Based on the full optimized molecular geometric structure at 6-311++G** level,the density(ρ),detonation velocity(D),and detonation pressure(P) for a new furazan-based energetic macrocycle compound,hexakis[1...Based on the full optimized molecular geometric structure at 6-311++G** level,the density(ρ),detonation velocity(D),and detonation pressure(P) for a new furazan-based energetic macrocycle compound,hexakis[1,2,5]oxadi-azole[3,4-c:3',4'-e;3'',4''-g:3''',4'''-k:3'''',4''''-m:3''''',4'''''-o][1,2,9,10]-tetraazacyclohexadecine,were investigated to verify its capacity as high energy density material(HEDM). The infrared spectrum was also predicted. The heat of formation(HOF) was calculated using designed isodesmic reaction. The calculation on the bond dissociation energies(BDEs) was done and the pyrolysis mechanism of the compound was studied. The result shows that the N3–O1 bond in the ring may be the weakest one and the ring cleavage is possible to happen in thermal decomposition. The condensed phase HOF and the crystal density were also calculated for the title compound. The detonation data show that it can be considered as a potential HEDM. These results would provide basic information for the molecular design of novel high energy materials.展开更多
Density functional theory calculations at the B3LYP/6-311G** level are performed to study the geometric and elec- tronic structures of a series of nitroaliphatic compounds. The heats of formation (HOF) are predict...Density functional theory calculations at the B3LYP/6-311G** level are performed to study the geometric and elec- tronic structures of a series of nitroaliphatic compounds. The heats of formation (HOF) are predicted through the designed isodesmic reactions. Thermal stabilities are evaluated via the homolytic bond dissociation energies (BDEs). Further, the correlation is developed between impact sensitivity h50% and the ratio (BDE/E) of the weakest BDE to the total energy E containing zero point energy correction. In addition, the relative stability of the title compounds is evaluated based on the analysis of calculated Mulliken population and the energy gaps between the frontier orbitals. The calculated BDEs, HOFs, and energy gaps consistently indicate that compound 1,1,1,6,6,6-hexanitro-3-hexyne is the most unstable and the compound 3,3,4,4,-tetranitro-hexane is the most stable. These results provide basic information for the molecular design of novel high energetic density materials.展开更多
Results of ab initio SCF calculations of tetrathiosquaric acid (3, 4-dithiohydroxy-3-cyclobuten-1, 2-dithione) are reported. The ZZ isomer is found to bethe most stable among the three isomers. An isodesmic energy ana...Results of ab initio SCF calculations of tetrathiosquaric acid (3, 4-dithiohydroxy-3-cyclobuten-1, 2-dithione) are reported. The ZZ isomer is found to bethe most stable among the three isomers. An isodesmic energy analysis has been carriedout at the HF 6-31G展开更多
The heats of formation (HOP) for all the 21 polyisocyanocubanes are calculated systematically with density functional theory (DFT) B3LYP and semiempirical MO(MINDO/3, MNDO, AM1 and PM3) methods. First, the accurate HO...The heats of formation (HOP) for all the 21 polyisocyanocubanes are calculated systematically with density functional theory (DFT) B3LYP and semiempirical MO(MINDO/3, MNDO, AM1 and PM3) methods. First, the accurate HOFs for the 8 title compounds are obtained by means of designed isodesmic reactions at DFT-B3LYP/6-31G* level, and the cubane cage skeleton has not been broken (i.e. choosing cubane as a reference compound) to produce more accurate and reliable results. It is found that there are good linear relationships between the HOFs calculated using the B3LYP/6-31G* and four semiempirical MO methods, respectively, and all of the linear correlation coefficients are more than 0.9971. The HOFs obtained from PM3 calculation are the best among the four semiempirical MO methods. Then, the accurate HOFs at B3LYP/6-31G* level of other 13 polyisocyanocubanes are obtained by systematically correcting their PM3-calculated HOFs. Polyisocyanocubanes have very high HOFs, and the HOFs increase linearly with the increasing of the number of isocyano groups in a molecule. The results show that polyisocyanocubanes are the new generation explosives with highly potential and exploitable value.展开更多
The azide oxiranes were studied at the CCSD(T)/cc-PVDZ//MP2/cc-PVDZ level in this paper.The sublimation enthalpies and heats of formation both in gas phase and solid state were calculated.The thermodynamics stability ...The azide oxiranes were studied at the CCSD(T)/cc-PVDZ//MP2/cc-PVDZ level in this paper.The sublimation enthalpies and heats of formation both in gas phase and solid state were calculated.The thermodynamics stability was predicted by using the bond dissociation energy and characteristic height,through which all title compounds are confirmed to be more stable than hexanitrohexaazaisowurtzitane(CL-20)and A,B1 and D are less sensitive than hexahydro-1,3,5,-trinitro-1,3,5-triazine(RDX).Furthermore,the detonation property was measured by the specific impulse.The detonation performance of the title compounds is comparable to that of RDX.Our results can provide basic information for the molecular design of novel high-energy-density compounds.展开更多
基金supported by the National Natural Science Foundation of China(No.U1304111)the Program for Science&Technology Innovation Talents in Universities of Henan Province(No.14HASTIT039)the Innovation Team of Henan University of Science and Technology(2015XTD001)
文摘Based on the full optimized molecular geometric structure at 6-311++G** level,the density(ρ),detonation velocity(D),and detonation pressure(P) for a new furazan-based energetic macrocycle compound,hexakis[1,2,5]oxadi-azole[3,4-c:3',4'-e;3'',4''-g:3''',4'''-k:3'''',4''''-m:3''''',4'''''-o][1,2,9,10]-tetraazacyclohexadecine,were investigated to verify its capacity as high energy density material(HEDM). The infrared spectrum was also predicted. The heat of formation(HOF) was calculated using designed isodesmic reaction. The calculation on the bond dissociation energies(BDEs) was done and the pyrolysis mechanism of the compound was studied. The result shows that the N3–O1 bond in the ring may be the weakest one and the ring cleavage is possible to happen in thermal decomposition. The condensed phase HOF and the crystal density were also calculated for the title compound. The detonation data show that it can be considered as a potential HEDM. These results would provide basic information for the molecular design of novel high energy materials.
