Vertical mass isolation(VMI)is one of the novel methods for the seismic control of structures.In this method,the entire structure is assumed to consist of two mass and stiffness subsystems,and an isolated layer is loc...Vertical mass isolation(VMI)is one of the novel methods for the seismic control of structures.In this method,the entire structure is assumed to consist of two mass and stiffness subsystems,and an isolated layer is located among them.In this study,the magnetorheological damper in three modes:passive-off,passive-on,and semi-active mode with variable voltage between zero and 9 volts was used as an isolated layer between two subsystems.Multi-degrees-of-freedom structures with 5,10,and 15 floors in two dimensions were examined under 11 pairs of near field earthquakes.On each level,the displacement of MR dampers was taken into account.The responses of maximum displacement,maximum inter-story drift,and maximum base shear in controlled and uncontrolled buildings were compared to assess the suggested approach for seismic control of the structures.According to the results,the semi-active control method can reduce the response by more than 12%compared to the uncontrolled mode in terms of maximum displacement of the mass subsystem of the structures.This method can reduce more than 16%and 20%of the responses compared to the uncontrolled mode in terms of maximum inter-story drift and base shear of the structure,respectively.展开更多
Recent studies have shown that base-isolated objects with long fundamental natural periods are highly influenced by long-period earthquakes. These long-period waves result in large displacements for isolators, possibl...Recent studies have shown that base-isolated objects with long fundamental natural periods are highly influenced by long-period earthquakes. These long-period waves result in large displacements for isolators, possibly leading to exceedance of the allowable displacement limits. Conventional isolation systems, in general, fail to resist such large displacements. This has prompted the need to modify conventional base isolation systems. The current work focuses on the development of an external device, comprising a unit of negative and positive springs, for improving the performance of conventional base isolation systems. This unit accelerates the change in the stiffness of the isolation system where the stiffness of the positive spring varies linearly in terms of the displacement response of the isolated objects. The target objects of the present study are small structures such as computer servers, sensitive instruments and machinery. Numerical studies show that the increase in the damping of the system and the slope of the linear function is effective in reducing the displacement response. An optimal range of damping values and slope, satisfying the stability condition and the allowable limits of both displacement and acceleration responses when the system is subjected to near-fault and long-period ground motions simultaneously, is proposed.展开更多
This study proposes a novel U-shaped 65Mn steel bumper as the displacement restraining device for base-isolated structures with laminated elastomeric rubber bearings.A series of bumpers with different geometric parame...This study proposes a novel U-shaped 65Mn steel bumper as the displacement restraining device for base-isolated structures with laminated elastomeric rubber bearings.A series of bumpers with different geometric parameters were designed and tested under monotonic and cyclic quasi-static loading protocols.The experimental results from a total of 232 specimens were analyzed to develop an analytical model to calculate the backbone curve and the maximum elastic restoring force for U-shaped 65Mn bumpers.Thus,the analytical equations to calculate the elastic,hardening,and unloading stiffness of U-shaped 65Mn bumpers,as well as their maximum elastic restoring force,are validated by using an additional ten groups of bumpers with varying radiuses.These analytical equations can accurately predict the mechanical parameters of U-shaped 65Mn steel bumpers for a design purpose.展开更多
Semi-active dampers are used in base-isolation to reduce the seismic response of civil engineering structures. In the present study, a new semi-active damping system using variable amplification will be investigated f...Semi-active dampers are used in base-isolation to reduce the seismic response of civil engineering structures. In the present study, a new semi-active damping system using variable amplification will be investigated for adaptive baseisolation. It uses a novel variable amplification device (VAD) connected in series with a passive damper. The VAD is capable of producing multiple amplification factors, each corresponding to a different amplification state. Forces from the damper are amplified to the structure according to the current amplification state, which is selected via a semi-active control algorithm specifically tailored to the system's tmique damping characteristics. To demonstrate the effectiveness of the VAD-damper system for adaptive base-isolation, numerical simulations are conducted for three and seven-story base-isolated buildings subject to both far and near-field ground motions. The results indicate that the system can achieve significant reductions in response compared to the base-isolated buildings with no damper. The proposed system is also found to perform well compared to a typical semi-active damper.展开更多
This paper presents a new type of base isolation system, i. e. , slide-limited friction (S-LF) base isolation system . Based on this system, the harmonic and subharmonic periodic response of S-LF subjected to harmonic...This paper presents a new type of base isolation system, i. e. , slide-limited friction (S-LF) base isolation system . Based on this system, the harmonic and subharmonic periodic response of S-LF subjected to harmonic motions is investigated by using Fourier-Galerkin-Newton (FGN) method with Flo-quet theory. The dynamic response of S-LF subjected to earthquake ground motions is calculated with a high order precision direct integration method, and the numerical results are presented in maximum acceleration response spectra of superstructure and maximum sliding displacement response spectrum form. The comparison of isolating effects of S-LF, pure-friction base isolation system (P-F) and resilient-friction base isolation system (R-FBI) shows that the isolating property of S-LF is superior to those of P-F and R-FBI. Finally, by analyzing an engineering example, it is observed that the distribution of the maximum shear between floors and absolute acceleration of S-LF to earthquake ground motion is very different from that of traditional structures.展开更多
