The marine climate conditions are intricate and variable. In scenarios characterized by high proportions of wind and solar energy access, the uncertainty regarding the energy sources for island microgrid is significan...The marine climate conditions are intricate and variable. In scenarios characterized by high proportions of wind and solar energy access, the uncertainty regarding the energy sources for island microgrid is significantly exacerbated, presenting challenges to both the economic viability and reliability of the capacity configuration for island microgrids. To address this issue, this paper proposes a distributionally robust optimization (DRO) method for island microgrids, considering extreme scenarios of wind and solar conditions. Firstly, to address the challenge of determining the probability distribution functions of wind and solar in complex island climates, a conditional generative adversarial network (CGAN) is employed to generate a scenario set for wind and solar conditions. Then, by combining k-means clustering with an extreme scenario selection method, typical scenarios and extreme scenarios are selected from the generated scenario set, forming the scenario set for the DRO model of island microgrids. On this basis, a DRO model based on multiple discrete scenarios is constructed with the objective of minimizing the sum of investment costs, operation and maintenance costs, fuel purchase costs, penalty costs of wind and solar curtailment, and penalty costs of load loss. The model is subjected to equipment operation and power balance constraints, and solved using the columns and constraints generation (CCG) algorithm. Finally, through typical examples, the effectiveness of this paper’s method in balancing the economic viability and robustness of the configuration scheme for the island microgrid, as well as reducing wind and solar curtailment and load loss, is verified.展开更多
Currently, small islands are facing an energy supply shortage, which has led to considerable concern.Establishing an island microgrid is a relatively good solution to the problem. However, high investment costs restri...Currently, small islands are facing an energy supply shortage, which has led to considerable concern.Establishing an island microgrid is a relatively good solution to the problem. However, high investment costs restrict its application. In this paper, micro pumped storage(MPS) is used as an energy storage system(ESS) for islands with good geographical conditions, and deferrable appliance is treated as the virtual power source which can be used in the planning and operational processes.Household acceptance of demand response(DR) is indicated by the demand response participation degree(DRPD), and a sizing optimization model for considering the demand response of household appliances in an island microgrid is proposed. The particle swarm optimization(PSO) is used to obtain the optimal sizing of all major devices. In addition, the battery storage(BS) scheme is used as the control group. The results of case studies demonstrate that the proposed method is effective, and the DR of deferrable appliances and the application of MPS can significantly reduce island microgrid investment.Sensitivity analysis on the total load of the island and the water head of the MPS are conducted.展开更多
This paper presents the design of a high performance robust resonant controller for the islanded single-phase microgrid operation on different loads conditions. The design of the controller is done using the results o...This paper presents the design of a high performance robust resonant controller for the islanded single-phase microgrid operation on different loads conditions. The design of the controller is done using the results of Negative Imaginary approach. The performance of the proposed controller has been found much effective to track the instantaneous reference grid voltage. The simulation work has been done with the help of MATLAB/SimPower System toolbox. This shows that the proposed controller provides effective control of voltage against the uncertain load conditions.展开更多
This paper presents the results of the simulations and their respective analyses corresponding to the power frequency overvoltages resulting from various fault types occurring inside a microgrid. During the islanded m...This paper presents the results of the simulations and their respective analyses corresponding to the power frequency overvoltages resulting from various fault types occurring inside a microgrid. During the islanded mode of operation, the analysed microgrid can be simultaneously fed by a diesel generator, a 1 MW wind power turbine, a small solar system and a 1 MW hydroelectric scheme. The operating voltage of the microgrid is 2.4 kV. During a fault in the system, the overvoltages normally occur in two remarkable instants. The first one occurs at the beginning of the fault itself. The second one occurs at the instant when the fault is cleared. The major concern here is the overvoltage during the fault period. Due to the travelling wave effect along cables and overhead lines composing the microgrid system, these overvoltages can be amplified, thus jeopardizing the insulation level of the microgrid transmission system and related equipment. Much of the work available now is dedicated to overvoltages present in high-voltage systems leaving a gap for the study and behaviour on low voltage microgrid systems. The overvoltage stress is characterized by the maximum low-frequency, short-duration (crest value) of the overvoltage. Both cables and overhead lines that constitute the microgrid transmission system are characterized by their R-L-C parameters. The simulations of the microgrid system are conducted using the ATP program. According to the international ANSI and IEEE standards, the minimum BIL (Basic Impulse Insulation Level) and BSL (Basic Impulse Switching Level) for the 2.4 kV voltage level are 20 kV and 10 kV, respectively;thus, care should be taken so that the healthy phases upon which commonly appear such overvoltages are not exceeded in their insulation level.展开更多
基金funded by the National Natural Science Foundation of China(Grant/Award Numbers:52177107 and 52222704)Science and Technology Project of Tianjin Municipality,China(22JCZDJC00780).
