This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary obj...This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary objective is to explore the unknown environments to locate and track targets effectively. To address this problem, we propose a novel Multi-Agent Reinforcement Learning (MARL) method based on Graph Neural Network (GNN). Firstly, a method is introduced for encoding continuous-space multi-UAV problem data into spatial graphs which establish essential relationships among agents, obstacles, and targets. Secondly, a Graph AttenTion network (GAT) model is presented, which focuses exclusively on adjacent nodes, learns attention weights adaptively and allows agents to better process information in dynamic environments. Reward functions are specifically designed to tackle exploration challenges in environments with sparse rewards. By introducing a framework that integrates centralized training and distributed execution, the advancement of models is facilitated. Simulation results show that the proposed method outperforms the existing MARL method in search rate and tracking performance with less collisions. The experiments show that the proposed method can be extended to applications with a larger number of agents, which provides a potential solution to the challenging problem of multi-UAV autonomous tracking in dynamic unknown environments.展开更多
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype...This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.展开更多
To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths ...To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths and circumventing the need for pairwise measurements along the mirror boundaries in traditional interferometric methods.This approach enhances detection efficiency and reduces system complexity.Here,the principles of the multibeam interference process and construction of a co-phasing detection module based on direct optical fiber connections were analyzed using wavefront optics theory.Error analysis was conducted on the system surface obtained through multipath interference.Potential applications of the interferometric method were explored.Finally,the principle was verified by experiment,an interferometric fringe contrast better than 0.4 is achieved through flat field calibration and incoherent digital synthesis.The dynamic range of the measurement exceeds 10 times of the center wavelength of the working band(1550 nm).Moreover,a resolution better than one-tenth of the working center wavelength(1550 nm)was achieved.Simultaneous three-beam interference can be achieved,leading to a 50%improvement in detection efficiency.This method can effectively enhance the efficiency of sparse aperture telescope co-phasing,meeting the requirements for observations of 8-10 m telescopes.This study provides a technological foundation for observing distant and faint celestial objects.展开更多
Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable track...Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable tracking,including maintaining continuous target visibility amidst occlusions,ensuring flight safety,and achieving smooth trajectory planning.This paper reviews the latest advancements in UAV-based target tracking,highlighting information prediction,tracking strategies,and swarm cooperation.To address challenges including target visibility and occlusion,real-time prediction and tracking in dynamic environments,flight safety and coordination,resource management and energy efficiency,the paper identifies future research directions aimed at improving the performance,reliability,and scalability of UAV tracking system.展开更多
Unlike ensemble-averaging measurements,single-molecule tracking provides quantitative information on the kinetics of individual molecules within living cells in real time and may provide insight into the respective mo...Unlike ensemble-averaging measurements,single-molecule tracking provides quantitative information on the kinetics of individual molecules within living cells in real time and may provide insight into the respective molecular interactions behind that.The advancement of single-molecule tracking has been signi-cantly boosted by the development of high-resolution microscopy techniques.In this review,we will discuss this aspect with a particular focus on their recent advance in MINFLUX nanoscopy with feedback approaches where tracking is performed in real time.MINFLUX localization requires fewer than 100 photons from a-1 nm-sized°uorophore,enabling precise tracking.This approach,which demands over an order of magnitude fewer photons than other localization-based techniques(such as STORM,PLAM),allows molecular tracking with single-digit nanometer accuracy in less than 1 ms—an achievement previously unattainable.展开更多
Background:Early identification of concussion-related vision disorders(CRVDs)may improve outcomes by enabling earlier management,referral,and treatment.Objective eye tracking may provide additional data to support the...Background:Early identification of concussion-related vision disorders(CRVDs)may improve outcomes by enabling earlier management,referral,and treatment.Objective eye tracking may provide additional data to support the diagnose of CRVDs.The purpose of this study was to determine the utility of objective infrared eye tracking in identifying CRVDs among adolescents experiencing persisting post-concussive symptoms(PPCS)more than 28 days after injury.Methods:This was a prospective study of adolescents with PPCS evaluated with visio-vestibular examination(VVE),comprehensive vision examination,and an eye tracking device.Results:Of the 108 adolescents enrolled,67(62%)were diagnosed with a CRVD by comprehensive vision examination.On VVE,the near point of convergence break(5.5±3.2 cm vs.3.9±1.7 cm(mean±SD),p<0.001)and recovery(8.1±3.3 cm vs.6.8±2.3 cm,p=0.02)distinguished between those with and without CRVD.Concussion symptom provocation on VVE with horizontal saccades(35(52%)vs.12(29%),p=0.02)and horizontal vestibulo-ocular reflex testing(37(55%)vs.14(34%),p=0.03),and sway on tandem gait under the forward eyes closed condition(25(37%)vs.6(15%),p=0.01)also identified those with CRVD.From the eye tracking device,the BOX score(8.1±5.8 vs.5.2±4.1,p=0.007)and a metric of the left eye tracking along the bottom of the visual target(0.094±0.500 vs.-0.124±0.410,p=0.02)identified those with CRVD,with a multivariable receiver operating characteristic curve analysis,including the BOX score,achieving an area under the receiver operating characteristic curve of 0.7637.Conclusion:CRVDs are common in those with PPCS,with impact on recovery after concussion.Novel eye-tracking metrics can serve as an aid in the identification of those with CRVDs who would benefit from referral for comprehensive diagnosis and treatment.展开更多
The publisher regrets that the Appendix A.Supplementary data was not updated as per author and editor’s request.The publisher would like to apologise for any inconvenience caused.