Base isolation concept is currently accepted as a new strategy for earthquake resistance structures. According to different types of base isolation devices, laminated rubber bearing which is made by thin layers of ste...Base isolation concept is currently accepted as a new strategy for earthquake resistance structures. According to different types of base isolation devices, laminated rubber bearing which is made by thin layers of steel shims bonded by rubber is one of the most popular devices to reduce the effects of earthquake in the buildings. Laminated rubber bearings should be protected against failure or instability because failure of isolation devices may cause serious damage on the structures. Hence, the prediction of the behaviour of the laminated rubber bearing with different properties is essential in the design of a seismic bearing. In this paper, a finite element modeling of the laminated rubber bearing is presented. The procedures of modeling the rubber bearing with finite element are described. By the comparison of the numerical and the experimental, the validities of modelling and results have been determined. The results of this study perform that there is a good agreement between finite element analysis and experimental results.展开更多
This paper reports on an investigation of the seismic response of base-isolated reinforced concrete buildings, which considers various isolation system parameters under bidirectional near-fault and far-fault motions. ...This paper reports on an investigation of the seismic response of base-isolated reinforced concrete buildings, which considers various isolation system parameters under bidirectional near-fault and far-fault motions. Three-dimensional models of 4-, 8-, and 12-story base-isolated buildings with nonlinear effects in the isolation system and the superstructure are investigated, and nonlinear response history analysis is carried out. The bounding values of isolation system properties that incorporate the aging effect of isolators are also taken into account, as is the current state of practice in the design and analysis of base-isolated buildings. The response indicators of the buildings are studied for near-fault and far-fault motions weight-scaled to represent the design earthquake (DE) level and the risk-targeted maximum considered earthquake (MCER) level. Results of the nonlinear response history analyses indicate no structural damage under DE-level motions for near-fault and far-fault motions and for MCER-level far-fault motions, whereas minor structural damage is observed under MCER- level near-fault motions. Results of the base-isolated buildings are compared with their fixed-base counterparts. Significant reduction of the superstructure response of the 12-story base-isolated building compared to the fixed-base condition indicates that base isolation can be effectively used in taller buildings to enhance performance. Additionally, the applicability of a rigid superstructure to predict the isolator displacement demand is also investigated. It is found that the isolator displacements can be estimated accurately using a rigid body model for the superstructure for the buildings considered.展开更多
The work presented in this paper serves as numerical verification of the analytical model developed in the companion paper for nonlinear dynamic analysis of multi-base seismically isolated structures. To this end, two...The work presented in this paper serves as numerical verification of the analytical model developed in the companion paper for nonlinear dynamic analysis of multi-base seismically isolated structures. To this end, two numerical examples have been analyzed using the computational algorithm incorporated into program 3D-BASIS-ME-MB, developed on the basis of the newly-formulated analytical model. The first example concerns a seven-story model structure that was tested on the earthquake simulator at the University at Buflhlo and was also used as a verification example for program SAP2000. The second example concerns a two-tower, multi-story structure with a split-level seismic-isolation system. For purposes of verification, key results produced by 3D-BASIS-ME-MB are compared to experimental results, or results obtained from other structural/finite element programs. In both examples, the analyzed structure is excited under conditions of bearing uplift, thus yielding a case of much interest in verifying the capabilities of the developed analysis tool.展开更多
Base isolated structures have been found to be at risk in near-fault regions as a result of long period pulses that may exist in near-source ground motions. Various control strategies, including passive, active and se...Base isolated structures have been found to be at risk in near-fault regions as a result of long period pulses that may exist in near-source ground motions. Various control strategies, including passive, active and semi-active control systems, have been investigated to overcome this problem. This study focuses on the development of a semi-active control algorithm based on several performance levels anticipated from an isolated building during different levels of ground shaking corresponding to various earthquake hazard levels. The proposed performance-based algorithm is based on a modified version of the well-known semi-active skyhook control algorithm. The proposed control algorithm changes the control gain depending on the level of shaking imposed on the structure. The proposed control system has been evaluated using a series of analyses performed on a base isolated benchmark building subjected to seven pairs of scaled ground motion records. Simulation results show that the newly proposed algorithm is effective in improving the structural and nonstructural performance of the building for selected earthquakes.展开更多
