Isoconversional methods combined with thermogravimetry were applied to investigate the decomposition kinetics of bastnaesite concentrates with different amounts of calcium hydroxide added.The apparent activation energ...Isoconversional methods combined with thermogravimetry were applied to investigate the decomposition kinetics of bastnaesite concentrates with different amounts of calcium hydroxide added.The apparent activation energy was calculated,and the results indicate that the overall reaction involves more than one single step.The reaction with a lower content(<15 wt%)of calcium hydroxide can be divided into two steps,while the reaction with a higher content(>15 wt%)involves another step which denotes the decomposition of newly formed calcium carbonate during roasting.The activation energy increases with increasing amount of calcium hydroxide in the lower range(0-15 wt%).This is due to the resistance of calcium hydroxide to heat and mass transport,However,more calcium can promote the decomposition reaction more effectively and thus reduce the activation energy.Nonlinear fitting was performed by fitting the experimental data to Avrami-Erofeev model to determine the reaction model and pre-exponential factor.The theoretical models were proven to be reliable for kinetic prediction.展开更多
In this article,we construct the most powerful family of simultaneous iterative method with global convergence behavior among all the existing methods in literature for finding all roots of non-linear equations.Conver...In this article,we construct the most powerful family of simultaneous iterative method with global convergence behavior among all the existing methods in literature for finding all roots of non-linear equations.Convergence analysis proved that the order of convergence of the family of derivative free simultaneous iterative method is nine.Our main aim is to check out the most regularly used simultaneous iterative methods for finding all roots of non-linear equations by studying their dynamical planes,numerical experiments and CPU time-methodology.Dynamical planes of iterative methods are drawn by using MATLAB for the comparison of global convergence properties of simultaneous iterative methods.Convergence behavior of the higher order simultaneous iterative methods are also illustrated by residual graph obtained from some numerical test examples.Numerical test examples,dynamical behavior and computational efficiency are provided to present the performance and dominant efficiency of the newly constructed derivative free family of simultaneous iterative method over existing higher order simultaneous methods in literature.展开更多
One of the practical approaches in identifying structures is the non-linear resonant decay method which identifies a non-linear dynamic system utilizing a model based on linear modal space containing the underlying li...One of the practical approaches in identifying structures is the non-linear resonant decay method which identifies a non-linear dynamic system utilizing a model based on linear modal space containing the underlying linear system and a small number of extra terms that exhibit the non-linear effects.In this paper,the method is illustrated in a simulated system and an experimental structure.The main objective of the non-linear resonant decay method is to identify the non-linear dynamic systems based on the use of a multi-shaker excitation using appropriated excitation which is obtained from the force appropriation approach.The experimental application of the method is indicated to provide suitable estimates of modal parameters for the identification of non-linear models of structures.展开更多
We review three derivative-free methods developed for uncertainty estimation of non-linear error propagation, namely, MC(Monte Carlo), SUT(scaled unscented transformation), and SI(sterling interpolation). In order to ...We review three derivative-free methods developed for uncertainty estimation of non-linear error propagation, namely, MC(Monte Carlo), SUT(scaled unscented transformation), and SI(sterling interpolation). In order to avoid preset parameters like as these three methods need, we introduce a new method to uncertainty estimation for the first time, namely, SCR(spherical cubature rule), which is no need for setting parameters. By theoretical derivation, we prove that the precision of uncertainty obtained by SCR can reach second-order. We conduct four synthetic experiments, for the first two experiments, the results obtained by SCR are consistent with the other three methods with optimal setting parameters, but SCR is easier to operate than other three methods, which verifies the superiority of SCR in calculating the uncertainty. For the third experiment, real-time calculation is required, so the MC is hardly feasible. For the forth experiment, the SCR is applied to the inversion of seismic fault parameter which is a common problem in geophysics, and we study the sensitivity of surface displacements to fault parameters with errors. Our results show that the uncertainty of the surface displacements is the magnitude of ±10 mm when the fault length contains a variance of 0.01 km^(2).展开更多