Syntax and semantics are two important factors that influence sentence processing.Studies have found different aging effects in syntactic and semantic processing during sentence comprehension.While there is consensus ...Syntax and semantics are two important factors that influence sentence processing.Studies have found different aging effects in syntactic and semantic processing during sentence comprehension.While there is consensus on the aging effects in syntactic processing,the presence of aging in semantic processing remains debated.The present study aimed to explore whether there were aging effects in lexical-semantic information processing in complex sentence.79 participants were recruited to take part in this study,including 40 younger adults(mean age of 21.1±1.19 years)and 39 older adults(mean age of 66.24±3.02 years).Using eye-movement tracking technology and manipulating the animacy of head nouns in Chinese subject relative clauses(SRCs)and object relative clauses(ORCs),we investigated the abilities of young and old adults in relative clauses(RCs)processing.The results of comprehension accuracy revealed a significant effect of aging in RCs processing,with older participants exhibiting poor performance compared with younger counterparts across all four clause conditions.Furthermore,younger participants demonstrated a clear animacy effect in RCs processing,but this effect was not found in older participants.Reading times indicated a prominent aging effect in clause processing,with older participants showing significantly longer reading times across all four types of RCs compared to younger participants.It was observed that processing ORCs in Chinese was relatively easier than processing SRCs.Additionally,a noticeable aging effect in semantic processing was found,specifically,the difficulties of processing SRCs and ORCs vary with the animacy configuration of the head nouns for younger participants but were not observed in older participants.In summary,aging in cognition would also inhinder semantic processing in complex sentence comprehension.展开更多
Siamese tracking algorithms usually take convolutional neural networks(CNNs)as feature extractors owing to their capability of extracting deep discriminative features.However,the convolution kernels in CNNs have limit...Siamese tracking algorithms usually take convolutional neural networks(CNNs)as feature extractors owing to their capability of extracting deep discriminative features.However,the convolution kernels in CNNs have limited receptive fields,making it difficult to capture global feature dependencies which is important for object detection,especially when the target undergoes large-scale variations or movement.In view of this,we develop a novel network called effective convolution mixed Transformer Siamese network(SiamCMT)for visual tracking,which integrates CNN-based and Transformer-based architectures to capture both local information and long-range dependencies.Specifically,we design a Transformer-based module named lightweight multi-head attention(LWMHA)which can be flexibly embedded into stage-wise CNNs and improve the network’s representation ability.Additionally,we introduce a stage-wise feature aggregation mechanism which integrates features learned from multiple stages.By leveraging both location and semantic information,this mechanism helps the SiamCMT to better locate and find the target.Moreover,to distinguish the contribution of different channels,a channel-wise attention mechanism is introduced to enhance the important channels and suppress the others.Extensive experiments on seven challenging benchmarks,i.e.,OTB2015,UAV123,GOT10K,LaSOT,DTB70,UAVTrack112_L,and VOT2018,demonstrate the effectiveness of the proposed algorithm.Specially,the proposed method outperforms the baseline by 3.5%and 3.1%in terms of precision and success rates with a real-time speed of 59.77 FPS on UAV123.展开更多
Crack length measurement algorithms based on computer vision have shown promising engineering application prospects in the field of aircraft fatigue crack monitoring.However,due to the complexity of the monitoring env...Crack length measurement algorithms based on computer vision have shown promising engineering application prospects in the field of aircraft fatigue crack monitoring.However,due to the complexity of the monitoring environment,the subtle visual features of small fatigue cracks,and the impact of structural elastic deformation,directly applying object segmentation algorithms often results in significant measurement errors.Therefore,this paper proposes a high-precision crack length measurement method based on Bidirectional Target Tracking Model(Bi2TM),which integrates crack tip localization,interference identification,and length compensation.First,a general object segmentation model is used to perform rough crack segmentation.Then,the Bi2TM network,combined with the visual features of the structure in different stress states,is employed to track the bidirectional position of the crack tip in the“open”and“closed”states.This ultimately enables interference identification within the rough segmented crack region,achieving highprecision length measurement.In a high-interference environment of aircraft fatigue testing,the proposed method is used to measure 1000 crack images ranging from 1 mm to 11 mm.For more than 90%of the samples,the measurement error is less than 5 pixels,demonstrating significant advantages over the existing methods.展开更多
As a tool for quantifying individuals’visual attention and information processing,eye-tracking technology is gradually being applied in the reform of higher education.This paper focuses on issues in university mathem...As a tool for quantifying individuals’visual attention and information processing,eye-tracking technology is gradually being applied in the reform of higher education.This paper focuses on issues in university mathematics teaching,such as heavy cognitive load,delayed feedback,and insufficient adaptability.Based on theories of cognitive psychology,the study explores application pathways of this technology in cognitive diagnosis,instructional optimization,classroom regulation,personalized support,and teaching assessment.Research shows that eye-tracking data can reveal key cognitive features during the learning process,enhance the visualization of instructional feedback,and improve the scientific basis of decision-making.This provides both theoretical support and practical reference for data-driven and precise transformation in university mathematics education.展开更多
