在开源软件和开源平台中,开发人员可以通过提交issue来记录所发现的软件错误或提出新功能需求.由于缺乏经验、专业水平有限等原因,用户可能无法对issue内容进行准确有效地总结,导致issue标题质量较低,进而降低issue的解决效率.此外,现有...在开源软件和开源平台中,开发人员可以通过提交issue来记录所发现的软件错误或提出新功能需求.由于缺乏经验、专业水平有限等原因,用户可能无法对issue内容进行准确有效地总结,导致issue标题质量较低,进而降低issue的解决效率.此外,现有的issue标题自动生成方法主要面向GitHub等英文开源平台,当应用在Gitee等国产开源平台时表现不佳.同时,现有方法主要使用issue主体描述作为输入,忽略了issue中的代码片段等重要信息.为此,本文提出一种面向Gitee平台的issue标题自动生成方法GITG(Gitee Issue Title Generation),针对包含中文和英文文本的issue,使用构建的Gitee issue数据集对支持中文的预训练模型Chinese BART(Bidirectional and Auto-Regressive Transformers)进行微调,利用issue主体描述和代码片段的双模态信息来自动生成issue标题.为验证GITG的有效性,构建了包含18242个Gitee issue样本的数据集.实验结果表明,GITG在ROUGE-1、ROUGE-2和ROUGE-L指标上相较于iTAPE和iTiger分别至少提升了13.09%、10.18%和12.84%,在BLEU和METEOR指标上同样取得了性能提升.人工评价结果表明,GITG生成标题的平均得分在整体分数、流畅性、信息性和简洁性4个评价指标上相较iTAPE和iTiger分别至少提升了26.7%、20.8%、24.2%和20.0%.展开更多
Friction stir lap welding of AA2195 Al-Li alloy and Ti alloy was conducted to investigate the formation,microstructure,and mechanical properties of the joints.Results show that under different welding parameters,with ...Friction stir lap welding of AA2195 Al-Li alloy and Ti alloy was conducted to investigate the formation,microstructure,and mechanical properties of the joints.Results show that under different welding parameters,with the decrease in welding heat input,the weld surface is smoother.The Ti/Al joint interface is flat without obvious Ti and Al mixed structure,and the hook structure is not formed under optimal parameters.Due to the enhanced breaking effect of the stirring head,the hook structural defects and intermetallic compounds are more likely to form at the Ti/Al interface at high rotational speed of 1000 r/min,thereby deteriorating the mechanical properties of joints.Decreasing the heat input is beneficial to hardness enhancement of the aluminum alloy in the weld nugget zone.Under the optimal parameters of rotation speed of 800 r/min and welding speed of 120 mm/min,the maximum tensile shear strength of joint is 289 N/mm.展开更多
The composite structures/components made by friction stir lap welding(FSLW)of Mg alloy sheet and Al alloy sheet are of wide application potentials in the manufacturing sector of transportation vehicles.To further impr...The composite structures/components made by friction stir lap welding(FSLW)of Mg alloy sheet and Al alloy sheet are of wide application potentials in the manufacturing sector of transportation vehicles.To further improve the joint quality,the ultrasonic vibration(UV)is exerted in FSLW,and the UV enhanced FSLW(UVeFSLW)was developed for making Mg-to-Al dissimilar joints.The numerical analysis and experimental investigation were combined to study the process mechanism in Mg/Al UVeFSLW.An equation related to the temperature and strain rate was derived to calculate the grain size at different locations of the weld nugget zone,and the effect of grain size distribution on the threshold thermal stress was included,so that the prediction accuracy of flow stress was further improved.With such modified constitutive equation,the numerical simulation was conducted to compare the heat generation,temperature profiles and material flow behaviors in Mg/Al UVeFSLW/FSLW processes.It was found that the exerted UV decreased the temperature at two checking points on the tool/workpiece interface from 707/671 K in FSLW to 689/660 K in UVeFSLW,which suppressed the IMCs thickness at Mg-Al interface from 1.7μm in FSLW to 1.1μm in UVeFSLW.The exerted UV increased the horizontal materials flow ability,and decreased the upward flow ability,which resulted in the increase of effective sheet thickness/effective lap width from 2.01/3.70 mm in FSLW to 2.04/4.84 mm in UVeFSLW.Therefore,the ultrasonic vibration improved the tensile shear strength of Mg-to-Al lap joints by 18%.展开更多
GH4169 joints manufactured by Linear Friction Welding(LFW)are subjected to tensile test and stair-case method to evaluate the High Cycle Fatigue(HCF)performance at 650℃.The yield and ultimate tensile strengths are 58...GH4169 joints manufactured by Linear Friction Welding(LFW)are subjected to tensile test and stair-case method to evaluate the High Cycle Fatigue(HCF)performance at 650℃.The yield and ultimate tensile strengths are 582 MPa and 820 MPa,respectively.The HCF strength of joint reaches 400 MPa,which is slightly lower than that of Base Metal(BM),indicating reliable quality of this type of joint.The microstructure observation results show that all cracks initiate at the inside of specimens and transfer into deeper region with decrease of external stress,and the crack initiation site is related with microhardness of matrix.The Electron Backscattered Diffraction(EBSD)results of the observed regions with different distances to fracture show that plastic deformation plays a key role in HCF,and the Schmid factor of most grains near fracture exceeds 0.4.In addition,the generation of twins plays a vital role in strain concentration release and coordinating plastic deformation among grains.展开更多
In the era of the digital economy,digital trade has demonstrated strong vitality,becoming a crucial driving force for the highquality development of national and regional economies.However,understanding the resilience...In the era of the digital economy,digital trade has demonstrated strong vitality,becoming a crucial driving force for the highquality development of national and regional economies.However,understanding the resilience of digital trade in the face of external crises is an important topic.Taking the backdrop of Sino-US trade friction,this paper constructs a resilience index system for digital trade.It utilizes entropy method,kernel density estimation,and ArcGIS mapping to calculate and visually analyze the resilience of China’s digital trade from 2017 to 2021.Additionally,a Tobit model is constructed to explore the main influencing factors of digital trade resilience patterns.The