In this paper, we discuss a new method employed to tackle non-linear partial differential equations, namely Double Elzaki Transform Decomposition Method (DETDM). This method is a combination of the Double ELzaki Trans...In this paper, we discuss a new method employed to tackle non-linear partial differential equations, namely Double Elzaki Transform Decomposition Method (DETDM). This method is a combination of the Double ELzaki Transform and Adomian Decomposition Method. This technique is hereafter provided and supported with necessary illustrations, together with some attached examples. The results reveal that the new method is very efficient, simple and can be applied to other non-linear problems.展开更多
In Europe, computation of displacement demand for seismic assessment of existing buildings is essentially based on a simplified formulation of the N2 method as prescribed by Eurocode 8(EC8). However, a lack of accurac...In Europe, computation of displacement demand for seismic assessment of existing buildings is essentially based on a simplified formulation of the N2 method as prescribed by Eurocode 8(EC8). However, a lack of accuracy of the N2 method in certain conditions has been pointed out by several studies. This paper addresses the assessment of effectiveness of the N2 method in seismic displacement demand determination in non-linear domain. The objective of this work is to investigate the accuracy of the N2 method through comparison with displacement demands computed using non-linear timehistory analysis(NLTHA). Results show that the original N2 method may lead to overestimation or underestimation of displacement demand predictions. This may affect results of mechanical model-based assessment of seismic vulnerability at an urban scale. Hence, the second part of this paper addresses an improvement of the N2 method formula by empirical evaluation of NLTHA results based on EC8 ground-classes. This task is formulated as a mathematical programming problem in which coefficients are obtained by minimizing the overall discrepancy between NLTHA and modified formula results. Various settings of the mathematical programming problem have been solved using a global optimization metaheuristic. An extensive comparison between the original N2 method formulation and optimized formulae highlights benefits of the strategy.展开更多
This paper demonstrates the approximate analytical solution to a non-linear singular two-point boundary-value problem which describes oxygen diffusion in a planar cell. The model is based on diffusion equation contain...This paper demonstrates the approximate analytical solution to a non-linear singular two-point boundary-value problem which describes oxygen diffusion in a planar cell. The model is based on diffusion equation containing a non-linear term related to Michaelis-Menten kinetics of enzymatic reaction. Approximate analytical expression of concentration of oxygen is derived using new Homotopy perturbation method for various boundary conditions. The validity of the obtained solutions is verified by the numerical results.展开更多
For a specific combustion problem involving calculations of several species at the equilibrium state, it is simpler to write a general computer program and calculate the combustion concentration. Original work describ...For a specific combustion problem involving calculations of several species at the equilibrium state, it is simpler to write a general computer program and calculate the combustion concentration. Original work describes, an adaptation of Newton-Raphson method was used for solving the highly nonlinear system of equations describing the formation of equilibrium products in reacting of fuel-additive-air mixtures. This study also shows what possible of the results. In this paper, to be present the efficient numerical algorithms for. solving the combustion problem, to be used nonlinear equations based on the iteration method and high order of the Taylor series. The modified Adomian decomposition method was applied to construct the numerical algorithms. Some numerical illustrations are given to show the efficiency of algorithms. Comparisons of results by the new Matlab routines and previous routines, the result data indicate that the new Matlab routines are reliable, typical deviations from previous results are less than 0.05%.展开更多
An iterative algorithm for modeling of non-linear joint by the displacement discontinuity method (DDM) was described, and the effect of the non-linear joint on the in-situ stress field was investigated in this paper. ...An iterative algorithm for modeling of non-linear joint by the displacement discontinuity method (DDM) was described, and the effect of the non-linear joint on the in-situ stress field was investigated in this paper. The Barton-Bandis (BB) non-linear joint model and failure criterion were adopted in the new DDM program. Using this program, the stress field around the non-linear joint was obtained, the parameters analysis of the joint was carried out, and the deformation and stress distribution of the joint were studied. The simulation results show that: (1)the in-situ stress is significantly affected by the joint; (2)the increase of stiffness, friction angle, and thickness of the joint affect the stress concentration in different ways; (3)the influence distance of the joint changes with the angle of the joint; (4)the deformation and stress of the joint change with the point position.展开更多