This article investigates the time-varying output group formation tracking control(GFTC)problem for heterogeneous multi-agent systems(HMASs)under switching topologies.The objective is to design a distributed control s...This article investigates the time-varying output group formation tracking control(GFTC)problem for heterogeneous multi-agent systems(HMASs)under switching topologies.The objective is to design a distributed control strategy that enables the outputs of the followers to form the desired sub-formations and track the outputs of the leader in each subgroup.Firstly,novel distributed observers are developed to estimate the states of the leaders under switching topologies.Then,GFTC protocols are designed based on the proposed observers.It is shown that with the distributed protocol,the GFTC problem for HMASs under switching topologies is solved if the average dwell time associated with the switching topologies is larger than a fixed threshold.Finally,an example is provided to illustrate the effectiveness of the proposed control strategy.展开更多
Multiple quadrotors target encirclement is widely used in the intelligent field,as it can effectively monitor and control target behavior.However,it faces the danger of collision,as well as difficulties in localizatio...Multiple quadrotors target encirclement is widely used in the intelligent field,as it can effectively monitor and control target behavior.However,it faces the danger of collision,as well as difficulties in localization and tracking.Therefore,we propose a complete target encirclement method.Firstly,based on Hooke's law,a collision avoidance controller is designed to maintain a safe flying distance among quadrotors.Then,based on the consensus theory,a formation tracking controller is designed to meet the requirements of formation transformation and encirclement tasks,and a stability proof based on Lyapunov was provided.Besides,the target detection is designed based on YOLOv5s,and the target location model is constructed based on the principle of pinhole projection and triangle similarity.Finally,we conducted experiments on the built platform,with 3 reconnaissance quadrotors detecting and localization 3 target vehicles and 7 hunter quadrotors tracking them.The results show that the minimum average error for localization targets with reconnaissance quadrotors can reach 0.1354 m,while the minimum average error for tracking with hunter quadrotors is only 0.2960 m.No quadrotors collision occurred in the whole formation transformation and tracking experiment.In addition,compared with the advanced methods,the proposed method has better performance.展开更多
The diffusion trajectory of a Brownian particle passing over the saddle point of a two-dimensional quadratic potential energy surface is tracked in detail according to the deep learning strategies.Generative adversari...The diffusion trajectory of a Brownian particle passing over the saddle point of a two-dimensional quadratic potential energy surface is tracked in detail according to the deep learning strategies.Generative adversarial networks(GANs)emanating in the category of machine learning(ML)frameworks are used to generate and assess the rationality of the data.While their optimization is based on the long short-term memory(LSTM)strategies.In addition to drawing a heat map,the optimal path of two-dimensional(2D)diffusion is simultaneously demonstrated in a stereoscopic space.The results of our simulation are completely consistent with the previous theoretical predictions.展开更多
Satellite Internet(SI)provides broadband access as a critical information infrastructure in 6G.However,with the integration of the terrestrial Internet,the influx of massive terrestrial traffic will bring significant ...Satellite Internet(SI)provides broadband access as a critical information infrastructure in 6G.However,with the integration of the terrestrial Internet,the influx of massive terrestrial traffic will bring significant threats to SI,among which DDoS attack will intensify the erosion of limited bandwidth resources.Therefore,this paper proposes a DDoS attack tracking scheme using a multi-round iterative Viterbi algorithm to achieve high-accuracy attack path reconstruction and fast internal source locking,protecting SI from the source.Firstly,to reduce communication overhead,the logarithmic representation of the traffic volume is added to the digests after modeling SI,generating the lightweight deviation degree to construct the observation probability matrix for the Viterbi algorithm.Secondly,the path node matrix is expanded to multi-index matrices in the Viterbi algorithm to store index information for all probability values,deriving the path with non-repeatability and maximum probability.Finally,multiple rounds of iterative Viterbi tracking are performed locally to track DDoS attack based on trimming tracking results.Simulation and experimental results show that the scheme can achieve 96.8%tracking accuracy of external and internal DDoS attack at 2.5 seconds,with the communication overhead at 268KB/s,effectively protecting the limited bandwidth resources of SI.展开更多
The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilit...The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilities of ATP systems.However,in practical applications,ATP systems face various design constraints and functional limitations,making it infeasible to indefinitely improve hardware performance to meet tracking requirements.As a result,tracking algorithms are required to execute increasingly complex tasks.This study introduces a multi-rate feedforward predictive controller to address issues such as low image feedback frequency and significant delays in ATP systems,which lead to tracking jitter,poor tracking performance,low precision,and target loss.At the same time,the pro-posed approach aims to improve the tracking capabilities of ATP systems for high-speed and highly maneuverable targets under conditions of low sampling feedback rates and high feedback delays.The method suggested is also characterized by its low order,fast response,and robustness to model parameter variations.In this study,an actual ATP system is built for target tracking test,and the proposed algorithm is fully validated in terms of simulation and actual system application verification.Results from both simulations and experiments demonstrate that the method effectively compensates for delays and low sampling rates.For targets with relative angular velocities ranging from 0 to 90°/s and angular accelerations between 0 and 470°/s^(2),the system improved tracking accuracy by 70.0%-89.9%at a sampling frequency of 50 Hz and a delay of 30 m s.Moreover,the compensation algorithm demonstrated consistent performance across actuators with varying characteristics,further confirming its robustness to model insensitivity.In summary,the proposed algorithm considerably enhances the tracking accuracy and capability of ATP systems for high-speed and highly maneuverable targets,reducing the probability of target loss from high speed.This approach offers a practical solution for future multi-target tracking across diverse operational scenarios.展开更多