research findings indicate:1)temporally,during the period of Sino-US trade friction,China’s digital trade resilience shows an overall upward trend,but there are regional differences in resilience levels across the country,with a severe polarization phenomenon.2)Spatially,high resilience is observed in the eastern and central regions of China,while the western and northeastern regions exhibit low resilience.3)From a dimensional perspective,the resistance of digital trade resilience displays a spatial distribution of high values in the east and low values in the west.The recovery force is aggregated along coastal areas,and the renewal force tends to aggregate along the eastern coastline.4)Factors such as economic scale,industrial structure,urbanization rate,government fiscal expenditure,and technological talents significantly promote the enhancement of digital trade resilience.This study reveals the dynamic characteristics and influencing factors of digital trade resilience in responding to external shocks,providing theoretical basis and policy suggestions for enhancing digital trade resilience,and promoting high-quality economic development in China.展开更多
Friction stir welding(FSW)is a relatively new welding technique that has significant advantages compared to the fusion welding techniques in joining non weld able alloys by fusion,such as aluminum alloys.Three FSW sea...Friction stir welding(FSW)is a relatively new welding technique that has significant advantages compared to the fusion welding techniques in joining non weld able alloys by fusion,such as aluminum alloys.Three FSW seams of AA6061-T6 plates were made us-ing different FSW parameters.The structure of the FSW seams was investigated using X-ray diffraction(XRD),scanning electron mi-croscope(SEM)and non destructive testing(NDT)techniques and their hardness was also measured.The dominated phase in the AA6061-T6 alloy and the FSW seams was theα-Al.The FSW seam had lower content of the secondary phases than the AA6061-T6 al-loy.The hardness of the FSW seams was decreased by about 30%compared to the AA6061-T6 alloy.The temperature distributions in the weld seams were also studied experimentally and numerically modeled and the results were in a good agreement.展开更多
In order to solve the problem of poor formability caused by different materials and properties in the process of tailor-welded sheets forming,a forming method was proposed to change the stress state of tailor-welded s...In order to solve the problem of poor formability caused by different materials and properties in the process of tailor-welded sheets forming,a forming method was proposed to change the stress state of tailor-welded sheets by covering the tailor-welded sheets with better plastic properties overlapping sheets.At the same time,the interface friction effect between the overlapping and tailor-welded sheets was utilized to control the stress magnitude and further improve the formability and quality of the tailor-welded sheets.In this work,the bulging process of the tailor-welded overlapping sheets was taken as the research object.Aluminum alloy tailor-welded overlapping sheets bulging specimens were studied by a combination of finite element analysis and experimental verification.The results show that the appropriate use of interface friction between tailor-welded and overlapping sheets can improve the formability of tailor-welded sheets and control the flow of weld seam to improve the forming quality.When increasing the interface friction coefficient on the side of tailor-welded sheets with higher strength and decreasing that on the side of tailor-welded sheets with lower strength,the deformation of the tailor-welded sheets are more uniform,the offset of the weld seam is minimal,the limit bulging height is maximal,and the forming quality is optimal.展开更多
Friction rolling additive manufacturing(FRAM)is a solid-state additive manufacturing technology that plasticizes the feed and deposits a material using frictional heat generated by the tool head.The thermal efficiency...Friction rolling additive manufacturing(FRAM)is a solid-state additive manufacturing technology that plasticizes the feed and deposits a material using frictional heat generated by the tool head.The thermal efficiency of FRAM,which depends only on friction to generate heat,is low,and the thermal-accumulation effect of the deposition process must be addressed.An FRAM heat-balance-control method that combines plasma-arc preheating and instant water cooling(PC-FRAM)is devised in this study,and a temperature field featuring rapidly increasing and decreasing temperature is constructed around the tool head.Additionally,2195-T87 Al-Li alloy is used as the feed material,and the effects of heating and cooling rates on the microstructure and mechanical properties are investigated.The results show that water cooling significantly improves heat accumulation during the deposition process.The cooling rate increases by 11.7 times,and the high-temperature residence time decreases by more than 50%.The grain size of the PC-FRAM sample is the smallest,i.e.,3.77±1.03μm,its dislocation density is the highest,and the number density of precipitates is the highest,the size of precipitates is the smallest,which shows the best precipitation-strengthening effect.The hardness test results are consistent with the precipitation distribution.The ultimate tensile strength,yield strength and elongation of the PC-FRAM samples are the highest(351±15.6 MPa,251.3±15.8 MPa and 16.25%±1.25%,respectively)among the samples investigated.The preheating and water-cooling-assisted deposition simultaneously increases the tensile strength and elongation of the deposited samples.The combination of preheating and instant cooling improves the deposition efficiency of FRAM and weakens the thermal-softening effect.展开更多