基金supported by the National Natural Science Foundation of China(Grant Nos.11304022 and11347010)the Research Foundation of Education Bureau of Hubei Province,China(Grant Nos.Q20131208,T201204,and XD2014069)+1 种基金the Foundation of Yangtze University for Outstanding Young Teachers,China(Grant Nos.cyq201321 and cyq201322)the Project for Basic Subjects(Grant No.2013cjp10)
文摘Density functional theory calculations at the B3LYP/6-311G** level are performed to study the geometric and elec- tronic structures of a series of nitroaliphatic compounds. The heats of formation (HOF) are predicted through the designed isodesmic reactions. Thermal stabilities are evaluated via the homolytic bond dissociation energies (BDEs). Further, the correlation is developed between impact sensitivity h50% and the ratio (BDE/E) of the weakest BDE to the total energy E containing zero point energy correction. In addition, the relative stability of the title compounds is evaluated based on the analysis of calculated Mulliken population and the energy gaps between the frontier orbitals. The calculated BDEs, HOFs, and energy gaps consistently indicate that compound 1,1,1,6,6,6-hexanitro-3-hexyne is the most unstable and the compound 3,3,4,4,-tetranitro-hexane is the most stable. These results provide basic information for the molecular design of novel high energetic density materials.
文摘Results of ab initio SCF calculations of tetrathiosquaric acid (3, 4-dithiohydroxy-3-cyclobuten-1, 2-dithione) are reported. The ZZ isomer is found to bethe most stable among the three isomers. An isodesmic energy analysis has been carriedout at the HF 6-31G
基金This work was supported by the Natural Science Foundation of Chinese Academy of Engineering and Physics (Grant No. 9905330).
文摘The heats of formation (HOP) for all the 21 polyisocyanocubanes are calculated systematically with density functional theory (DFT) B3LYP and semiempirical MO(MINDO/3, MNDO, AM1 and PM3) methods. First, the accurate HOFs for the 8 title compounds are obtained by means of designed isodesmic reactions at DFT-B3LYP/6-31G* level, and the cubane cage skeleton has not been broken (i.e. choosing cubane as a reference compound) to produce more accurate and reliable results. It is found that there are good linear relationships between the HOFs calculated using the B3LYP/6-31G* and four semiempirical MO methods, respectively, and all of the linear correlation coefficients are more than 0.9971. The HOFs obtained from PM3 calculation are the best among the four semiempirical MO methods. Then, the accurate HOFs at B3LYP/6-31G* level of other 13 polyisocyanocubanes are obtained by systematically correcting their PM3-calculated HOFs. Polyisocyanocubanes have very high HOFs, and the HOFs increase linearly with the increasing of the number of isocyano groups in a molecule. The results show that polyisocyanocubanes are the new generation explosives with highly potential and exploitable value.
基金supported by the Natural Science Foundation of Guizhou Education University(No.14BS017)the Natural Science Foundation of Guizhou Province(No.QKHPTRC20185778-09)。
文摘The azide oxiranes were studied at the CCSD(T)/cc-PVDZ//MP2/cc-PVDZ level in this paper.The sublimation enthalpies and heats of formation both in gas phase and solid state were calculated.The thermodynamics stability was predicted by using the bond dissociation energy and characteristic height,through which all title compounds are confirmed to be more stable than hexanitrohexaazaisowurtzitane(CL-20)and A,B1 and D are less sensitive than hexahydro-1,3,5,-trinitro-1,3,5-triazine(RDX).Furthermore,the detonation property was measured by the specific impulse.The detonation performance of the title compounds is comparable to that of RDX.Our results can provide basic information for the molecular design of novel high-energy-density compounds.