The problem of trajectory tracking for a class of differentially driven wheeled mobile robots(WMRs)under partial loss of the effectiveness of the actuated wheels is investigated in this paper.Such actuator faults may ...The problem of trajectory tracking for a class of differentially driven wheeled mobile robots(WMRs)under partial loss of the effectiveness of the actuated wheels is investigated in this paper.Such actuator faults may cause the loss of strong controllability of the WMR,such that the conventional fault-tolerant control strategies unworkable.In this paper,a new mixed-gain adaption scheme is devised,which is adopted to adapt the gain of a decoupling prescribed performance controller to adaptively compensate for the loss of the effectiveness of the actuators.Different from the existing gain adaption technique which depends on both the barrier functions and their partial derivatives,ours involves only the barrier functions.This yields a lower magnitude of the resulting control signals.Our controller accomplishes trajectory tracking of the WMR with the prescribed rate and accuracy even in the faulty case,and the control design relies on neither the information of the WMR dynamics and the actuator faults nor the tools for function approximation,parameter identification,and fault detection or estimation.The comparative simulation results justify the theoretical findings.展开更多
In this paper,we present a novel particle filter(PF)-based direct position tracking method utilizing multiple distributed observation stations.Traditional passive tracking methods are anchored on repetitive position e...In this paper,we present a novel particle filter(PF)-based direct position tracking method utilizing multiple distributed observation stations.Traditional passive tracking methods are anchored on repetitive position estimation,where the set of consecutive estimates provides the tracking trajectory,such as Two-step and direct position determination methods.However,duplicate estimates can be computationally expensive.In addition,these techniques suffer from data association problems.The PF algorithm is a tracking method that avoids these drawbacks,but the conventional PF algorithm is unable to construct a likelihood function from the received signals of multiple observatories to determine the weights of particles.Therefore,we developed an improved PF algorithm with the likelihood function modified by the projection approximation subspace tracking with deflation(PASTd)algorithm.The proposed algorithm uses the projection subspace and spectral function to replace the likelihood function of PF.Then,the weights of particles are calculated jointly by multiple likelihood functions.Finally,the tracking problem of multiple targets is solved by multiple sets of particles.Simulations demonstrate the effectiveness of the proposed method in terms of computational complexity and tracking accuracy.展开更多
Target tracking is an essential task in contemporary computer vision applications.However,its effectiveness is susceptible to model drift,due to the different appearances of targets,which often compromises tracking ro...Target tracking is an essential task in contemporary computer vision applications.However,its effectiveness is susceptible to model drift,due to the different appearances of targets,which often compromises tracking robustness and precision.In this paper,a universally applicable method based on correlation filters is introduced to mitigate model drift in complex scenarios.It employs temporal-confidence samples as a priori to guide the model update process and ensure its precision and consistency over a long period.An improved update mechanism based on the peak side-lobe to peak correlation energy(PSPCE)criterion is proposed,which selects high-confidence samples along the temporal dimension to update temporal-confidence samples.Extensive experiments on various benchmarks demonstrate that the proposed method achieves a competitive performance compared with the state-of-the-art methods.Especially when the target appearance changes significantly,our method is more robust and can achieve a balance between precision and speed.Specifically,on the object tracking benchmark(OTB-100)dataset,compared to the baseline,the tracking precision of our model improves by 8.8%,8.8%,5.1%,5.6%,and 6.9%for background clutter,deformation,occlusion,rotation,and illumination variation,respectively.The results indicate that this proposed method can significantly enhance the robustness and precision of target tracking in dynamic and challenging environments,offering a reliable solution for applications such as real-time monitoring,autonomous driving,and precision guidance.展开更多
Signal filtering and differential acquisition are classic yet challenging issues in control engineering.The discrete-time optimal control(DTOC)based on classic tracking differentiator(TD)can effectively extract differ...Signal filtering and differential acquisition are classic yet challenging issues in control engineering.The discrete-time optimal control(DTOC)based on classic tracking differentiator(TD)can effectively extract differentiation signals and filter signals,while eliminating the chattering problem that arises during the discretization of the continuous solution.However,under external disturbance,the convergence mode may change,leading to overshoot and noise amplification.In this paper,a dual-switching strategy is proposed,which can alternate between the base double-integral system and its dual system according to the quadrant of the system’s state.And a novel linearized control law is also introduced,deriving a novel dual-switch tracking differentiator.Further analysis of system convergence and time optimality is provided.Simulation results show that the application of this dual-switching strategy notably reduces overshoot in both tracking and differential signals while enhancing noise filtering performance.Moreover,experiments conducted on a permanent magnet synchronous motor(PMSM)platform,where the proposed TD acts as a filter in the speed feedback loop,demonstrate that the standard deviation between the reference speed and the target speed(at a constant speed of 378 r/min)decreased from 5.63 r/min to 4.93 r/min,compared to the moving average algorithm.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12272104,U22B2013).