At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-laye...At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-layer multi-pass FRAM-deposited alumin-um alloy samples were successfully prepared using a non-shoulder tool head.The material flow behavior and microstructure of the over-lapped zone between adjacent layers and passes during multi-layer multi-pass FRAM deposition were studied using the hybrid 6061 and 5052 aluminum alloys.The results showed that a mechanical interlocking structure was formed between the adjacent layers and the adja-cent passes in the overlapped center area.Repeated friction and rolling of the tool head led to different degrees of lateral flow and plastic deformation of the materials in the overlapped zone,which made the recrystallization degree in the left and right edge zones of the over-lapped zone the highest,followed by the overlapped center zone and the non-overlapped zone.The tensile strength of the overlapped zone exceeded 90%of that of the single-pass deposition sample.It is proved that although there are uneven grooves on the surface of the over-lapping area during multi-layer and multi-pass deposition,they can be filled by the flow of materials during the deposition of the next lay-er,thus ensuring the dense microstructure and excellent mechanical properties of the overlapping area.The multi-layer multi-pass FRAM deposition overcomes the limitation of deposition width and lays the foundation for the future deposition of large-scale high-performance components.展开更多
The pre-weld heat treatment was carried out to obtain different initial microstructures of the GH4169 superalloy,and then Linear Friction Welding(LFW)was performed.The effect of the pre-weld heat treatment on the micr...The pre-weld heat treatment was carried out to obtain different initial microstructures of the GH4169 superalloy,and then Linear Friction Welding(LFW)was performed.The effect of the pre-weld heat treatment on the microstructure evolution and mechanical properties of the joint was analyzed,and the joint electrochemical corrosion behavior as well as the hot corrosion behavior was studied.The results show that the joint hardness of Base Metal(BM)increases after pre-weld heat treatment,and the strengthening phasesγ′andγ″further precipitate.However,the precipitation phases dissolve significantly in the Weld Zone(WZ)due to the thermal process of LFW.The corrosion resistance in BM is reduced after the pre-weld heat treatment,while it is similar in WZ with a slight decrease.The surface morphology of the BM and WZ can be generally divided into a loose and porous matrix and a scattered oxide particle layer after hot corrosion.The joint cross section exhibits a Cr-depleted zone with the diffusion of Cr to form an oxide film.The corrosion product mainly consists of Fe_(2)O_(3)/Fe_(3)O_(4) as the outer layer and Cr_(2)O_(3) as the inner layer.展开更多
Ti-10V-2Fe-3Al alloy with fine-grainedβphases was fabricated by friction stir processing with opti-mized processing parameters.The superplastic behavior of the specimens was investigated by tensile deformation at dif...Ti-10V-2Fe-3Al alloy with fine-grainedβphases was fabricated by friction stir processing with opti-mized processing parameters.The superplastic behavior of the specimens was investigated by tensile deformation at different strain rates and temperatures,and an optimal superplastic elongation of 634%was achieved at 700℃ and 3×10^(-4)/s.An annealing treatment at 650℃ for 60 min showed a mi-crostructure withαprecipitates distributed in theβmatrix in the friction stir specimen.Such pre-heat treatment improves the superplasticity of the specimen,achieving an elongation of up to 807%at 750℃ and 3×10^(-4)/s.The influences of tensile temperatures and strain rates on the microstructural evolution,such as grain size variation,grain morphology,and phase transformations,were discussed.The super-plastic deformation behavior of fine-grained Ti-10V-2Fe-3Al alloy is controlled by grain boundary sliding and accompanied by dynamic phase transformation and recrystallization.展开更多
The titanium alloy strut serves as a key load-bearing component of aircraft landing gear,typically manufactured via forging.The friction condition has important influence on material flow and cavity filling during the...The titanium alloy strut serves as a key load-bearing component of aircraft landing gear,typically manufactured via forging.The friction condition has important influence on material flow and cavity filling during the forging process.Using the previously optimized shape and initial position of preform,the influence of the friction condition(friction factor m=0.1–0.3)on material flow and cavity filling was studied by numerical method with a shear friction model.A novel filling index was defined to reflect material flow into left and right flashes and zoom in on friction-induced results.The results indicate that the workpiece moves rigidly to the right direction,with the displacement decreasing as m increases.When m<0.18,the underfilling defect will occur in the left side of strut forging,while overflow occurs in the right forging die cavity.By combining the filling index and analyses of material flow and filling status,a reasonable friction factor interval of m=0.21–0.24 can be determined.Within this interval,the cavity filling behavior demonstrates robustness,with friction fluctuations exerting minimal influence.展开更多
SAMR (SAC) and relevant departments jointly issued the Report on the Standardization Achievements of the 10th Anniversary of the Belt and Road Initiative (BRI) recently, to summarize the fruitful results in promoting ...SAMR (SAC) and relevant departments jointly issued the Report on the Standardization Achievements of the 10th Anniversary of the Belt and Road Initiative (BRI) recently, to summarize the fruitful results in promoting the connectivity of standardization among Belt and Road countries in the past 10 years.展开更多