In this communication we propose a method to implement an all-optical astable multivibrator using the non-linear material based switches and logic gates. The scheme can operate in real time. The delay time can achieve...In this communication we propose a method to implement an all-optical astable multivibrator using the non-linear material based switches and logic gates. The scheme can operate in real time. The delay time can achieve ps(pico-second). The pulse duration can be made very low and may cross the THz easily by selecting proper material and laser source.展开更多
The equilibrium equations and the functional for tubing buckling in arbitrary straight wells are derived. The entire buckling process of tubing in deviated wells is analyzed for the first time by utilizing the finite ...The equilibrium equations and the functional for tubing buckling in arbitrary straight wells are derived. The entire buckling process of tubing in deviated wells is analyzed for the first time by utilizing the finite element method. The effects of gravity and torques on the buckling are included in the analyses and the calculated results are well compared with existing solutions. It is shown that the buckling only occurs at the lower portion of the tubing where the axial load is the largest, and the contact force of the well, the bending moment of the tubing and the buckling displacement of this portion vary periodically. The buckling spreads upwards from the bit with the increase of axial load. There is no buckling at the upper portion of the tubing where the bending moment is zero. And the contact force of this section increases only slightly with the increase of the axial load. With the increase of the deviation angle, the length of buckling portion and buckling displacement amplitude decrease, the contact force increases with the increase of load at the upper portion and its amplitude decreases at the lower buckling section, the bending moment remains zero at the upper portion and its amplitude decreases at the lower buckling portion. The buckling displacement increases with the increase of the torque, but the increment is very small.展开更多
In this paper, the nonlinear Schr?dinger equation combining quadratic-cubic nonlinearity is considered, which can be represented by an approximate model of relatively dense quasi-one-dimensional Bose-Einstein condensa...In this paper, the nonlinear Schr?dinger equation combining quadratic-cubic nonlinearity is considered, which can be represented by an approximate model of relatively dense quasi-one-dimensional Bose-Einstein condensate. Based on the bifurcation theory, we proved the existence of solitary and periodic solutions. The methods we take are the trial equation method and the complete discrimination system for polynomial method. Therefore, we obtain the exact chirped solutions, which are more abundant in type and quantity than the existing results, so that the equation has more profound physical significance. These two methods are rigorously mathematical derivation and calculations, rather than based on certain conditional assumptions. In addition, we give some specific parameters to graphing the motion of the solutions, which helps to understand the propagation of nonlinear waves in fiber optic systems.展开更多
The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is...The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is derived from the dynamical, constitutive equations and geometrical relations. By referring to the quasi-static stretch assumption, the partial-differential non-linearity is reduced to an integro-partial-differential one. The method of multiple scales is directly applied to the governing equations with the two types of non-linearity, respectively. The amplitude of near- and exact-resonant steady state is analyzed by use of the solvability condition of eliminating secular terms. Numerical results are presented to show the contributions of foundation vibration amplitude, viscoelastic damping, and nonlinearity to the response amplitude for the first and the second mode.展开更多
In this paper, a new class of three term memory gradient method with non-monotone line search technique for unconstrained optimization is presented. Global convergence properties of the new methods are discussed. Comb...In this paper, a new class of three term memory gradient method with non-monotone line search technique for unconstrained optimization is presented. Global convergence properties of the new methods are discussed. Combining the quasi-Newton method with the new method, the former is modified to have global convergence property. Numerical results show that the new algorithm is efficient.展开更多