文摘This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary objective is to explore the unknown environments to locate and track targets effectively. To address this problem, we propose a novel Multi-Agent Reinforcement Learning (MARL) method based on Graph Neural Network (GNN). Firstly, a method is introduced for encoding continuous-space multi-UAV problem data into spatial graphs which establish essential relationships among agents, obstacles, and targets. Secondly, a Graph AttenTion network (GAT) model is presented, which focuses exclusively on adjacent nodes, learns attention weights adaptively and allows agents to better process information in dynamic environments. Reward functions are specifically designed to tackle exploration challenges in environments with sparse rewards. By introducing a framework that integrates centralized training and distributed execution, the advancement of models is facilitated. Simulation results show that the proposed method outperforms the existing MARL method in search rate and tracking performance with less collisions. The experiments show that the proposed method can be extended to applications with a larger number of agents, which provides a potential solution to the challenging problem of multi-UAV autonomous tracking in dynamic unknown environments.
基金supported by the National Natural Science Foundation of China(12072090).
文摘This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.
文摘To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths and circumventing the need for pairwise measurements along the mirror boundaries in traditional interferometric methods.This approach enhances detection efficiency and reduces system complexity.Here,the principles of the multibeam interference process and construction of a co-phasing detection module based on direct optical fiber connections were analyzed using wavefront optics theory.Error analysis was conducted on the system surface obtained through multipath interference.Potential applications of the interferometric method were explored.Finally,the principle was verified by experiment,an interferometric fringe contrast better than 0.4 is achieved through flat field calibration and incoherent digital synthesis.The dynamic range of the measurement exceeds 10 times of the center wavelength of the working band(1550 nm).Moreover,a resolution better than one-tenth of the working center wavelength(1550 nm)was achieved.Simultaneous three-beam interference can be achieved,leading to a 50%improvement in detection efficiency.This method can effectively enhance the efficiency of sparse aperture telescope co-phasing,meeting the requirements for observations of 8-10 m telescopes.This study provides a technological foundation for observing distant and faint celestial objects.
基金financial support provided by the Natural Science Foundation of Hunan Province of China(Grant No.2021JJ10045)the Open Research Subject of State Key Laboratory of Intelligent Game(Grant No.ZBKF-24-01)+1 种基金the Postdoctoral Fellowship Program of CPSF(Grant No.GZB20240989)the China Postdoctoral Science Foundation(Grant No.2024M754304)。
文摘Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable tracking,including maintaining continuous target visibility amidst occlusions,ensuring flight safety,and achieving smooth trajectory planning.This paper reviews the latest advancements in UAV-based target tracking,highlighting information prediction,tracking strategies,and swarm cooperation.To address challenges including target visibility and occlusion,real-time prediction and tracking in dynamic environments,flight safety and coordination,resource management and energy efficiency,the paper identifies future research directions aimed at improving the performance,reliability,and scalability of UAV tracking system.
基金supported by the Science and Technology Commission of Shanghai Municipality(21DZ1100500)the Shanghai Municipal Science and Technology Major Project+2 种基金the Shanghai Frontiers Science Center Program(2021–2025 No.20)The National Natural Science Foundation of China(32471545)the Natural Science Foundation of Shanghai(24ZR1454300).
文摘Unlike ensemble-averaging measurements,single-molecule tracking provides quantitative information on the kinetics of individual molecules within living cells in real time and may provide insight into the respective molecular interactions behind that.The advancement of single-molecule tracking has been signi-cantly boosted by the development of high-resolution microscopy techniques.In this review,we will discuss this aspect with a particular focus on their recent advance in MINFLUX nanoscopy with feedback approaches where tracking is performed in real time.MINFLUX localization requires fewer than 100 photons from a-1 nm-sized°uorophore,enabling precise tracking.This approach,which demands over an order of magnitude fewer photons than other localization-based techniques(such as STORM,PLAM),allows molecular tracking with single-digit nanometer accuracy in less than 1 ms—an achievement previously unattainable.
基金supported by funding from the National Institution of Neurological Disorders and Stroke(1R41NS103698-01A1 to CLM)。
文摘Background:Early identification of concussion-related vision disorders(CRVDs)may improve outcomes by enabling earlier management,referral,and treatment.Objective eye tracking may provide additional data to support the diagnose of CRVDs.The purpose of this study was to determine the utility of objective infrared eye tracking in identifying CRVDs among adolescents experiencing persisting post-concussive symptoms(PPCS)more than 28 days after injury.Methods:This was a prospective study of adolescents with PPCS evaluated with visio-vestibular examination(VVE),comprehensive vision examination,and an eye tracking device.Results:Of the 108 adolescents enrolled,67(62%)were diagnosed with a CRVD by comprehensive vision examination.On VVE,the near point of convergence break(5.5±3.2 cm vs.3.9±1.7 cm(mean±SD),p<0.001)and recovery(8.1±3.3 cm vs.6.8±2.3 cm,p=0.02)distinguished between those with and without CRVD.Concussion symptom provocation on VVE with horizontal saccades(35(52%)vs.12(29%),p=0.02)and horizontal vestibulo-ocular reflex testing(37(55%)vs.14(34%),p=0.03),and sway on tandem gait under the forward eyes closed condition(25(37%)vs.6(15%),p=0.01)also identified those with CRVD.From the eye tracking device,the BOX score(8.1±5.8 vs.5.2±4.1,p=0.007)and a metric of the left eye tracking along the bottom of the visual target(0.094±0.500 vs.-0.124±0.410,p=0.02)identified those with CRVD,with a multivariable receiver operating characteristic curve analysis,including the BOX score,achieving an area under the receiver operating characteristic curve of 0.7637.Conclusion:CRVDs are common in those with PPCS,with impact on recovery after concussion.Novel eye-tracking metrics can serve as an aid in the identification of those with CRVDs who would benefit from referral for comprehensive diagnosis and treatment.