Editors Yang Wang,Xi'an Jiaotong University Dongbo Shi,Shanghai Jiaotong University Ye Sun,University College London Zhesi Shen,National Science Library,CASTopic of the Special Issue What are the top questions tow...Editors Yang Wang,Xi'an Jiaotong University Dongbo Shi,Shanghai Jiaotong University Ye Sun,University College London Zhesi Shen,National Science Library,CASTopic of the Special Issue What are the top questions towards better science and innovation and the required data to answer these questions?展开更多
This study summarizes the examination data of registration labels for ordinary cosmetics in Beijing from May 2021 to April 2024.It analyzes and categorizes the issues identified during label evaluations,explores the u...This study summarizes the examination data of registration labels for ordinary cosmetics in Beijing from May 2021 to April 2024.It analyzes and categorizes the issues identified during label evaluations,explores the underlying causes,and proposes regulatory countermeasures and recommendations for registrants,regulatory authorities,and social organizations.The objective is to offer practical insights and regulatory guidance to support the enhancement of cosmetic registration and regulatory standards.展开更多
Plum blossom pile is a new type of special-shaped pile, which is proposed based on the principle of maximum perimeter with the same cross-sectional area. To advance this technique, primarily for the design of plum blo...Plum blossom pile is a new type of special-shaped pile, which is proposed based on the principle of maximum perimeter with the same cross-sectional area. To advance this technique, primarily for the design of plum blossom piles, it is important to investigate the skin friction behavior of plum blossom pile foundations precluding any straightforward constitutive model. In this work, an analytic method dependent on the cross-sectional geometry and the vertical shearing effects is proposed by means of equilibrium analysis to calculate the effective vertical stress in the surrounding soil, the skin friction/negative skin friction, and the axial force/dragload of a plum blossom pile. Additionally, the curves of skin friction of piles are investigated with the same conditions. The results show that the curves of skin friction of piles deduced according to the developed analytic method agree well with the FEM results and related literature solution, which validates the solution. The axial force of the pile decreases with the increase of the shear action coefficient in the buried depth direction under the vertical concentrated load when considering the vertical shearing effects on the pile-soil interfaces.展开更多
Erratum to:International Journal of Minerals,Metallurgy and Materials Volume 31,Number 11,November 2024,Page 2498 https://doi.org/10.1007/s12613-024-2847-2 In this article,the fund number in the acknowledgements has b...Erratum to:International Journal of Minerals,Metallurgy and Materials Volume 31,Number 11,November 2024,Page 2498 https://doi.org/10.1007/s12613-024-2847-2 In this article,the fund number in the acknowledgements has been erroneously given as the Program for Guangdong Basic and Applied Basic Research Foundation,China(No.2021A151511006)It should be as follows:the Program for Guangdong Basic and Applied Basic Research Foundation,China(No.2021A1515110061).展开更多
The mechanics of slow-slip events and earthquakes is controlled by the constitutive behavior of rocks in active fault zones,which is sensitive to many factors encompassing lithology,temperature,confining and pore-flui...The mechanics of slow-slip events and earthquakes is controlled by the constitutive behavior of rocks in active fault zones,which is sensitive to many factors encompassing lithology,temperature,confining and pore-fluid pressure,and slip-rate,among others.Understanding the frictional properties of faults is crucial to predicting many aspects of the seismic cycle,from the source characteristics and recurrence patterns of earthquakes to the mechanics of remote triggering.Here,we describe a constitutive model that explains the slip-rate-,state-,temperature-,and normal-stress-dependence of fault friction for a wide variety of rock types,explaining the evolution of frictional stability under various barometric and hydrothermal conditions relevant to natural and induced seismicity,encompassing the brittle-ductile transition.The frictional strength is controlled by the area of contact junctions that form along a rough interface or by grain-to-grain contact in fault gouge and follows a nonlinear function of normal stress.The physical model explains the direct and evolutionary effects following perturbations in temperature,normal stress,and slip-rate,and the dependence of the frictional parameters on ambient physical conditions.The competition among healing and deformation mechanisms explains the dependence of fault stability on temperature,slip-rate,and effective normal stress for a wide range of rocks.The brittle-to-flow transition at the bottom of the seismogenic zone is caused by the thermobaric activation of semi-brittle deformation mechanisms.The model unifies and extends previous formulations,providing a single framework to explain rock deformation in Earth’s brittle and ductile layers.展开更多