A revised displacement discontinuity method(DDM) program is developed for the simulation of rock joint propagation and dilatancy analysis. The non-linear joint model used in the program adopts Barton-Bandis normal def...A revised displacement discontinuity method(DDM) program is developed for the simulation of rock joint propagation and dilatancy analysis. The non-linear joint model used in the program adopts Barton-Bandis normal deformation model, Kulhaway shear deformation model and Mohr-Coulomb criterion. The joint propagation criterion is based on the equivalent stress intensity factor which can be obtained by regression analysis. The simulated rock joint propagation accords well with the existing knowledge. The closure and opening of joint is investigated by DDM, and it is shown that if the opening volume of propagated joint is larger than closure volume of the old joint, the joint dilatancy occurs. The dilatancy condition is mainly controlled by the normal stiffness of the rock joint. When the normal stiffness is larger than the critical value, joint dilatancy occurs. The critical normal stiffness of rock joint changes with the joint-load angle, and joint dilatancy is most possible to occur at 30°.展开更多
Determination of collapse load-carrying capacity of elasto-plastic material is very important in designing structure. The problem is commonly solved by elasto-plastic finite element method (FEM). In order to deal wi...Determination of collapse load-carrying capacity of elasto-plastic material is very important in designing structure. The problem is commonly solved by elasto-plastic finite element method (FEM). In order to deal with material nonlinear problem involving strain softening problem effectively, a new numerical method-damped Newton method was proposed. The iterative schemes are discussed in detail for pure equilibrium models. In the equilibrium model, the plasticity criterion and the compatibility of the strains are verified, and the strain increment and plastic factor are treated as independent unknowns. To avoid the stiffness matrix being singularity or condition of matrix being ill, a damping factor a was introduced to adjust the value of plastic consistent parameter automatically during the iterations. According to the algorithm, the nonlinear finite element program was complied and its numerical example was calculated. The numerical results indicate that this method converges very fast for both small load steps and large load steps. Compared with those results obtained by analysis and experiment, the predicted ultimate bearing capacity from the proposed method is identical.展开更多
A closed form of an analytical expression of concentration in the single-enzyme, single-substrate system for the full range of enzyme activities has been derived. The time dependent analytical solution for substrate, ...A closed form of an analytical expression of concentration in the single-enzyme, single-substrate system for the full range of enzyme activities has been derived. The time dependent analytical solution for substrate, enzyme-substrate complex and product concentrations are presented by solving system of non-linear differential equation. We employ He’s Homotopy perturbation method to solve the coupled non-linear differential equations containing a non-linear term related to basic enzymatic reaction. The time dependent simple analytical expressions for substrate, enzyme-substrate and free enzyme concentrations have been derived in terms of dimensionless reaction diffusion parameters ε, λ1, λ2 and λ3 using perturbation method. The numerical solution of the problem is also reported using SCILAB software program. The analytical results are compared with our numerical results. An excellent agreement with simulation data is noted. The obtained results are valid for the whole solution domain.展开更多
基金Project supported by the National Basic Research Program(973 Program,2012CBA01205)。
文摘Isoconversional methods combined with thermogravimetry were applied to investigate the decomposition kinetics of bastnaesite concentrates with different amounts of calcium hydroxide added.The apparent activation energy was calculated,and the results indicate that the overall reaction involves more than one single step.The reaction with a lower content(<15 wt%)of calcium hydroxide can be divided into two steps,while the reaction with a higher content(>15 wt%)involves another step which denotes the decomposition of newly formed calcium carbonate during roasting.The activation energy increases with increasing amount of calcium hydroxide in the lower range(0-15 wt%).This is due to the resistance of calcium hydroxide to heat and mass transport,However,more calcium can promote the decomposition reaction more effectively and thus reduce the activation energy.Nonlinear fitting was performed by fitting the experimental data to Avrami-Erofeev model to determine the reaction model and pre-exponential factor.The theoretical models were proven to be reliable for kinetic prediction.
基金the Natural Science Foundation of China(Grant Nos.61673169,11301127,11701176,11626101,and 11601485)The Natural Science Foundation of Huzhou City(Grant No.2018YZ07).