文摘The publisher regrets that the Appendix A.Supplementary data was not updated as per author and editor’s request.The publisher would like to apologise for any inconvenience caused.
基金supported by the National Social Science Foundation of China(Grant No.24BYY117).
文摘Syntax and semantics are two important factors that influence sentence processing.Studies have found different aging effects in syntactic and semantic processing during sentence comprehension.While there is consensus on the aging effects in syntactic processing,the presence of aging in semantic processing remains debated.The present study aimed to explore whether there were aging effects in lexical-semantic information processing in complex sentence.79 participants were recruited to take part in this study,including 40 younger adults(mean age of 21.1±1.19 years)and 39 older adults(mean age of 66.24±3.02 years).Using eye-movement tracking technology and manipulating the animacy of head nouns in Chinese subject relative clauses(SRCs)and object relative clauses(ORCs),we investigated the abilities of young and old adults in relative clauses(RCs)processing.The results of comprehension accuracy revealed a significant effect of aging in RCs processing,with older participants exhibiting poor performance compared with younger counterparts across all four clause conditions.Furthermore,younger participants demonstrated a clear animacy effect in RCs processing,but this effect was not found in older participants.Reading times indicated a prominent aging effect in clause processing,with older participants showing significantly longer reading times across all four types of RCs compared to younger participants.It was observed that processing ORCs in Chinese was relatively easier than processing SRCs.Additionally,a noticeable aging effect in semantic processing was found,specifically,the difficulties of processing SRCs and ORCs vary with the animacy configuration of the head nouns for younger participants but were not observed in older participants.In summary,aging in cognition would also inhinder semantic processing in complex sentence comprehension.
基金supported by the National Natural Science Foundation of China(Grant No.62033007)the Major Fundamental Research Program of Shandong Province(Grant No.ZR2023ZD37).
文摘Siamese tracking algorithms usually take convolutional neural networks(CNNs)as feature extractors owing to their capability of extracting deep discriminative features.However,the convolution kernels in CNNs have limited receptive fields,making it difficult to capture global feature dependencies which is important for object detection,especially when the target undergoes large-scale variations or movement.In view of this,we develop a novel network called effective convolution mixed Transformer Siamese network(SiamCMT)for visual tracking,which integrates CNN-based and Transformer-based architectures to capture both local information and long-range dependencies.Specifically,we design a Transformer-based module named lightweight multi-head attention(LWMHA)which can be flexibly embedded into stage-wise CNNs and improve the network’s representation ability.Additionally,we introduce a stage-wise feature aggregation mechanism which integrates features learned from multiple stages.By leveraging both location and semantic information,this mechanism helps the SiamCMT to better locate and find the target.Moreover,to distinguish the contribution of different channels,a channel-wise attention mechanism is introduced to enhance the important channels and suppress the others.Extensive experiments on seven challenging benchmarks,i.e.,OTB2015,UAV123,GOT10K,LaSOT,DTB70,UAVTrack112_L,and VOT2018,demonstrate the effectiveness of the proposed algorithm.Specially,the proposed method outperforms the baseline by 3.5%and 3.1%in terms of precision and success rates with a real-time speed of 59.77 FPS on UAV123.
基金supported by the New Cornerstone Science Foundation through the XPLORER PRIZE,China(No.XPLORER-2024-1036)the independent research project of the National Key Laboratory of Strength and Structural Integrity,China(No.BYST-QZSYS-24-072-5)。
文摘Crack length measurement algorithms based on computer vision have shown promising engineering application prospects in the field of aircraft fatigue crack monitoring.However,due to the complexity of the monitoring environment,the subtle visual features of small fatigue cracks,and the impact of structural elastic deformation,directly applying object segmentation algorithms often results in significant measurement errors.Therefore,this paper proposes a high-precision crack length measurement method based on Bidirectional Target Tracking Model(Bi2TM),which integrates crack tip localization,interference identification,and length compensation.First,a general object segmentation model is used to perform rough crack segmentation.Then,the Bi2TM network,combined with the visual features of the structure in different stress states,is employed to track the bidirectional position of the crack tip in the“open”and“closed”states.This ultimately enables interference identification within the rough segmented crack region,achieving highprecision length measurement.In a high-interference environment of aircraft fatigue testing,the proposed method is used to measure 1000 crack images ranging from 1 mm to 11 mm.For more than 90%of the samples,the measurement error is less than 5 pixels,demonstrating significant advantages over the existing methods.
基金The 2024 Education and Teaching Reform Project,“Exploration and Practice of University Mathematics Teaching Reform Driven by Eye-Tracking Technology”(Project No.:JG2024047)。
文摘As a tool for quantifying individuals’visual attention and information processing,eye-tracking technology is gradually being applied in the reform of higher education.This paper focuses on issues in university mathematics teaching,such as heavy cognitive load,delayed feedback,and insufficient adaptability.Based on theories of cognitive psychology,the study explores application pathways of this technology in cognitive diagnosis,instructional optimization,classroom regulation,personalized support,and teaching assessment.Research shows that eye-tracking data can reveal key cognitive features during the learning process,enhance the visualization of instructional feedback,and improve the scientific basis of decision-making.This provides both theoretical support and practical reference for data-driven and precise transformation in university mathematics education.