This paper introduces damping amplifier friction vibration absorbers(DAFVAs),compound damping amplifier friction vibration absorbers(CDAFVAs),nested damping amplifier friction vibration absorbers(NDAFVAs),and levered ...This paper introduces damping amplifier friction vibration absorbers(DAFVAs),compound damping amplifier friction vibration absorbers(CDAFVAs),nested damping amplifier friction vibration absorbers(NDAFVAs),and levered damping amplifier friction vibration absorbers(LDAFVAs)for controlling the structural vibrations and addressing the limitations of conventional tuned mass dampers(TMDs)and frictiontuned mass dampers(FTMDs).The closed-form analytical solution for the optimized design parameters is obtained using the H_(2)and H_(∞)optimization approaches.The efficiency of the recently established closed-form equations for the optimal design parameters is confirmed by the analytical examination.The closed form formulas for the dynamic responses of the main structure and the vibration absorbers are derived using the transfer matrix formulations.The foundation is provided by the harmonic and random-white noise excitations.Moreover,the effectiveness of the innovative dampers has been validated through numerical analysis.The optimal DAFVAs,CDAFVAs,NDAFVAs,and LDAFVAs exhibit at least 30%lower vibration reduction capacity compared with the optimal TMD.To demonstrate the effectiveness of the damping amplification mechanism,the novel absorbers are compared with a conventional FTMD.The results show that the optimized novel absorbers achieve at least 91%greater vibration reduction than the FTMD.These results show how the suggested designs might strengthen the structure's resilience to dynamic loads.展开更多
文摘在开源软件和开源平台中,开发人员可以通过提交issue来记录所发现的软件错误或提出新功能需求.由于缺乏经验、专业水平有限等原因,用户可能无法对issue内容进行准确有效地总结,导致issue标题质量较低,进而降低issue的解决效率.此外,现有的issue标题自动生成方法主要面向GitHub等英文开源平台,当应用在Gitee等国产开源平台时表现不佳.同时,现有方法主要使用issue主体描述作为输入,忽略了issue中的代码片段等重要信息.为此,本文提出一种面向Gitee平台的issue标题自动生成方法GITG(Gitee Issue Title Generation),针对包含中文和英文文本的issue,使用构建的Gitee issue数据集对支持中文的预训练模型Chinese BART(Bidirectional and Auto-Regressive Transformers)进行微调,利用issue主体描述和代码片段的双模态信息来自动生成issue标题.为验证GITG的有效性,构建了包含18242个Gitee issue样本的数据集.实验结果表明,GITG在ROUGE-1、ROUGE-2和ROUGE-L指标上相较于iTAPE和iTiger分别至少提升了13.09%、10.18%和12.84%,在BLEU和METEOR指标上同样取得了性能提升.人工评价结果表明,GITG生成标题的平均得分在整体分数、流畅性、信息性和简洁性4个评价指标上相较iTAPE和iTiger分别至少提升了26.7%、20.8%、24.2%和20.0%.
基金National Natural Science Foundation of China(52275349)Key Research and Development Program of Shandong Province(2021ZLGX01)。
文摘Friction stir lap welding of AA2195 Al-Li alloy and Ti alloy was conducted to investigate the formation,microstructure,and mechanical properties of the joints.Results show that under different welding parameters,with the decrease in welding heat input,the weld surface is smoother.The Ti/Al joint interface is flat without obvious Ti and Al mixed structure,and the hook structure is not formed under optimal parameters.Due to the enhanced breaking effect of the stirring head,the hook structural defects and intermetallic compounds are more likely to form at the Ti/Al interface at high rotational speed of 1000 r/min,thereby deteriorating the mechanical properties of joints.Decreasing the heat input is beneficial to hardness enhancement of the aluminum alloy in the weld nugget zone.Under the optimal parameters of rotation speed of 800 r/min and welding speed of 120 mm/min,the maximum tensile shear strength of joint is 289 N/mm.
基金supported by the National Natural Science Foundation of China(Grant No.52035005)the Key R&D Program of Shandong Province in China(Grant No.2021ZLGX01).
文摘The composite structures/components made by friction stir lap welding(FSLW)of Mg alloy sheet and Al alloy sheet are of wide application potentials in the manufacturing sector of transportation vehicles.To further improve the joint quality,the ultrasonic vibration(UV)is exerted in FSLW,and the UV enhanced FSLW(UVeFSLW)was developed for making Mg-to-Al dissimilar joints.The numerical analysis and experimental investigation were combined to study the process mechanism in Mg/Al UVeFSLW.An equation related to the temperature and strain rate was derived to calculate the grain size at different locations of the weld nugget zone,and the effect of grain size distribution on the threshold thermal stress was included,so that the prediction accuracy of flow stress was further improved.With such modified constitutive equation,the numerical simulation was conducted to compare the heat generation,temperature profiles and material flow behaviors in Mg/Al UVeFSLW/FSLW processes.It was found that the exerted UV decreased the temperature at two checking points on the tool/workpiece interface from 707/671 K in FSLW to 689/660 K in UVeFSLW,which suppressed the IMCs thickness at Mg-Al interface from 1.7μm in FSLW to 1.1μm in UVeFSLW.The exerted UV increased the horizontal materials flow ability,and decreased the upward flow ability,which resulted in the increase of effective sheet thickness/effective lap width from 2.01/3.70 mm in FSLW to 2.04/4.84 mm in UVeFSLW.Therefore,the ultrasonic vibration improved the tensile shear strength of Mg-to-Al lap joints by 18%.
基金supported by the National Natural Science Foundation of China(Nos.52074228,52305420,and 51875470)the China Postdoctoral Science Foundation(No.2023M742830)。
文摘GH4169 joints manufactured by Linear Friction Welding(LFW)are subjected to tensile test and stair-case method to evaluate the High Cycle Fatigue(HCF)performance at 650℃.The yield and ultimate tensile strengths are 582 MPa and 820 MPa,respectively.The HCF strength of joint reaches 400 MPa,which is slightly lower than that of Base Metal(BM),indicating reliable quality of this type of joint.The microstructure observation results show that all cracks initiate at the inside of specimens and transfer into deeper region with decrease of external stress,and the crack initiation site is related with microhardness of matrix.The Electron Backscattered Diffraction(EBSD)results of the observed regions with different distances to fracture show that plastic deformation plays a key role in HCF,and the Schmid factor of most grains near fracture exceeds 0.4.In addition,the generation of twins plays a vital role in strain concentration release and coordinating plastic deformation among grains.
