Let K be a nonempty closed convex subset of a real p-uniformly convex Banach space E and T be a Lipschitz pseudocontractive self-mapping of K with F(T) := {x ∈ K:Tx=x}≠φ. Let a sequence {xn} be generated from ...Let K be a nonempty closed convex subset of a real p-uniformly convex Banach space E and T be a Lipschitz pseudocontractive self-mapping of K with F(T) := {x ∈ K:Tx=x}≠φ. Let a sequence {xn} be generated from x1 ∈ K by xn+1 = anxn,+ bnTyn++ cnun, yn= a′nxn~ + b′nTx,+ c′n,un, for all integers n ≥ 1. Then ‖xn - Txn,‖ → 0 as n→∞. Moreover, if T is completely continuous, then {xn} converges strongly to a fixed point of T.展开更多
文摘Let K be a nonempty closed convex subset of a real p-uniformly convex Banach space E and T be a Lipschitz pseudocontractive self-mapping of K with F(T) := {x ∈ K:Tx=x}≠φ. Let a sequence {xn} be generated from x1 ∈ K by xn+1 = anxn,+ bnTyn++ cnun, yn= a′nxn~ + b′nTx,+ c′n,un, for all integers n ≥ 1. Then ‖xn - Txn,‖ → 0 as n→∞. Moreover, if T is completely continuous, then {xn} converges strongly to a fixed point of T.