响模型预测结果的重要参数;利用金豹优化算法(GJO)优化SVM模型的收敛速度快,模型预测精度高;利用遗传算法对GJO-SVM的模型寻优,得到最优工艺参数,在指导实际生产,满足标准的要求下,实现了节约锌料,提高效率。 展开更多
关键词 涂层厚度 支持向量机 金豹优化算法 全局敏感性分析 工艺参数
在线阅读 下载PDF
基于MIGJO的随钻重力加速度在线提取
14
作者 杨金显 杨潇健 +1 位作者 蔺钰柯 张颖 《仪器仪表学报》 北大核心 2025年第3期337-344,共8页
为获得随钻重力加速度,研究了用磁惯性金豺优化算法(MIGJO)在线提取重力加速度问题。首先对随钻振动信号特性进行分析,建立随钻重力提取模型,并把各种非重力加速度整理为解向量;其次,根据随钻磁惯性传感器的输出特性,给出理想重力加速... 为获得随钻重力加速度,研究了用磁惯性金豺优化算法(MIGJO)在线提取重力加速度问题。首先对随钻振动信号特性进行分析,建立随钻重力提取模型,并把各种非重力加速度整理为解向量;其次,根据随钻磁惯性传感器的输出特性,给出理想重力加速度的输出目标函数,以及重力夹角和钻具径切向皮尔逊系数约束条件;然后,在金豺优化(GJO)的基础上,针对随钻中不同非重力加速度的变化特性,利用上一次解向量进行逐维动态尺度随机游走的种群初始化;并利用重力模值相对误差和三角函数设计重力因子平衡算法的全局搜索和局部开发;此外,根据当前解的信息交互因子和适应度值设计攻击防御系数协调磁惯性金豺的攻击防御行为,利用最优解和次优解位置的攻击搜索策略提高重力提取精度和速度,利用上下界和突变点位置的防御搜索策略避免陷入局部最优;然后利用当前重力解与当地重力设计相似度来动态更新解向量位置,进一步提高重力提取精度。最后,设计模拟钻进和实钻实验,结果表明:使用MIGJO提取的重力加速度精度得到明显提升,解算的井斜角和工具面角绝对误差平均值分别控制在0.63°和0.8°以内,该方法可有效提高随钻重力加速度的提取精度。 展开更多
关键词 随钻测量 重力提取 金豺优化器 磁惯性数据
原文传递
基于弱磁控制的飞轮储能系统充放电控制技术
15
作者 魏乐 朱春霞 +1 位作者 周子宇 房方 《电网技术》 北大核心 2025年第8期3345-3353,I0096,共10页
在飞轮系统背靠背双脉宽调制(pulse width modulation,PWM)变流器电路与电网进行能量交换的模型中,电机侧控制采用传统飞轮系统控制方法在充电、保持和放电运行3个阶段切换中会引起直流母线电压的波动。为避免上述情况,首先介绍了考虑... 在飞轮系统背靠背双脉宽调制(pulse width modulation,PWM)变流器电路与电网进行能量交换的模型中,电机侧控制采用传统飞轮系统控制方法在充电、保持和放电运行3个阶段切换中会引起直流母线电压的波动。为避免上述情况,首先介绍了考虑转子结构材料和实时储能量的飞轮本体模型;然后针对背靠背双PWM变流器电路使用了弱磁控制策略来维持飞轮工作状态切换时直流母线电压的稳定;最后采用改进的金豺算法对模型进行了PI控制器参数整定,提高了系统控制精度。仿真验证了所提出的控制策略的可行性。 展开更多
关键词 飞轮储能 机理建模 弱磁控制 金豺算法 直流母线电压
原文传递
基于IFFRLS-IMMUKF的商用车磷酸铁锂电池SOC估算
16
作者 吴华伟 何成泽 +3 位作者 洪强 周小高 李明金 顾亚娟 《储能科学与技术》 北大核心 2025年第10期3996-4008,共13页