基金Under the auspices of National Natural Science Foundation of China(No.42471205)the General Scientific Research Project of Zhejiang Provincial Department of Education(No.2024JYTYB12)the Philosophy and Social Science Planning Project of Zhejiang Province(No.23NDJC109YB)。
文摘In the era of the digital economy,digital trade has demonstrated strong vitality,becoming a crucial driving force for the highquality development of national and regional economies.However,understanding the resilience of digital trade in the face of external crises is an important topic.Taking the backdrop of Sino-US trade friction,this paper constructs a resilience index system for digital trade.It utilizes entropy method,kernel density estimation,and ArcGIS mapping to calculate and visually analyze the resilience of China’s digital trade from 2017 to 2021.Additionally,a Tobit model is constructed to explore the main influencing factors of digital trade resilience patterns.The research findings indicate:1)temporally,during the period of Sino-US trade friction,China’s digital trade resilience shows an overall upward trend,but there are regional differences in resilience levels across the country,with a severe polarization phenomenon.2)Spatially,high resilience is observed in the eastern and central regions of China,while the western and northeastern regions exhibit low resilience.3)From a dimensional perspective,the resistance of digital trade resilience displays a spatial distribution of high values in the east and low values in the west.The recovery force is aggregated along coastal areas,and the renewal force tends to aggregate along the eastern coastline.4)Factors such as economic scale,industrial structure,urbanization rate,government fiscal expenditure,and technological talents significantly promote the enhancement of digital trade resilience.This study reveals the dynamic characteristics and influencing factors of digital trade resilience in responding to external shocks,providing theoretical basis and policy suggestions for enhancing digital trade resilience,and promoting high-quality economic development in China.
文摘Friction stir welding(FSW)is a relatively new welding technique that has significant advantages compared to the fusion welding techniques in joining non weld able alloys by fusion,such as aluminum alloys.Three FSW seams of AA6061-T6 plates were made us-ing different FSW parameters.The structure of the FSW seams was investigated using X-ray diffraction(XRD),scanning electron mi-croscope(SEM)and non destructive testing(NDT)techniques and their hardness was also measured.The dominated phase in the AA6061-T6 alloy and the FSW seams was theα-Al.The FSW seam had lower content of the secondary phases than the AA6061-T6 al-loy.The hardness of the FSW seams was decreased by about 30%compared to the AA6061-T6 alloy.The temperature distributions in the weld seams were also studied experimentally and numerically modeled and the results were in a good agreement.
基金Funded by the National Natural Science Foundation of China(Nos.52075347,51575364)and the Natural Science Foundation of Liaoning Provincial(No.2022-MS-295)。
文摘In order to solve the problem of poor formability caused by different materials and properties in the process of tailor-welded sheets forming,a forming method was proposed to change the stress state of tailor-welded sheets by covering the tailor-welded sheets with better plastic properties overlapping sheets.At the same time,the interface friction effect between the overlapping and tailor-welded sheets was utilized to control the stress magnitude and further improve the formability and quality of the tailor-welded sheets.In this work,the bulging process of the tailor-welded overlapping sheets was taken as the research object.Aluminum alloy tailor-welded overlapping sheets bulging specimens were studied by a combination of finite element analysis and experimental verification.The results show that the appropriate use of interface friction between tailor-welded and overlapping sheets can improve the formability of tailor-welded sheets and control the flow of weld seam to improve the forming quality.When increasing the interface friction coefficient on the side of tailor-welded sheets with higher strength and decreasing that on the side of tailor-welded sheets with lower strength,the deformation of the tailor-welded sheets are more uniform,the offset of the weld seam is minimal,the limit bulging height is maximal,and the forming quality is optimal.
基金supported by the National Natural Science Foundation of China(Nos.52275299,52105313)R&D Program of Beijing Municipal Education Commission(No.KM202210005036)+1 种基金Natural Science Foundation of Chongqing,China(No.CSTB2023NSCQ-MSX0701)National Defense Basic Research Projects of China(No.JCKY2022405C002).
文摘Friction rolling additive manufacturing(FRAM)is a solid-state additive manufacturing technology that plasticizes the feed and deposits a material using frictional heat generated by the tool head.The thermal efficiency of FRAM,which depends only on friction to generate heat,is low,and the thermal-accumulation effect of the deposition process must be addressed.An FRAM heat-balance-control method that combines plasma-arc preheating and instant water cooling(PC-FRAM)is devised in this study,and a temperature field featuring rapidly increasing and decreasing temperature is constructed around the tool head.Additionally,2195-T87 Al-Li alloy is used as the feed material,and the effects of heating and cooling rates on the microstructure and mechanical properties are investigated.The results show that water cooling significantly improves heat accumulation during the deposition process.The cooling rate increases by 11.7 times,and the high-temperature residence time decreases by more than 50%.The grain size of the PC-FRAM sample is the smallest,i.e.,3.77±1.03μm,its dislocation density is the highest,and the number density of precipitates is the highest,the size of precipitates is the smallest,which shows the best precipitation-strengthening effect.The hardness test results are consistent with the precipitation distribution.The ultimate tensile strength,yield strength and elongation of the PC-FRAM samples are the highest(351±15.6 MPa,251.3±15.8 MPa and 16.25%±1.25%,respectively)among the samples investigated.The preheating and water-cooling-assisted deposition simultaneously increases the tensile strength and elongation of the deposited samples.The combination of preheating and instant cooling improves the deposition efficiency of FRAM and weakens the thermal-softening effect.