文摘This article investigates the time-varying output group formation tracking control(GFTC)problem for heterogeneous multi-agent systems(HMASs)under switching topologies.The objective is to design a distributed control strategy that enables the outputs of the followers to form the desired sub-formations and track the outputs of the leader in each subgroup.Firstly,novel distributed observers are developed to estimate the states of the leaders under switching topologies.Then,GFTC protocols are designed based on the proposed observers.It is shown that with the distributed protocol,the GFTC problem for HMASs under switching topologies is solved if the average dwell time associated with the switching topologies is larger than a fixed threshold.Finally,an example is provided to illustrate the effectiveness of the proposed control strategy.
基金the National Natural Science Foundation of China(Grant Nos.62303348 and 62173242)the Aeronautical Science Foundation of China(Grant No.2024M071048002)the National Science Fund for Distinguished Young Scholars(Grant No.62225308)to provide fund for conducting experiments.
文摘Multiple quadrotors target encirclement is widely used in the intelligent field,as it can effectively monitor and control target behavior.However,it faces the danger of collision,as well as difficulties in localization and tracking.Therefore,we propose a complete target encirclement method.Firstly,based on Hooke's law,a collision avoidance controller is designed to maintain a safe flying distance among quadrotors.Then,based on the consensus theory,a formation tracking controller is designed to meet the requirements of formation transformation and encirclement tasks,and a stability proof based on Lyapunov was provided.Besides,the target detection is designed based on YOLOv5s,and the target location model is constructed based on the principle of pinhole projection and triangle similarity.Finally,we conducted experiments on the built platform,with 3 reconnaissance quadrotors detecting and localization 3 target vehicles and 7 hunter quadrotors tracking them.The results show that the minimum average error for localization targets with reconnaissance quadrotors can reach 0.1354 m,while the minimum average error for tracking with hunter quadrotors is only 0.2960 m.No quadrotors collision occurred in the whole formation transformation and tracking experiment.In addition,compared with the advanced methods,the proposed method has better performance.
基金supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2020MA092)the Innovation Project for Graduate Students of Ludong University(Grant No.IPGS2024-048).
文摘The diffusion trajectory of a Brownian particle passing over the saddle point of a two-dimensional quadratic potential energy surface is tracked in detail according to the deep learning strategies.Generative adversarial networks(GANs)emanating in the category of machine learning(ML)frameworks are used to generate and assess the rationality of the data.While their optimization is based on the long short-term memory(LSTM)strategies.In addition to drawing a heat map,the optimal path of two-dimensional(2D)diffusion is simultaneously demonstrated in a stereoscopic space.The results of our simulation are completely consistent with the previous theoretical predictions.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1005000)the National Natural Science Foundation of China(Grant No.62025110 and 62101308).
文摘Satellite Internet(SI)provides broadband access as a critical information infrastructure in 6G.However,with the integration of the terrestrial Internet,the influx of massive terrestrial traffic will bring significant threats to SI,among which DDoS attack will intensify the erosion of limited bandwidth resources.Therefore,this paper proposes a DDoS attack tracking scheme using a multi-round iterative Viterbi algorithm to achieve high-accuracy attack path reconstruction and fast internal source locking,protecting SI from the source.Firstly,to reduce communication overhead,the logarithmic representation of the traffic volume is added to the digests after modeling SI,generating the lightweight deviation degree to construct the observation probability matrix for the Viterbi algorithm.Secondly,the path node matrix is expanded to multi-index matrices in the Viterbi algorithm to store index information for all probability values,deriving the path with non-repeatability and maximum probability.Finally,multiple rounds of iterative Viterbi tracking are performed locally to track DDoS attack based on trimming tracking results.Simulation and experimental results show that the scheme can achieve 96.8%tracking accuracy of external and internal DDoS attack at 2.5 seconds,with the communication overhead at 268KB/s,effectively protecting the limited bandwidth resources of SI.
基金supported by the National Natural Science Foun-dation of China(Grant No.52275099).
文摘The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilities of ATP systems.However,in practical applications,ATP systems face various design constraints and functional limitations,making it infeasible to indefinitely improve hardware performance to meet tracking requirements.As a result,tracking algorithms are required to execute increasingly complex tasks.This study introduces a multi-rate feedforward predictive controller to address issues such as low image feedback frequency and significant delays in ATP systems,which lead to tracking jitter,poor tracking performance,low precision,and target loss.At the same time,the pro-posed approach aims to improve the tracking capabilities of ATP systems for high-speed and highly maneuverable targets under conditions of low sampling feedback rates and high feedback delays.The method suggested is also characterized by its low order,fast response,and robustness to model parameter variations.In this study,an actual ATP system is built for target tracking test,and the proposed algorithm is fully validated in terms of simulation and actual system application verification.Results from both simulations and experiments demonstrate that the method effectively compensates for delays and low sampling rates.For targets with relative angular velocities ranging from 0 to 90°/s and angular accelerations between 0 and 470°/s^(2),the system improved tracking accuracy by 70.0%-89.9%at a sampling frequency of 50 Hz and a delay of 30 m s.Moreover,the compensation algorithm demonstrated consistent performance across actuators with varying characteristics,further confirming its robustness to model insensitivity.In summary,the proposed algorithm considerably enhances the tracking accuracy and capability of ATP systems for high-speed and highly maneuverable targets,reducing the probability of target loss from high speed.This approach offers a practical solution for future multi-target tracking across diverse operational scenarios.
