BACKGROUND: Some researches report that He-Ne laser can activate function of erythrocytes and increase content of blood and oxygen via bio-stimulating effect; therefore, it suspects that laser radiation at Baihui and...BACKGROUND: Some researches report that He-Ne laser can activate function of erythrocytes and increase content of blood and oxygen via bio-stimulating effect; therefore, it suspects that laser radiation at Baihui and Dazhui can partially increase blood circulation for oxygen-supplying content of brain and improve functional status of neurons. OBJECTIVE: To verify the effects of laser radiation at Baihui and Dazhui on the expression of Nissl body of brain tissue neurons and brain-derived neurotrophic factor (BDNF) in newborn rats with ischemic/hypoxic cerebral injury. DESIGN: Randomized controlled animal study. SETTING: Department of Neurological Histochemistry, Xianning University. MATERIALS: Forty Wistar rats of 7 - 8 days old, weighing 15 - 20 g and of both genders, were selected from Wuhan Experimental Animal Center. All the rats were randomly divided into sham operation group (n =8), model group (n =16) and radiation group (n = 16). The experimental animals were disposed according to ethical criteria. BDNF kit was provided by Wuhan Boster Bioengineering Co., Ltd. METHODS: The experiment was carried out in the Department of Neurological Histochemistry, Xianning University from April 2005 to October 2006. Rats in the radiation group and model group were performed with ligation of left common carotid artery, recovered at room temperature for 1 - 6 days, maintained in self-made hypoxic cabin under normal pressure and injected mixture gas (0.05 volume fraction of 02 and 0.92 volume fraction of N2) for 2 hours. In addition, rats in the sham operation group were treated with separation of left common carotid artery but not ligation and hypoxia. Rats in the model group were not given any treatment; while, rats in the radiation group were exposed with He-Ne laser of 63.28 nm in the wave length at Baihui and Dazhui acupoints on the second day after ischemia-hypoxia. The radiation was given for 10 minutes per day and once a day. Ten days were regarded as a course and the rats were exposed for 2 courses in total. At 20 days after routine breeding, left hemisphere tissues of rats in the three groups were collected for staining of Nissl body and immunohistochemistry of BDNF. MAIN OUTCOME MEASURES: Nissl body staining in left hemisphere tissue and expression of immune positive cells of BDNF. RESULTS: All 40 rats were involved in the final analysis. (1) Nissl body staining: Neuronal cytoplasm of brain tissue was full of blue granule Nissl bodies in the sham operation group; while, Nissl body in neuronal cytoplasm in the model group was stained slightly and had a certain degree of degeneration; meanwhile, there were a lot of blank area in ischemic region. Nissl body in neuron cytoplasm was gradually recovered in the radiation group and relieved as compared with that in the model group. (2) Positive cells of BDNF: Number of immune positive cells of BDNF which were ligated in lateral cerebral hemisphere of rats in the model group was higher than that in the sham operation group (P 〈 0.05); while, BDNF expression in the radiation group was increased as compared with that in the model group (P 〈 0.05). CONCLUSION: After laser acupoint radiation, Nissl body is increased and BDNF expression is also increased. This suggests that laser acupoint radiation has neuroprotective effect on brain tissue after ischemia-hypoxia injury.展开更多
Neonatal hypoxic-ischemic encephalopathy(HIE)is a significant cause of disability in children.Improving brain function and accelerating neurological recovery may require a combination of neuroprotective and pro-regene...Neonatal hypoxic-ischemic encephalopathy(HIE)is a significant cause of disability in children.Improving brain function and accelerating neurological recovery may require a combination of neuroprotective and pro-regenerative treatments at different stages of HIE.While the first hours after the neonatal insult are the most critical period for neuroprotection,the existence of secondary and tertiary mechanisms of brain injury offers the possibility of preventing delayed neurodegeneration in the subsequent days,weeks,or months(Levison et al.,2022).展开更多
The challenge of protecting the brain resides in the unique characteristics of neurons,as they are postmitotic,long-lived,excitable,and polarized cells with long and fragile axons and dendrites.The complexity of the m...The challenge of protecting the brain resides in the unique characteristics of neurons,as they are postmitotic,long-lived,excitable,and polarized cells with long and fragile axons and dendrites.The complexity of the multiple potential cell death pathways further complicates this issue.In addition,the immature brain is prone to a“cell death continuum,”which involves intricate molecular interconnections between cell death processes.展开更多