文摘The marine climate conditions are intricate and variable. In scenarios characterized by high proportions of wind and solar energy access, the uncertainty regarding the energy sources for island microgrid is significantly exacerbated, presenting challenges to both the economic viability and reliability of the capacity configuration for island microgrids. To address this issue, this paper proposes a distributionally robust optimization (DRO) method for island microgrids, considering extreme scenarios of wind and solar conditions. Firstly, to address the challenge of determining the probability distribution functions of wind and solar in complex island climates, a conditional generative adversarial network (CGAN) is employed to generate a scenario set for wind and solar conditions. Then, by combining k-means clustering with an extreme scenario selection method, typical scenarios and extreme scenarios are selected from the generated scenario set, forming the scenario set for the DRO model of island microgrids. On this basis, a DRO model based on multiple discrete scenarios is constructed with the objective of minimizing the sum of investment costs, operation and maintenance costs, fuel purchase costs, penalty costs of wind and solar curtailment, and penalty costs of load loss. The model is subjected to equipment operation and power balance constraints, and solved using the columns and constraints generation (CCG) algorithm. Finally, through typical examples, the effectiveness of this paper’s method in balancing the economic viability and robustness of the configuration scheme for the island microgrid, as well as reducing wind and solar curtailment and load loss, is verified.
基金supported by the National Natural Science Foundation of China (No. 51437006)
文摘Currently, small islands are facing an energy supply shortage, which has led to considerable concern.Establishing an island microgrid is a relatively good solution to the problem. However, high investment costs restrict its application. In this paper, micro pumped storage(MPS) is used as an energy storage system(ESS) for islands with good geographical conditions, and deferrable appliance is treated as the virtual power source which can be used in the planning and operational processes.Household acceptance of demand response(DR) is indicated by the demand response participation degree(DRPD), and a sizing optimization model for considering the demand response of household appliances in an island microgrid is proposed. The particle swarm optimization(PSO) is used to obtain the optimal sizing of all major devices. In addition, the battery storage(BS) scheme is used as the control group. The results of case studies demonstrate that the proposed method is effective, and the DR of deferrable appliances and the application of MPS can significantly reduce island microgrid investment.Sensitivity analysis on the total load of the island and the water head of the MPS are conducted.
文摘This paper presents the design of a high performance robust resonant controller for the islanded single-phase microgrid operation on different loads conditions. The design of the controller is done using the results of Negative Imaginary approach. The performance of the proposed controller has been found much effective to track the instantaneous reference grid voltage. The simulation work has been done with the help of MATLAB/SimPower System toolbox. This shows that the proposed controller provides effective control of voltage against the uncertain load conditions.
文摘This paper presents the results of the simulations and their respective analyses corresponding to the power frequency overvoltages resulting from various fault types occurring inside a microgrid. During the islanded mode of operation, the analysed microgrid can be simultaneously fed by a diesel generator, a 1 MW wind power turbine, a small solar system and a 1 MW hydroelectric scheme. The operating voltage of the microgrid is 2.4 kV. During a fault in the system, the overvoltages normally occur in two remarkable instants. The first one occurs at the beginning of the fault itself. The second one occurs at the instant when the fault is cleared. The major concern here is the overvoltage during the fault period. Due to the travelling wave effect along cables and overhead lines composing the microgrid system, these overvoltages can be amplified, thus jeopardizing the insulation level of the microgrid transmission system and related equipment. Much of the work available now is dedicated to overvoltages present in high-voltage systems leaving a gap for the study and behaviour on low voltage microgrid systems. The overvoltage stress is characterized by the maximum low-frequency, short-duration (crest value) of the overvoltage. Both cables and overhead lines that constitute the microgrid transmission system are characterized by their R-L-C parameters. The simulations of the microgrid system are conducted using the ATP program. According to the international ANSI and IEEE standards, the minimum BIL (Basic Impulse Insulation Level) and BSL (Basic Impulse Switching Level) for the 2.4 kV voltage level are 20 kV and 10 kV, respectively;thus, care should be taken so that the healthy phases upon which commonly appear such overvoltages are not exceeded in their insulation level.