荷电状态(SOC)作为电动汽车剩余容量的表征参数,它的准确预估可以保障电动汽车的安全可靠性。针对复杂环境下电池SOC难以精确估算的问题,本工作基于动力电池特性构建了等效电路模型,并对电池模型状态方程进行了离散化的推演,在获得离散... 荷电状态(SOC)作为电动汽车剩余容量的表征参数,它的准确预估可以保障电动汽车的安全可靠性。针对复杂环境下电池SOC难以精确估算的问题,本工作基于动力电池特性构建了等效电路模型,并对电池模型状态方程进行了离散化的推演,在获得离散化状态方程的基础上,将金豺优化算法与遗忘因子递推最小二乘法(FFRLS)相结合提出了改进遗忘递推最小二乘法对电池模型进行了参数辨识。同时,联合交互式多模型无迹卡尔曼滤波(IMMUKF)算法对电池SOC进行估算,并在对常温和高温条件下的动态应力(DST)和联邦城市驾驶工况(FUDS)进行试验验证。结果表明,基于IFFRLS-IMMUKF的锂电池SOC估算方法,其平均绝对值误差在0.8%之内,对磷酸铁锂电池有较高的SOC估算精度。 展开更多
关键词 金豺优化算法 遗忘因子递推最小二乘法 交互式多模型无迹卡尔曼滤波 荷电状态
在线阅读 下载PDF
基于多策略改进的金豺优化算法
17
作者 杜晓昕 牛翔慧 +2 位作者 王波 郝田茹 王振飞 《河南师范大学学报(自然科学版)》 北大核心 2025年第4期39-48,I0007,I0008,共12页
金豺优化算法(golden jackal optimization algorithm,GJO)作为一种新型的元启发算法,由于其收敛速度精度不佳,且在探索与开采阶段平衡上存在不足,陷入局部极值等算法弊端均有出现.因此,提出了改进金豺优化算法(IGJO).首先,采用改进型... 金豺优化算法(golden jackal optimization algorithm,GJO)作为一种新型的元启发算法,由于其收敛速度精度不佳,且在探索与开采阶段平衡上存在不足,陷入局部极值等算法弊端均有出现.因此,提出了改进金豺优化算法(IGJO).首先,采用改进型的多值Circle混沌映射,以增进种群多样性及初始解的品质;其次,基于特定的收缩指数函数,将能量方程优化为非线性形式,实现全局与局部搜寻的有效协调;然后,引入基于t-分布的变异策略增强搜索广度,提升全局搜索效能,有效避免局部最优问题;最后,通过调整Levy飞行参数进行细致优化,确立了一个优化值,从而显著提升了算法的收敛速度和精确度.通过9项测试函数的实验验证表明,改进后的IGJO算法在多个方面超越了若干现有的经典或新兴算法. 展开更多
关键词 群智能优化算法 金豺优化算法 多值Circle混沌映射 任意收缩指数函数 自适应t分布突变
在线阅读 下载PDF
电磁混合式耦合器调隙装置多目标参数优化
18
作者 王爽 孙守锁 +1 位作者 郭永存 胡泽永 《浙江大学学报(工学版)》 北大核心 2025年第5期1007-1017,共11页
针对双盘式磁力耦合器的调隙机构普遍存在的体积大、调节精度低的问题,提出新型的电磁混合式磁力耦合器,通过电磁驱动可以实现磁力耦合器的精准调隙.以平均推力和推力波动为目标,对核心构件电磁调隙装置进行多目标优化.基于敏感度分析... 针对双盘式磁力耦合器的调隙机构普遍存在的体积大、调节精度低的问题,提出新型的电磁混合式磁力耦合器,通过电磁驱动可以实现磁力耦合器的精准调隙.以平均推力和推力波动为目标,对核心构件电磁调隙装置进行多目标优化.基于敏感度分析对设计参数进行分级优化,提出蜣螂优化算法优化BP神经网络模型(DBOBP)和多目标金豺优化算法(MOGJO),结合响应面法和扫描法,确定电磁调隙装置的最优参数.基于有限元法对推力波形、感应电动势、磁感应强度及磁场线分布进行分析,优化后径向气隙磁感应强度提升了19%,平均推力提升了57.8%,推力波动比值降低了28.3%,验证了最终设计相对于最初设计的优异性能以及新型磁力耦合器多目标参数分级优化的正确性. 展开更多