文摘In this article,we construct the most powerful family of simultaneous iterative method with global convergence behavior among all the existing methods in literature for finding all roots of non-linear equations.Convergence analysis proved that the order of convergence of the family of derivative free simultaneous iterative method is nine.Our main aim is to check out the most regularly used simultaneous iterative methods for finding all roots of non-linear equations by studying their dynamical planes,numerical experiments and CPU time-methodology.Dynamical planes of iterative methods are drawn by using MATLAB for the comparison of global convergence properties of simultaneous iterative methods.Convergence behavior of the higher order simultaneous iterative methods are also illustrated by residual graph obtained from some numerical test examples.Numerical test examples,dynamical behavior and computational efficiency are provided to present the performance and dominant efficiency of the newly constructed derivative free family of simultaneous iterative method over existing higher order simultaneous methods in literature.
文摘One of the practical approaches in identifying structures is the non-linear resonant decay method which identifies a non-linear dynamic system utilizing a model based on linear modal space containing the underlying linear system and a small number of extra terms that exhibit the non-linear effects.In this paper,the method is illustrated in a simulated system and an experimental structure.The main objective of the non-linear resonant decay method is to identify the non-linear dynamic systems based on the use of a multi-shaker excitation using appropriated excitation which is obtained from the force appropriation approach.The experimental application of the method is indicated to provide suitable estimates of modal parameters for the identification of non-linear models of structures.
基金supported by the National Natural Science Foundation of China (41721003, 41974022, 41774024, 41874001)Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, China(20-02-05)
文摘We review three derivative-free methods developed for uncertainty estimation of non-linear error propagation, namely, MC(Monte Carlo), SUT(scaled unscented transformation), and SI(sterling interpolation). In order to avoid preset parameters like as these three methods need, we introduce a new method to uncertainty estimation for the first time, namely, SCR(spherical cubature rule), which is no need for setting parameters. By theoretical derivation, we prove that the precision of uncertainty obtained by SCR can reach second-order. We conduct four synthetic experiments, for the first two experiments, the results obtained by SCR are consistent with the other three methods with optimal setting parameters, but SCR is easier to operate than other three methods, which verifies the superiority of SCR in calculating the uncertainty. For the third experiment, real-time calculation is required, so the MC is hardly feasible. For the forth experiment, the SCR is applied to the inversion of seismic fault parameter which is a common problem in geophysics, and we study the sensitivity of surface displacements to fault parameters with errors. Our results show that the uncertainty of the surface displacements is the magnitude of ±10 mm when the fault length contains a variance of 0.01 km^(2).
文摘In this paper, we discuss a new method employed to tackle non-linear partial differential equations, namely Double Elzaki Transform Decomposition Method (DETDM). This method is a combination of the Double ELzaki Transform and Adomian Decomposition Method. This technique is hereafter provided and supported with necessary illustrations, together with some attached examples. The results reveal that the new method is very efficient, simple and can be applied to other non-linear problems.
文摘In Europe, computation of displacement demand for seismic assessment of existing buildings is essentially based on a simplified formulation of the N2 method as prescribed by Eurocode 8(EC8). However, a lack of accuracy of the N2 method in certain conditions has been pointed out by several studies. This paper addresses the assessment of effectiveness of the N2 method in seismic displacement demand determination in non-linear domain. The objective of this work is to investigate the accuracy of the N2 method through comparison with displacement demands computed using non-linear timehistory analysis(NLTHA). Results show that the original N2 method may lead to overestimation or underestimation of displacement demand predictions. This may affect results of mechanical model-based assessment of seismic vulnerability at an urban scale. Hence, the second part of this paper addresses an improvement of the N2 method formula by empirical evaluation of NLTHA results based on EC8 ground-classes. This task is formulated as a mathematical programming problem in which coefficients are obtained by minimizing the overall discrepancy between NLTHA and modified formula results. Various settings of the mathematical programming problem have been solved using a global optimization metaheuristic. An extensive comparison between the original N2 method formulation and optimized formulae highlights benefits of the strategy.