基金supported by the National Key Research and Development Program of China(No.2022YFB3404700)the National Natural Science Foundation of China(Nos.52105313 and 52275299)+2 种基金the Research and Development Program of Beijing Municipal Education Commission,China(No.KM202210005036)the Natural Science Foundation of Chongqing,China(No.CSTB2023NSCQ-MSX0701)the National Defense Basic Research Projects of China(No.JCKY2022405C002).
文摘At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-layer multi-pass FRAM-deposited alumin-um alloy samples were successfully prepared using a non-shoulder tool head.The material flow behavior and microstructure of the over-lapped zone between adjacent layers and passes during multi-layer multi-pass FRAM deposition were studied using the hybrid 6061 and 5052 aluminum alloys.The results showed that a mechanical interlocking structure was formed between the adjacent layers and the adja-cent passes in the overlapped center area.Repeated friction and rolling of the tool head led to different degrees of lateral flow and plastic deformation of the materials in the overlapped zone,which made the recrystallization degree in the left and right edge zones of the over-lapped zone the highest,followed by the overlapped center zone and the non-overlapped zone.The tensile strength of the overlapped zone exceeded 90%of that of the single-pass deposition sample.It is proved that although there are uneven grooves on the surface of the over-lapping area during multi-layer and multi-pass deposition,they can be filled by the flow of materials during the deposition of the next lay-er,thus ensuring the dense microstructure and excellent mechanical properties of the overlapping area.The multi-layer multi-pass FRAM deposition overcomes the limitation of deposition width and lays the foundation for the future deposition of large-scale high-performance components.
基金supported by the National Natural Science Foundation of China(Nos.52074228,52305420 and 51875470)the Practice and Innovation Funds for Graduate Students of Northwestern Polytechnical University,China(No.PF2024053)the Xi’an Beilin District Science and Technology Planning Project,China(No.GX2349).
文摘The pre-weld heat treatment was carried out to obtain different initial microstructures of the GH4169 superalloy,and then Linear Friction Welding(LFW)was performed.The effect of the pre-weld heat treatment on the microstructure evolution and mechanical properties of the joint was analyzed,and the joint electrochemical corrosion behavior as well as the hot corrosion behavior was studied.The results show that the joint hardness of Base Metal(BM)increases after pre-weld heat treatment,and the strengthening phasesγ′andγ″further precipitate.However,the precipitation phases dissolve significantly in the Weld Zone(WZ)due to the thermal process of LFW.The corrosion resistance in BM is reduced after the pre-weld heat treatment,while it is similar in WZ with a slight decrease.The surface morphology of the BM and WZ can be generally divided into a loose and porous matrix and a scattered oxide particle layer after hot corrosion.The joint cross section exhibits a Cr-depleted zone with the diffusion of Cr to form an oxide film.The corrosion product mainly consists of Fe_(2)O_(3)/Fe_(3)O_(4) as the outer layer and Cr_(2)O_(3) as the inner layer.
基金financially supported by the National Natural Science Foundation of China(No.52105373)the China Scholarship Council(No.202106020094).
文摘Ti-10V-2Fe-3Al alloy with fine-grainedβphases was fabricated by friction stir processing with opti-mized processing parameters.The superplastic behavior of the specimens was investigated by tensile deformation at different strain rates and temperatures,and an optimal superplastic elongation of 634%was achieved at 700℃ and 3×10^(-4)/s.An annealing treatment at 650℃ for 60 min showed a mi-crostructure withαprecipitates distributed in theβmatrix in the friction stir specimen.Such pre-heat treatment improves the superplasticity of the specimen,achieving an elongation of up to 807%at 750℃ and 3×10^(-4)/s.The influences of tensile temperatures and strain rates on the microstructural evolution,such as grain size variation,grain morphology,and phase transformations,were discussed.The super-plastic deformation behavior of fine-grained Ti-10V-2Fe-3Al alloy is controlled by grain boundary sliding and accompanied by dynamic phase transformation and recrystallization.
基金National Natural Science Foundation of China(52375378)National Key Laboratory of Metal Forming Technology and Heavy Equipment(S2308100.W12)Huxiang High-Level Talent Gathering Project of Hunan Province(2021RC5001)。
文摘The titanium alloy strut serves as a key load-bearing component of aircraft landing gear,typically manufactured via forging.The friction condition has important influence on material flow and cavity filling during the forging process.Using the previously optimized shape and initial position of preform,the influence of the friction condition(friction factor m=0.1–0.3)on material flow and cavity filling was studied by numerical method with a shear friction model.A novel filling index was defined to reflect material flow into left and right flashes and zoom in on friction-induced results.The results indicate that the workpiece moves rigidly to the right direction,with the displacement decreasing as m increases.When m<0.18,the underfilling defect will occur in the left side of strut forging,while overflow occurs in the right forging die cavity.By combining the filling index and analyses of material flow and filling status,a reasonable friction factor interval of m=0.21–0.24 can be determined.Within this interval,the cavity filling behavior demonstrates robustness,with friction fluctuations exerting minimal influence.