关键词 磁力耦合器 电磁调隙 DBO-BP神经网络 多目标金豺优化(MOGJO)算法 多目标参数优化
在线阅读 下载PDF
基于金豺优化变分模态分解与时间卷积网络的过热汽温特性建模
19
作者 金秀章 赵术善 +2 位作者 畅晗 赵大勇 仲轩正 《中国电机工程学报》 北大核心 2025年第12期4759-4767,I0019,共10页
针对火电机组装机容量增大且调峰频繁导致过热汽温的大惯性、大时延和高度非线性等特征愈加明显,火电机组传统比例-积分-微分控制器(proportional-integral-derivative,PID)控制效果下降的问题,提出一种基于金豺算法(golden jackal opti... 针对火电机组装机容量增大且调峰频繁导致过热汽温的大惯性、大时延和高度非线性等特征愈加明显,火电机组传统比例-积分-微分控制器(proportional-integral-derivative,PID)控制效果下降的问题,提出一种基于金豺算法(golden jackal optimization,GJO)优化变分模态分解(variational mode decomposition,VMD)算法与GJO优化时间卷积神经网络(temporal convolutional network,TCN)的过热汽温系统特性模型。使用互信息(mutual information,MI)将机理分析得到的13个过热汽温特征变量进行排序并去除冗余变量;对筛选后的7个特征变量使用GJO-VMD算法进行分解,选择相关性较大的本征模态函数(intrinsic mode function,IMF)分量进行重构作为最终模型输入;最后,使用GJO-TCN建立过热汽温特性模型,并使用某660 MW燃煤电厂历史运行数据进行仿真实验。实验结果表明,基于GJO-VMD与GJO-TCN的过热汽温特性模型相较于TCN、长短期记忆网络(long short-term memory,LSTM)、GJO-LSTM,具有更高的预测精度。 展开更多
关键词 过热汽温 金豺算法 变分模态分解 时间卷积神经网络
原文传递
基于特征综合评价和模型优化的锂离子电池健康状态估计方法
20
作者 黄凯 郝润凯 郭永芳 《电力系统及其自动化学报》 北大核心 2025年第5期131-140,共10页
针对特征评价指标性能单一、预测模型特征捕捉能力不足和超参数难以确定等问题,提出基于特征综合评价和模型优化的锂离子电池健康状态(state-of-health,SOH)估计方法。首先,从原理和统计角度构建特征的综合评价指标,选取指标得分较高的... 针对特征评价指标性能单一、预测模型特征捕捉能力不足和超参数难以确定等问题,提出基于特征综合评价和模型优化的锂离子电池健康状态(state-of-health,SOH)估计方法。首先,从原理和统计角度构建特征的综合评价指标,选取指标得分较高的特征作为模型输入;其次,结合卷积神经网络(convolutional neural networks,CNN)、高效局部注意力(efficient local attention,ELA)和双向门控循环单元(bi-directional gated recurrent unit,BiGRU)建立CNN-ELA-BiGRU预测模型,增强模型捕捉特征的能力;最后,利用金豺优化(golden jackal optimization,GJO)算法对模型进行超参数寻优,提高了模型的预测精度。对比实验结果表明,所提SOH估计方法具有良好的稳定性和鲁棒性。 展开更多
关键词 锂离子电池 特征综合评价指标 高效局部注意力 金豺优化算法 健康状态估计
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部