The complexity of modem seismically isolated structures requires the analysis of the structural, system and the isolation system in its entirety and the ability to capture potential discontinuous phenomena such as iso...The complexity of modem seismically isolated structures requires the analysis of the structural, system and the isolation system in its entirety and the ability to capture potential discontinuous phenomena such as isolator uplift and their effects on the superstructures and the isolation hardware. In this paper, an analytical model is developed and a computational algorithm is formulated to analyze complex seismically isolated superstructures even when undergoing highly-nonlinear phenomena such as uplift. The computational model has the capability of modeling various types of isolation devices with strong nonlinearities, analyzing multiple superstructures (up to five separate superstructures) on multiple bases (up to five bases), and capturing the effects of lateral loads on bearing axial forces, including bearing uplift. The model developed herein has been utilized to form the software platform 3D-BASIS-ME-MB, which provides the practicing engineering community with a versatile tool for analysis and design of complex structures with modem isolation systems.展开更多
The optimal design and effectiveness of three control systems,tuned viscous mass damper(TVMD),tuned inerter damper(TID)and tuned mass damper(TMD),on mitigating the seismic responses of base isolated structures,were sy...The optimal design and effectiveness of three control systems,tuned viscous mass damper(TVMD),tuned inerter damper(TID)and tuned mass damper(TMD),on mitigating the seismic responses of base isolated structures,were systematically studied.First,the seismic responses of the base isolated structure with each control system under white noise excitation were obtained.Then,the structural parameter optimizations of the TVMD,TID and TMD were conducted by using three different objectives.The results show that the three control systems were all effective in minimizing the root mean square value of seismic responses,including the base shear of the BIS,the absolute acceleration of structural SDOF,and the relative displacement between the base isolation floor and the foundation.Finally,considering the superstructure as a structural MDOF,a series of time history analyses were performed to investigate the effectiveness and activation sensitivity of the three control systems under far field and near fault seismic excitations.The results show that the effectiveness of TID and TMD with optimized parameters on mitigating the seismic responses of base isolated structures increased as the mass ratio increases,and the effectiveness of TID was always better than TMD with the same mass ratio.The TVMD with a lower mass ratio was more efficient in reducing the seismic response than the TID and TMD.Furthermore,the TVMD,when compared with TMD and TID,had better activation sensitivity and a smaller stroke.展开更多
According to theoretical analysis, a general characteristic of the ground vibration induced by high dam flood discharge is that the dominant frequency ranges over several narrow frequency bands, which is verified by o...According to theoretical analysis, a general characteristic of the ground vibration induced by high dam flood discharge is that the dominant frequency ranges over several narrow frequency bands, which is verified by observations from the Xiangjiaba Hydropower Station. Nonlinear base isolation is used to reduce the structure vibration under ground excitation and the advantage of the isolation application is that the low-frequency resonance problem does not need to be considered due to its excitation characteristics, which significantly facilitate the isolation design. In order to obtain the response probabilistic distribution of a nonlinear system, the state space split technique is modified. As only a few degrees of freedom are subjected to the random noise, the probabilistic distribution of the response without involving stochastic excitation is represented by the δ function. Then, the sampling property of the δ function is employed to reduce the dimension of the Fokker-Planck-Kolmogorov (FPK) equation and the low-dimensional FPK equation is solvable with existing methods. Numerical results indicate that the proposed approach is effective and accurate. Moreover, the response probabilistic distributions are more reasonable and scientific than the peak responses calculated by conventional time and frequency domain methods.展开更多
Crimean-Congo hemorrhagic fever(CCHF)caused by the CCHF virus(CCHFV)is a tick-borne natural focal disease with a mortality rate of approximately 50%.CCHFV is widely prevalent in Africa,southern Asia,the Middle East,an...Crimean-Congo hemorrhagic fever(CCHF)caused by the CCHF virus(CCHFV)is a tick-borne natural focal disease with a mortality rate of approximately 50%.CCHFV is widely prevalent in Africa,southern Asia,the Middle East,and southeast Europe.CCHF outbreaks have been reported previously in Xinjiang province,China,especially in its southern region.Epidemiological surveys conducted on ticks and animals have revealed the presence of CCHFV strains in ticks,rodents,and infected individuals from cities and counties in southern Xinjiang.Phylogenetic analyses revealed that the Chinese CCHFV strains belong to one genotype,based on complete sequences of the S segments of its negative-stranded RNA genome.The present study reports two new CCHFV strains isolated from Hyalomma asiaticum asiaticum ticks collected from Fukang City and Wujiaqu City in the northern region of Xinjiang.Viral characteristics and their evolutionary relationships were analyzed through metagenomic and reverse-transcription PCR analyses;these analyses indicated that the genotype of both strains was different from that of other Chinese strains.Furthermore,previous reports of CCHFV in Xinjiang were reviewed and phylogenetic analyses were performed.CCHFV was found to prevail in Fukang City in Junggar Basin for more than 20 years,and that Fukang City and Wujiaqu City are considered natural reservoirs of different genotypes of CCHFV strains.Our findings facilitate the understanding of CCHFV distribution in Xinjiang province and provide insights into the evolutionary relationships among Chinese CCHFV strains.展开更多
Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effe...Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effects.This deterioration of them requires the determination of the maintenance and repair needs and is important for the long-termisolator life.In this study,an artificial intelligence prediction model has been developed to determine the damage and maintenance-repair requirements of isolators as a result of environmental effects and dynamic factors over time.With the developed model,the required damping capacity of the isolator structure was estimated and compared with the previously placed isolator capacity,and the decrease in the damping property was tried to be determined.For this purpose,a data set was created by collecting the behavior of structures with single degrees of freedom(SDOF),different stiffness,damping ratio and natural period isolated from the foundation under far fault earthquakes.The data is divided into 5 different damping classes varying between 10%and 50%.Machine learning model was trained in damping classes with the data on the structure’s response to random seismic vibrations.As a result of the isolator behavior under randomly selected earthquakes,the recorded motion and structural acceleration of the structure against any seismic vibration were examined,and the decrease in the damping capacity was estimated on a class basis.The performance loss of the isolators,which are separated according to their damping properties,has been tried to be determined,and the reductions in the amounts to be taken into account have been determined by class.In the developed prediction model,using various supervised machine learning classification algorithms,the classification algorithm providing the highest precision for the model has been decided.When the results are examined,it has been determined that the damping of the isolator structure with the machine learning method is predicted successfully at a level exceeding 96%,and it is an effective method in deciding whether there is a decrease in the damping capacity.展开更多
Investigation of seismic performance of buildings with STRP (scrap tire rubber pad) seismic isolators by means of pseudo-dynamic tests and numerical simulation is presented. The isolated building is numerically mode...Investigation of seismic performance of buildings with STRP (scrap tire rubber pad) seismic isolators by means of pseudo-dynamic tests and numerical simulation is presented. The isolated building is numerically modeled, while the base isolation layer is considered as the experimental substructure in the pseudo-dynamic tests. The test result verifies that the STRP isolator shows acceptable shear deformation performance predicted by the design methods, and demonstrated that seismic isolation using STRP works as a protective measure to provide enhanced seismic performance of the building indicated by the reduction of top floor absolute acceleration, drift and base shear as designated.展开更多
This study examines the roles of soil-structure interaction (SSI), higher modes, and damping in a base-isolated structure built on multiple layers of soil overlying a half space. Closed-form solutions for the entire...This study examines the roles of soil-structure interaction (SSI), higher modes, and damping in a base-isolated structure built on multiple layers of soil overlying a half space. Closed-form solutions for the entire system, including a superstructure, seismic isolator, and numerous soil layers overlying a half-space, were obtained. The formulations obtained in this study simply in terms of well-known frequencies and mechanical impedance ratios can explicitly interpret the dynamic behavior of a base-isolated structure interacting with multiple soil layers overlying a half-space. The key factors influencing the performance of the isolation system are the damping ratio of the isolator and the ratio of the natural frequency of the fixed-base structure to that of the isolated structure by assuming that the superstructure moves as a rigid body. This study reveals that higher damping in the base isolator is unfavorable to higher mode responses that usually dominate the responses of the superstructure and that the damping mechanism plays an important role in transmitting energy in addition to absorbing energy. It is also concluded that it is possible to design a soft soil layer as an isolation system for isolating vibration energy.展开更多
The accurate analysis of the seismic response of isolated structures requires incorporation of the flexibility of supporting soil. However, it is often customary to idealize the soil as rigid during the analysis of su...The accurate analysis of the seismic response of isolated structures requires incorporation of the flexibility of supporting soil. However, it is often customary to idealize the soil as rigid during the analysis of such structures. In this paper, seismic response time history analyses of base-isolated buildings modelled as linear single degree-of-freedom (SDOF) and multi degree-of-freedom (MDOF) systems with linear and nonlinear base models considering and ignoring the flexibility of supporting soil are conducted. The flexibility of supporting soil is modelled through a lumped parameter model consisting of swaying and rocking spring-dashpots. In the analysis, a large number of parametric studies for different earthquake excitations with three different peak ground acceleration (PGA) levels, different natural periods of the building models, and different shear wave velocities in the soil are considered. For the isolation system, laminated rubber bearings (LRBs) as well as high damping rubber bearings (HDRBs) are used. Responses of the isolated buildings with and without SSI are compared under different ground motions leading to the following conclusions: (1) soil flexibility may considerably influence the stiff superstructure response and may only slightly influence the response of the flexible structures; (2) the use of HDRBs for the isolation system induces higher structural peak responses with SSI compared to the system with LRBs; (3) although the peak response is affected by the incorporation of soil flexibility, it appears insensitive to the variation of shear wave velocity in the soil; (4) the response amplifications of the SDOF system become closer to unit with the increase in the natural period of the building, indicating an inverse relationship between SSI effects and natural periods for all the considered ground motions, base isolations and shear wave velocities; (5) the incorporation of SSI increases the number of significant cycles of large amplitude accelerations for all the stories, especially for earthquakes with low and moderate PGA levels; and (6) buildings with a linear LRB base-isolation system exhibit larger differences in displacement and acceleration amplifications, especially at the level of the lower stories.展开更多