文摘SAMR (SAC) and relevant departments jointly issued the Report on the Standardization Achievements of the 10th Anniversary of the Belt and Road Initiative (BRI) recently, to summarize the fruitful results in promoting the connectivity of standardization among Belt and Road countries in the past 10 years.
文摘Editors Yang Wang,Xi'an Jiaotong University Dongbo Shi,Shanghai Jiaotong University Ye Sun,University College London Zhesi Shen,National Science Library,CASTopic of the Special Issue What are the top questions towards better science and innovation and the required data to answer these questions?
文摘This study summarizes the examination data of registration labels for ordinary cosmetics in Beijing from May 2021 to April 2024.It analyzes and categorizes the issues identified during label evaluations,explores the underlying causes,and proposes regulatory countermeasures and recommendations for registrants,regulatory authorities,and social organizations.The objective is to offer practical insights and regulatory guidance to support the enhancement of cosmetic registration and regulatory standards.
基金Project(52325905) supported by the National Natural Science Foundation of ChinaProjects(DJ-HXGG-2023-04, DJHXGG-2023-16) supported by the Key Technology Research Projects of Power China。
文摘Plum blossom pile is a new type of special-shaped pile, which is proposed based on the principle of maximum perimeter with the same cross-sectional area. To advance this technique, primarily for the design of plum blossom piles, it is important to investigate the skin friction behavior of plum blossom pile foundations precluding any straightforward constitutive model. In this work, an analytic method dependent on the cross-sectional geometry and the vertical shearing effects is proposed by means of equilibrium analysis to calculate the effective vertical stress in the surrounding soil, the skin friction/negative skin friction, and the axial force/dragload of a plum blossom pile. Additionally, the curves of skin friction of piles are investigated with the same conditions. The results show that the curves of skin friction of piles deduced according to the developed analytic method agree well with the FEM results and related literature solution, which validates the solution. The axial force of the pile decreases with the increase of the shear action coefficient in the buried depth direction under the vertical concentrated load when considering the vertical shearing effects on the pile-soil interfaces.
文摘Erratum to:International Journal of Minerals,Metallurgy and Materials Volume 31,Number 11,November 2024,Page 2498 https://doi.org/10.1007/s12613-024-2847-2 In this article,the fund number in the acknowledgements has been erroneously given as the Program for Guangdong Basic and Applied Basic Research Foundation,China(No.2021A151511006)It should be as follows:the Program for Guangdong Basic and Applied Basic Research Foundation,China(No.2021A1515110061).
基金funded by the National Science Foundation(No.EAR-1848192)。
文摘The mechanics of slow-slip events and earthquakes is controlled by the constitutive behavior of rocks in active fault zones,which is sensitive to many factors encompassing lithology,temperature,confining and pore-fluid pressure,and slip-rate,among others.Understanding the frictional properties of faults is crucial to predicting many aspects of the seismic cycle,from the source characteristics and recurrence patterns of earthquakes to the mechanics of remote triggering.Here,we describe a constitutive model that explains the slip-rate-,state-,temperature-,and normal-stress-dependence of fault friction for a wide variety of rock types,explaining the evolution of frictional stability under various barometric and hydrothermal conditions relevant to natural and induced seismicity,encompassing the brittle-ductile transition.The frictional strength is controlled by the area of contact junctions that form along a rough interface or by grain-to-grain contact in fault gouge and follows a nonlinear function of normal stress.The physical model explains the direct and evolutionary effects following perturbations in temperature,normal stress,and slip-rate,and the dependence of the frictional parameters on ambient physical conditions.The competition among healing and deformation mechanisms explains the dependence of fault stability on temperature,slip-rate,and effective normal stress for a wide range of rocks.The brittle-to-flow transition at the bottom of the seismogenic zone is caused by the thermobaric activation of semi-brittle deformation mechanisms.The model unifies and extends previous formulations,providing a single framework to explain rock deformation in Earth’s brittle and ductile layers.
基金the postdoctoral research grant received from the University of Glasgow for the partial financial support for this research work。
文摘This paper introduces damping amplifier friction vibration absorbers(DAFVAs),compound damping amplifier friction vibration absorbers(CDAFVAs),nested damping amplifier friction vibration absorbers(NDAFVAs),and levered damping amplifier friction vibration absorbers(LDAFVAs)for controlling the structural vibrations and addressing the limitations of conventional tuned mass dampers(TMDs)and frictiontuned mass dampers(FTMDs).The closed-form analytical solution for the optimized design parameters is obtained using the H_(2)and H_(∞)optimization approaches.The efficiency of the recently established closed-form equations for the optimal design parameters is confirmed by the analytical examination.The closed form formulas for the dynamic responses of the main structure and the vibration absorbers are derived using the transfer matrix formulations.The foundation is provided by the harmonic and random-white noise excitations.Moreover,the effectiveness of the innovative dampers has been validated through numerical analysis.The optimal DAFVAs,CDAFVAs,NDAFVAs,and LDAFVAs exhibit at least 30%lower vibration reduction capacity compared with the optimal TMD.To demonstrate the effectiveness of the damping amplification mechanism,the novel absorbers are compared with a conventional FTMD.The results show that the optimized novel absorbers achieve at least 91%greater vibration reduction than the FTMD.These results show how the suggested designs might strengthen the structure's resilience to dynamic loads.