文摘This paper demonstrates the approximate analytical solution to a non-linear singular two-point boundary-value problem which describes oxygen diffusion in a planar cell. The model is based on diffusion equation containing a non-linear term related to Michaelis-Menten kinetics of enzymatic reaction. Approximate analytical expression of concentration of oxygen is derived using new Homotopy perturbation method for various boundary conditions. The validity of the obtained solutions is verified by the numerical results.
文摘For a specific combustion problem involving calculations of several species at the equilibrium state, it is simpler to write a general computer program and calculate the combustion concentration. Original work describes, an adaptation of Newton-Raphson method was used for solving the highly nonlinear system of equations describing the formation of equilibrium products in reacting of fuel-additive-air mixtures. This study also shows what possible of the results. In this paper, to be present the efficient numerical algorithms for. solving the combustion problem, to be used nonlinear equations based on the iteration method and high order of the Taylor series. The modified Adomian decomposition method was applied to construct the numerical algorithms. Some numerical illustrations are given to show the efficiency of algorithms. Comparisons of results by the new Matlab routines and previous routines, the result data indicate that the new Matlab routines are reliable, typical deviations from previous results are less than 0.05%.
基金Western Transport Construction Science and Technology Project of the Ministry of Transport of China ( No. 2009318000046)
文摘An iterative algorithm for modeling of non-linear joint by the displacement discontinuity method (DDM) was described, and the effect of the non-linear joint on the in-situ stress field was investigated in this paper. The Barton-Bandis (BB) non-linear joint model and failure criterion were adopted in the new DDM program. Using this program, the stress field around the non-linear joint was obtained, the parameters analysis of the joint was carried out, and the deformation and stress distribution of the joint were studied. The simulation results show that: (1)the in-situ stress is significantly affected by the joint; (2)the increase of stiffness, friction angle, and thickness of the joint affect the stress concentration in different ways; (3)the influence distance of the joint changes with the angle of the joint; (4)the deformation and stress of the joint change with the point position.
文摘In this communication we propose a method to implement an all-optical astable multivibrator using the non-linear material based switches and logic gates. The scheme can operate in real time. The delay time can achieve ps(pico-second). The pulse duration can be made very low and may cross the THz easily by selecting proper material and laser source.
文摘The equilibrium equations and the functional for tubing buckling in arbitrary straight wells are derived. The entire buckling process of tubing in deviated wells is analyzed for the first time by utilizing the finite element method. The effects of gravity and torques on the buckling are included in the analyses and the calculated results are well compared with existing solutions. It is shown that the buckling only occurs at the lower portion of the tubing where the axial load is the largest, and the contact force of the well, the bending moment of the tubing and the buckling displacement of this portion vary periodically. The buckling spreads upwards from the bit with the increase of axial load. There is no buckling at the upper portion of the tubing where the bending moment is zero. And the contact force of this section increases only slightly with the increase of the axial load. With the increase of the deviation angle, the length of buckling portion and buckling displacement amplitude decrease, the contact force increases with the increase of load at the upper portion and its amplitude decreases at the lower buckling section, the bending moment remains zero at the upper portion and its amplitude decreases at the lower buckling portion. The buckling displacement increases with the increase of the torque, but the increment is very small.
文摘In this paper, the nonlinear Schr?dinger equation combining quadratic-cubic nonlinearity is considered, which can be represented by an approximate model of relatively dense quasi-one-dimensional Bose-Einstein condensate. Based on the bifurcation theory, we proved the existence of solitary and periodic solutions. The methods we take are the trial equation method and the complete discrimination system for polynomial method. Therefore, we obtain the exact chirped solutions, which are more abundant in type and quantity than the existing results, so that the equation has more profound physical significance. These two methods are rigorously mathematical derivation and calculations, rather than based on certain conditional assumptions. In addition, we give some specific parameters to graphing the motion of the solutions, which helps to understand the propagation of nonlinear waves in fiber optic systems.