Base isolation is one of the most promising alternatives among the structure control methods.In recent decades,base isolation has been seriously considered for civil structures,such as buildings and bridges,subjected ...Base isolation is one of the most promising alternatives among the structure control methods.In recent decades,base isolation has been seriously considered for civil structures,such as buildings and bridges,subjected to ground motion.The research achievements and development of seismic base isolation technique for civil structures in Huazhong University of Science and Technology(HUST)are introduced.The achievements include project applications,experimental research results and theoretical innovation.展开更多
文摘Vertical mass isolation(VMI)is one of the novel methods for the seismic control of structures.In this method,the entire structure is assumed to consist of two mass and stiffness subsystems,and an isolated layer is located among them.In this study,the magnetorheological damper in three modes:passive-off,passive-on,and semi-active mode with variable voltage between zero and 9 volts was used as an isolated layer between two subsystems.Multi-degrees-of-freedom structures with 5,10,and 15 floors in two dimensions were examined under 11 pairs of near field earthquakes.On each level,the displacement of MR dampers was taken into account.The responses of maximum displacement,maximum inter-story drift,and maximum base shear in controlled and uncontrolled buildings were compared to assess the suggested approach for seismic control of the structures.According to the results,the semi-active control method can reduce the response by more than 12%compared to the uncontrolled mode in terms of maximum displacement of the mass subsystem of the structures.This method can reduce more than 16%and 20%of the responses compared to the uncontrolled mode in terms of maximum inter-story drift and base shear of the structure,respectively.
文摘Recent studies have shown that base-isolated objects with long fundamental natural periods are highly influenced by long-period earthquakes. These long-period waves result in large displacements for isolators, possibly leading to exceedance of the allowable displacement limits. Conventional isolation systems, in general, fail to resist such large displacements. This has prompted the need to modify conventional base isolation systems. The current work focuses on the development of an external device, comprising a unit of negative and positive springs, for improving the performance of conventional base isolation systems. This unit accelerates the change in the stiffness of the isolation system where the stiffness of the positive spring varies linearly in terms of the displacement response of the isolated objects. The target objects of the present study are small structures such as computer servers, sensitive instruments and machinery. Numerical studies show that the increase in the damping of the system and the slope of the linear function is effective in reducing the displacement response. An optimal range of damping values and slope, satisfying the stability condition and the allowable limits of both displacement and acceleration responses when the system is subjected to near-fault and long-period ground motions simultaneously, is proposed.
基金National Science Foundation of China for the Financial Support for This Research under Grant Nos.51378047 and 51408027。
文摘This study proposes a novel U-shaped 65Mn steel bumper as the displacement restraining device for base-isolated structures with laminated elastomeric rubber bearings.A series of bumpers with different geometric parameters were designed and tested under monotonic and cyclic quasi-static loading protocols.The experimental results from a total of 232 specimens were analyzed to develop an analytical model to calculate the backbone curve and the maximum elastic restoring force for U-shaped 65Mn bumpers.Thus,the analytical equations to calculate the elastic,hardening,and unloading stiffness of U-shaped 65Mn bumpers,as well as their maximum elastic restoring force,are validated by using an additional ten groups of bumpers with varying radiuses.These analytical equations can accurately predict the mechanical parameters of U-shaped 65Mn steel bumpers for a design purpose.
文摘Semi-active dampers are used in base-isolation to reduce the seismic response of civil engineering structures. In the present study, a new semi-active damping system using variable amplification will be investigated for adaptive baseisolation. It uses a novel variable amplification device (VAD) connected in series with a passive damper. The VAD is capable of producing multiple amplification factors, each corresponding to a different amplification state. Forces from the damper are amplified to the structure according to the current amplification state, which is selected via a semi-active control algorithm specifically tailored to the system's tmique damping characteristics. To demonstrate the effectiveness of the VAD-damper system for adaptive base-isolation, numerical simulations are conducted for three and seven-story base-isolated buildings subject to both far and near-field ground motions. The results indicate that the system can achieve significant reductions in response compared to the base-isolated buildings with no damper. The proposed system is also found to perform well compared to a typical semi-active damper.
文摘This paper presents a new type of base isolation system, i. e. , slide-limited friction (S-LF) base isolation system . Based on this system, the harmonic and subharmonic periodic response of S-LF subjected to harmonic motions is investigated by using Fourier-Galerkin-Newton (FGN) method with Flo-quet theory. The dynamic response of S-LF subjected to earthquake ground motions is calculated with a high order precision direct integration method, and the numerical results are presented in maximum acceleration response spectra of superstructure and maximum sliding displacement response spectrum form. The comparison of isolating effects of S-LF, pure-friction base isolation system (P-F) and resilient-friction base isolation system (R-FBI) shows that the isolating property of S-LF is superior to those of P-F and R-FBI. Finally, by analyzing an engineering example, it is observed that the distribution of the maximum shear between floors and absolute acceleration of S-LF to earthquake ground motion is very different from that of traditional structures.