基金supported in part by the National Natural Science Foundation of China under Grants 61991404,62103093 and 62473089the Research Program of the Liaoning Liaohe Laboratory,China under Grant LLL23ZZ-05-01+5 种基金the Key Research and Development Program of Liaoning Province of China under Grant 2023JH26/10200011the 111 Project 2.0 of China under Grant B08015,the National Key Research and Development Program of China under Grant 2022YFB3305905the Xingliao Talent Program of Liaoning Province of China under Grant XLYC2203130the Natural Science Foundation of Liaoning Province of China under Grants 2024JH3/10200012 and 2023-MS-087the Open Research Project of the State Key Laboratory of Industrial Control Technology of China under Grant ICT2024B12the Fundamental Research Funds for the Central Universities of China under Grants N2108003 and N2424004.
文摘The problem of trajectory tracking for a class of differentially driven wheeled mobile robots(WMRs)under partial loss of the effectiveness of the actuated wheels is investigated in this paper.Such actuator faults may cause the loss of strong controllability of the WMR,such that the conventional fault-tolerant control strategies unworkable.In this paper,a new mixed-gain adaption scheme is devised,which is adopted to adapt the gain of a decoupling prescribed performance controller to adaptively compensate for the loss of the effectiveness of the actuators.Different from the existing gain adaption technique which depends on both the barrier functions and their partial derivatives,ours involves only the barrier functions.This yields a lower magnitude of the resulting control signals.Our controller accomplishes trajectory tracking of the WMR with the prescribed rate and accuracy even in the faulty case,and the control design relies on neither the information of the WMR dynamics and the actuator faults nor the tools for function approximation,parameter identification,and fault detection or estimation.The comparative simulation results justify the theoretical findings.
基金supported by China NSF Grants(62371225,62371227)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX250590).
文摘In this paper,we present a novel particle filter(PF)-based direct position tracking method utilizing multiple distributed observation stations.Traditional passive tracking methods are anchored on repetitive position estimation,where the set of consecutive estimates provides the tracking trajectory,such as Two-step and direct position determination methods.However,duplicate estimates can be computationally expensive.In addition,these techniques suffer from data association problems.The PF algorithm is a tracking method that avoids these drawbacks,but the conventional PF algorithm is unable to construct a likelihood function from the received signals of multiple observatories to determine the weights of particles.Therefore,we developed an improved PF algorithm with the likelihood function modified by the projection approximation subspace tracking with deflation(PASTd)algorithm.The proposed algorithm uses the projection subspace and spectral function to replace the likelihood function of PF.Then,the weights of particles are calculated jointly by multiple likelihood functions.Finally,the tracking problem of multiple targets is solved by multiple sets of particles.Simulations demonstrate the effectiveness of the proposed method in terms of computational complexity and tracking accuracy.
基金supported by the Natural Science Foundation of Sichuan Province of China under Grant No.2025ZNSFSC0522partially supported by the National Natural Science Foundation of China under Grants No.61775030 and No.61571096.
文摘Target tracking is an essential task in contemporary computer vision applications.However,its effectiveness is susceptible to model drift,due to the different appearances of targets,which often compromises tracking robustness and precision.In this paper,a universally applicable method based on correlation filters is introduced to mitigate model drift in complex scenarios.It employs temporal-confidence samples as a priori to guide the model update process and ensure its precision and consistency over a long period.An improved update mechanism based on the peak side-lobe to peak correlation energy(PSPCE)criterion is proposed,which selects high-confidence samples along the temporal dimension to update temporal-confidence samples.Extensive experiments on various benchmarks demonstrate that the proposed method achieves a competitive performance compared with the state-of-the-art methods.Especially when the target appearance changes significantly,our method is more robust and can achieve a balance between precision and speed.Specifically,on the object tracking benchmark(OTB-100)dataset,compared to the baseline,the tracking precision of our model improves by 8.8%,8.8%,5.1%,5.6%,and 6.9%for background clutter,deformation,occlusion,rotation,and illumination variation,respectively.The results indicate that this proposed method can significantly enhance the robustness and precision of target tracking in dynamic and challenging environments,offering a reliable solution for applications such as real-time monitoring,autonomous driving,and precision guidance.
基金Project(QZKFKT2023-012)supported by the State Key Laboratory of Heavy-duty and Express High-power Electric Locomotive,China。
文摘Signal filtering and differential acquisition are classic yet challenging issues in control engineering.The discrete-time optimal control(DTOC)based on classic tracking differentiator(TD)can effectively extract differentiation signals and filter signals,while eliminating the chattering problem that arises during the discretization of the continuous solution.However,under external disturbance,the convergence mode may change,leading to overshoot and noise amplification.In this paper,a dual-switching strategy is proposed,which can alternate between the base double-integral system and its dual system according to the quadrant of the system’s state.And a novel linearized control law is also introduced,deriving a novel dual-switch tracking differentiator.Further analysis of system convergence and time optimality is provided.Simulation results show that the application of this dual-switching strategy notably reduces overshoot in both tracking and differential signals while enhancing noise filtering performance.Moreover,experiments conducted on a permanent magnet synchronous motor(PMSM)platform,where the proposed TD acts as a filter in the speed feedback loop,demonstrate that the standard deviation between the reference speed and the target speed(at a constant speed of 378 r/min)decreased from 5.63 r/min to 4.93 r/min,compared to the moving average algorithm.