基金Project supported by the National Natural Science Foundation of China (No. 10472060)Natural Science Founda-tion of Shanghai Municipality (No. 04ZR14058)Doctor Start-up Foundation of Shenyang Institute of Aeronautical Engineering (No. 05YB04).
文摘The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is derived from the dynamical, constitutive equations and geometrical relations. By referring to the quasi-static stretch assumption, the partial-differential non-linearity is reduced to an integro-partial-differential one. The method of multiple scales is directly applied to the governing equations with the two types of non-linearity, respectively. The amplitude of near- and exact-resonant steady state is analyzed by use of the solvability condition of eliminating secular terms. Numerical results are presented to show the contributions of foundation vibration amplitude, viscoelastic damping, and nonlinearity to the response amplitude for the first and the second mode.
文摘In this paper, a new class of three term memory gradient method with non-monotone line search technique for unconstrained optimization is presented. Global convergence properties of the new methods are discussed. Combining the quasi-Newton method with the new method, the former is modified to have global convergence property. Numerical results show that the new algorithm is efficient.
基金Project(2009318000046) supported by the Western Transport Technical Program of the Ministry of Transport,China
文摘A revised displacement discontinuity method(DDM) program is developed for the simulation of rock joint propagation and dilatancy analysis. The non-linear joint model used in the program adopts Barton-Bandis normal deformation model, Kulhaway shear deformation model and Mohr-Coulomb criterion. The joint propagation criterion is based on the equivalent stress intensity factor which can be obtained by regression analysis. The simulated rock joint propagation accords well with the existing knowledge. The closure and opening of joint is investigated by DDM, and it is shown that if the opening volume of propagated joint is larger than closure volume of the old joint, the joint dilatancy occurs. The dilatancy condition is mainly controlled by the normal stiffness of the rock joint. When the normal stiffness is larger than the critical value, joint dilatancy occurs. The critical normal stiffness of rock joint changes with the joint-load angle, and joint dilatancy is most possible to occur at 30°.
基金Project(2012CB026200)supported by the National Basic Research Program of ChinaProjects(50978055,50878048)supported by the National Natural Science Foundation of China
文摘Determination of collapse load-carrying capacity of elasto-plastic material is very important in designing structure. The problem is commonly solved by elasto-plastic finite element method (FEM). In order to deal with material nonlinear problem involving strain softening problem effectively, a new numerical method-damped Newton method was proposed. The iterative schemes are discussed in detail for pure equilibrium models. In the equilibrium model, the plasticity criterion and the compatibility of the strains are verified, and the strain increment and plastic factor are treated as independent unknowns. To avoid the stiffness matrix being singularity or condition of matrix being ill, a damping factor a was introduced to adjust the value of plastic consistent parameter automatically during the iterations. According to the algorithm, the nonlinear finite element program was complied and its numerical example was calculated. The numerical results indicate that this method converges very fast for both small load steps and large load steps. Compared with those results obtained by analysis and experiment, the predicted ultimate bearing capacity from the proposed method is identical.
文摘A closed form of an analytical expression of concentration in the single-enzyme, single-substrate system for the full range of enzyme activities has been derived. The time dependent analytical solution for substrate, enzyme-substrate complex and product concentrations are presented by solving system of non-linear differential equation. We employ He’s Homotopy perturbation method to solve the coupled non-linear differential equations containing a non-linear term related to basic enzymatic reaction. The time dependent simple analytical expressions for substrate, enzyme-substrate and free enzyme concentrations have been derived in terms of dimensionless reaction diffusion parameters ε, λ1, λ2 and λ3 using perturbation method. The numerical solution of the problem is also reported using SCILAB software program. The analytical results are compared with our numerical results. An excellent agreement with simulation data is noted. The obtained results are valid for the whole solution domain.