文摘Base isolation concept is currently accepted as a new strategy for earthquake resistance structures. According to different types of base isolation devices, laminated rubber bearing which is made by thin layers of steel shims bonded by rubber is one of the most popular devices to reduce the effects of earthquake in the buildings. Laminated rubber bearings should be protected against failure or instability because failure of isolation devices may cause serious damage on the structures. Hence, the prediction of the behaviour of the laminated rubber bearing with different properties is essential in the design of a seismic bearing. In this paper, a finite element modeling of the laminated rubber bearing is presented. The procedures of modeling the rubber bearing with finite element are described. By the comparison of the numerical and the experimental, the validities of modelling and results have been determined. The results of this study perform that there is a good agreement between finite element analysis and experimental results.
文摘This paper reports on an investigation of the seismic response of base-isolated reinforced concrete buildings, which considers various isolation system parameters under bidirectional near-fault and far-fault motions. Three-dimensional models of 4-, 8-, and 12-story base-isolated buildings with nonlinear effects in the isolation system and the superstructure are investigated, and nonlinear response history analysis is carried out. The bounding values of isolation system properties that incorporate the aging effect of isolators are also taken into account, as is the current state of practice in the design and analysis of base-isolated buildings. The response indicators of the buildings are studied for near-fault and far-fault motions weight-scaled to represent the design earthquake (DE) level and the risk-targeted maximum considered earthquake (MCER) level. Results of the nonlinear response history analyses indicate no structural damage under DE-level motions for near-fault and far-fault motions and for MCER-level far-fault motions, whereas minor structural damage is observed under MCER- level near-fault motions. Results of the base-isolated buildings are compared with their fixed-base counterparts. Significant reduction of the superstructure response of the 12-story base-isolated building compared to the fixed-base condition indicates that base isolation can be effectively used in taller buildings to enhance performance. Additionally, the applicability of a rigid superstructure to predict the isolator displacement demand is also investigated. It is found that the isolator displacements can be estimated accurately using a rigid body model for the superstructure for the buildings considered.
基金Multidisciplinary Center for Earthquake Engineering Research
文摘The work presented in this paper serves as numerical verification of the analytical model developed in the companion paper for nonlinear dynamic analysis of multi-base seismically isolated structures. To this end, two numerical examples have been analyzed using the computational algorithm incorporated into program 3D-BASIS-ME-MB, developed on the basis of the newly-formulated analytical model. The first example concerns a seven-story model structure that was tested on the earthquake simulator at the University at Buflhlo and was also used as a verification example for program SAP2000. The second example concerns a two-tower, multi-story structure with a split-level seismic-isolation system. For purposes of verification, key results produced by 3D-BASIS-ME-MB are compared to experimental results, or results obtained from other structural/finite element programs. In both examples, the analyzed structure is excited under conditions of bearing uplift, thus yielding a case of much interest in verifying the capabilities of the developed analysis tool.
文摘Base isolated structures have been found to be at risk in near-fault regions as a result of long period pulses that may exist in near-source ground motions. Various control strategies, including passive, active and semi-active control systems, have been investigated to overcome this problem. This study focuses on the development of a semi-active control algorithm based on several performance levels anticipated from an isolated building during different levels of ground shaking corresponding to various earthquake hazard levels. The proposed performance-based algorithm is based on a modified version of the well-known semi-active skyhook control algorithm. The proposed control algorithm changes the control gain depending on the level of shaking imposed on the structure. The proposed control system has been evaluated using a series of analyses performed on a base isolated benchmark building subjected to seven pairs of scaled ground motion records. Simulation results show that the newly proposed algorithm is effective in improving the structural and nonstructural performance of the building for selected earthquakes.
基金support for this project was provided by the Multidisciplinary Center for Earthquake Engineering Research through a grant from the Earthquake Engineering Research Centers Program of the National Science Foundation under award number EEC 9701471.
文摘The complexity of modem seismically isolated structures requires the analysis of the structural, system and the isolation system in its entirety and the ability to capture potential discontinuous phenomena such as isolator uplift and their effects on the superstructures and the isolation hardware. In this paper, an analytical model is developed and a computational algorithm is formulated to analyze complex seismically isolated superstructures even when undergoing highly-nonlinear phenomena such as uplift. The computational model has the capability of modeling various types of isolation devices with strong nonlinearities, analyzing multiple superstructures (up to five separate superstructures) on multiple bases (up to five bases), and capturing the effects of lateral loads on bearing axial forces, including bearing uplift. The model developed herein has been utilized to form the software platform 3D-BASIS-ME-MB, which provides the practicing engineering community with a versatile tool for analysis and design of complex structures with modem isolation systems.
基金National Key Research and Development Program of China under Grant No.2017YFC0703600 and No.2017YFC0703604。
文摘The optimal design and effectiveness of three control systems,tuned viscous mass damper(TVMD),tuned inerter damper(TID)and tuned mass damper(TMD),on mitigating the seismic responses of base isolated structures,were systematically studied.First,the seismic responses of the base isolated structure with each control system under white noise excitation were obtained.Then,the structural parameter optimizations of the TVMD,TID and TMD were conducted by using three different objectives.The results show that the three control systems were all effective in minimizing the root mean square value of seismic responses,including the base shear of the BIS,the absolute acceleration of structural SDOF,and the relative displacement between the base isolation floor and the foundation.Finally,considering the superstructure as a structural MDOF,a series of time history analyses were performed to investigate the effectiveness and activation sensitivity of the three control systems under far field and near fault seismic excitations.The results show that the effectiveness of TID and TMD with optimized parameters on mitigating the seismic responses of base isolated structures increased as the mass ratio increases,and the effectiveness of TID was always better than TMD with the same mass ratio.The TVMD with a lower mass ratio was more efficient in reducing the seismic response than the TID and TMD.Furthermore,the TVMD,when compared with TMD and TID,had better activation sensitivity and a smaller stroke.
基金National Key R&D Program of China under Grant No.2016YFC0401705Science Fund for Creative Research Groups of the National Natural Science Foundation of China Grant No.51621092+3 种基金the National Natural Science Foundation of China Grant No.51579173,No.51379140,No.51309177 and No.51509180the Fund for Key Research Area Innovation Groups of China Ministry of Science and Technology Grant No.2014RA4031the Program of Introducing Talents of Discipline to Universities Grant No.B14012the Tianjin Innovation Team Foundation of Key Research Areas Grant No.2014TDA001
文摘According to theoretical analysis, a general characteristic of the ground vibration induced by high dam flood discharge is that the dominant frequency ranges over several narrow frequency bands, which is verified by observations from the Xiangjiaba Hydropower Station. Nonlinear base isolation is used to reduce the structure vibration under ground excitation and the advantage of the isolation application is that the low-frequency resonance problem does not need to be considered due to its excitation characteristics, which significantly facilitate the isolation design. In order to obtain the response probabilistic distribution of a nonlinear system, the state space split technique is modified. As only a few degrees of freedom are subjected to the random noise, the probabilistic distribution of the response without involving stochastic excitation is represented by the δ function. Then, the sampling property of the δ function is employed to reduce the dimension of the Fokker-Planck-Kolmogorov (FPK) equation and the low-dimensional FPK equation is solvable with existing methods. Numerical results indicate that the proposed approach is effective and accurate. Moreover, the response probabilistic distributions are more reasonable and scientific than the peak responses calculated by conventional time and frequency domain methods.
基金supported by the Science and Technology Basic Work Program (2013FY113500)the National Key Research and Development Program (2016YFE0113500) from the Ministry of Science and Technology of Chinathe European Union’s Horizon 2020 EVAg project (No 653316)
文摘Crimean-Congo hemorrhagic fever(CCHF)caused by the CCHF virus(CCHFV)is a tick-borne natural focal disease with a mortality rate of approximately 50%.CCHFV is widely prevalent in Africa,southern Asia,the Middle East,and southeast Europe.CCHF outbreaks have been reported previously in Xinjiang province,China,especially in its southern region.Epidemiological surveys conducted on ticks and animals have revealed the presence of CCHFV strains in ticks,rodents,and infected individuals from cities and counties in southern Xinjiang.Phylogenetic analyses revealed that the Chinese CCHFV strains belong to one genotype,based on complete sequences of the S segments of its negative-stranded RNA genome.The present study reports two new CCHFV strains isolated from Hyalomma asiaticum asiaticum ticks collected from Fukang City and Wujiaqu City in the northern region of Xinjiang.Viral characteristics and their evolutionary relationships were analyzed through metagenomic and reverse-transcription PCR analyses;these analyses indicated that the genotype of both strains was different from that of other Chinese strains.Furthermore,previous reports of CCHFV in Xinjiang were reviewed and phylogenetic analyses were performed.CCHFV was found to prevail in Fukang City in Junggar Basin for more than 20 years,and that Fukang City and Wujiaqu City are considered natural reservoirs of different genotypes of CCHFV strains.Our findings facilitate the understanding of CCHFV distribution in Xinjiang province and provide insights into the evolutionary relationships among Chinese CCHFV strains.
基金the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2020R1A2C1A01011131)the Energy Cloud R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT(2019M3F2A1073164).
文摘Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effects.This deterioration of them requires the determination of the maintenance and repair needs and is important for the long-termisolator life.In this study,an artificial intelligence prediction model has been developed to determine the damage and maintenance-repair requirements of isolators as a result of environmental effects and dynamic factors over time.With the developed model,the required damping capacity of the isolator structure was estimated and compared with the previously placed isolator capacity,and the decrease in the damping property was tried to be determined.For this purpose,a data set was created by collecting the behavior of structures with single degrees of freedom(SDOF),different stiffness,damping ratio and natural period isolated from the foundation under far fault earthquakes.The data is divided into 5 different damping classes varying between 10%and 50%.Machine learning model was trained in damping classes with the data on the structure’s response to random seismic vibrations.As a result of the isolator behavior under randomly selected earthquakes,the recorded motion and structural acceleration of the structure against any seismic vibration were examined,and the decrease in the damping capacity was estimated on a class basis.The performance loss of the isolators,which are separated according to their damping properties,has been tried to be determined,and the reductions in the amounts to be taken into account have been determined by class.In the developed prediction model,using various supervised machine learning classification algorithms,the classification algorithm providing the highest precision for the model has been decided.When the results are examined,it has been determined that the damping of the isolator structure with the machine learning method is predicted successfully at a level exceeding 96%,and it is an effective method in deciding whether there is a decrease in the damping capacity.
文摘Investigation of seismic performance of buildings with STRP (scrap tire rubber pad) seismic isolators by means of pseudo-dynamic tests and numerical simulation is presented. The isolated building is numerically modeled, while the base isolation layer is considered as the experimental substructure in the pseudo-dynamic tests. The test result verifies that the STRP isolator shows acceptable shear deformation performance predicted by the design methods, and demonstrated that seismic isolation using STRP works as a protective measure to provide enhanced seismic performance of the building indicated by the reduction of top floor absolute acceleration, drift and base shear as designated.
文摘This study examines the roles of soil-structure interaction (SSI), higher modes, and damping in a base-isolated structure built on multiple layers of soil overlying a half space. Closed-form solutions for the entire system, including a superstructure, seismic isolator, and numerous soil layers overlying a half-space, were obtained. The formulations obtained in this study simply in terms of well-known frequencies and mechanical impedance ratios can explicitly interpret the dynamic behavior of a base-isolated structure interacting with multiple soil layers overlying a half-space. The key factors influencing the performance of the isolation system are the damping ratio of the isolator and the ratio of the natural frequency of the fixed-base structure to that of the isolated structure by assuming that the superstructure moves as a rigid body. This study reveals that higher damping in the base isolator is unfavorable to higher mode responses that usually dominate the responses of the superstructure and that the damping mechanism plays an important role in transmitting energy in addition to absorbing energy. It is also concluded that it is possible to design a soft soil layer as an isolation system for isolating vibration energy.
文摘The accurate analysis of the seismic response of isolated structures requires incorporation of the flexibility of supporting soil. However, it is often customary to idealize the soil as rigid during the analysis of such structures. In this paper, seismic response time history analyses of base-isolated buildings modelled as linear single degree-of-freedom (SDOF) and multi degree-of-freedom (MDOF) systems with linear and nonlinear base models considering and ignoring the flexibility of supporting soil are conducted. The flexibility of supporting soil is modelled through a lumped parameter model consisting of swaying and rocking spring-dashpots. In the analysis, a large number of parametric studies for different earthquake excitations with three different peak ground acceleration (PGA) levels, different natural periods of the building models, and different shear wave velocities in the soil are considered. For the isolation system, laminated rubber bearings (LRBs) as well as high damping rubber bearings (HDRBs) are used. Responses of the isolated buildings with and without SSI are compared under different ground motions leading to the following conclusions: (1) soil flexibility may considerably influence the stiff superstructure response and may only slightly influence the response of the flexible structures; (2) the use of HDRBs for the isolation system induces higher structural peak responses with SSI compared to the system with LRBs; (3) although the peak response is affected by the incorporation of soil flexibility, it appears insensitive to the variation of shear wave velocity in the soil; (4) the response amplifications of the SDOF system become closer to unit with the increase in the natural period of the building, indicating an inverse relationship between SSI effects and natural periods for all the considered ground motions, base isolations and shear wave velocities; (5) the incorporation of SSI increases the number of significant cycles of large amplitude accelerations for all the stories, especially for earthquakes with low and moderate PGA levels; and (6) buildings with a linear LRB base-isolation system exhibit larger differences in displacement and acceleration amplifications, especially at the level of the lower stories.
基金funded by the National Natural Science Foundation of China(Grant No:50925828 and 50778077)
文摘Base isolation is one of the most promising alternatives among the structure control methods.In recent decades,base isolation has been seriously considered for civil structures,such as buildings and bridges,subjected to ground motion.The research achievements and development of seismic base isolation technique for civil structures in Huazhong University of Science and Technology(HUST)are introduced.The achievements include project applications,experimental research results and theoretical innovation.