Ischemic stroke is a major cause of neurological deficits and high disability rate.As the primary immune cells of the central nervous system,microglia play dual roles in neuroinflammation and tissue repair following a...Ischemic stroke is a major cause of neurological deficits and high disability rate.As the primary immune cells of the central nervous system,microglia play dual roles in neuroinflammation and tissue repair following a stroke.Their dynamic activation and polarization states are key factors that influence the disease process and treatment outcomes.This review article investigates the role of microglia in ischemic stroke and explores potential intervention strategies.Microglia exhibit a dynamic functional state,transitioning between pro-inflammatory(M1)and anti-inflammatory(M2)phenotypes.This duality is crucial in ischemic stroke,as it maintains a balance between neuroinflammation and tissue repair.Activated microglia contribute to neuroinflammation through cytokine release and disruption of the blood-brain barrier,while simultaneously promoting tissue repair through anti-inflammatory responses and regeneration.Key pathways influencing microglial activation include Toll-like receptor 4/nuclear factor kappa B,mitogen-activated protein kinases,Janus kinase/signal transducer and activator of transcription,and phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathways.These pathways are targets for various experimental therapies aimed at promoting M2 polarization and mitigating damage.Potential therapeutic agents include natural compounds found in drugs such as minocycline,as well as traditional Chinese medicines.Drugs that target these regulatory mechanisms,such as small molecule inhibitors and components of traditional Chinese medicines,along with emerging technologies such as single-cell RNA sequencing and spatial transcriptomics,offer new therapeutic strategies and clinical translational potential for ischemic stroke.展开更多
Background:Baicalin(BC)and geniposide(GD)are effective components of natural remedies,and studies have shown that they protect against cerebral ischemic stroke(CIS).Transient receptor potential vanilloid 4(TRPV4)is a ...Background:Baicalin(BC)and geniposide(GD)are effective components of natural remedies,and studies have shown that they protect against cerebral ischemic stroke(CIS).Transient receptor potential vanilloid 4(TRPV4)is a calcium-permeable channel that plays important roles in vascular function and vasodilation.However,no studies are available on the effect of BC/GD on the TRPV4 channel and rat cerebral basilar artery(CBA).This study examined the effect of the combination of BC/GD(7:3)on cerebral vascular function after CIS.Methods:We used western blotting to determine TRPV4 protein levels and live cell fluorescence Ca 2+imaging and patch clamp to determine how BC/GD activates TRPV4 channels.Isolated vessel experiments were used to observe the dilatory effects of BC/GD on CBA under different conditions.Laser Doppler imaging was used to measure cerebral blood flow in rats.Triphenyl tetrazolium chloride and Nissl stainings were used to determine the infarct area in the rat brain and neuronal damage,respectively.Results:BC/GD significantly boosted TRPV4 protein levels in vascular smooth muscle cells(VSMCs)during oxygen-glucose deprivation and increased[Ca 2+]i in TRPV4-HEK 293 cells and VSMCs.This effect was not observed in vector-HEK 293 cells.In patch clamp experiments,BC/GD increased Ca 2+currents in TRPV4-HEK 293 cells,whereas no significant changes were observed in vector-HEK 293 cells.BC/GD dilated CBA contractions induced by U46619 and KCl,with a concentration-dependent increase of the dilatory effect.In the middle cerebral artery occlusion model,cerebral blood flow in the ischemic side significantly decreased,whereas BC/GD intervention significantly increased cerebral blood perfusion in the ischemic side,reduced the infarct area,and improved neurological function scores and neuronal damage.Conclusion:BC/GD activates the TRPV4 channel,leading to Ca ^(2+) influx,which in turn activates the intermediate conductance calcium-activated potassium channels channel to regulate vasodilation in vascular smooth muscle.展开更多
The mechanisms underlying the pathophysiology of ischemic stroke are complex and multifactorial and include excitotoxicity,oxidative stress,inflammatory responses,and blood–brain barrier disruption.While vascular rec...The mechanisms underlying the pathophysiology of ischemic stroke are complex and multifactorial and include excitotoxicity,oxidative stress,inflammatory responses,and blood–brain barrier disruption.While vascular recanalization treatments such as thrombolysis and mechanical thrombectomy have achieved some success,reperfusion injury remains a significant contributor to the exacerbation of brain injury.This emphasizes the need for developing neuroprotective strategies to mitigate this type of injury.The purpose of this review was to examine the application of nanotechnology in the treatment of ischemic stroke,covering research progress in nanoparticlebased drug delivery,targeted therapy,and antioxidant and anti-inflammatory applications.Nanobased drug delivery systems offer several advantages compared to traditional therapies,including enhanced blood–brain barrier penetration,prolonged drug circulation time,improved drug stability,and targeted delivery.For example,inorganic nanoparticles,such as those based on CeO_(2),have been widely studied for their strong antioxidant capabilities.Biomimetic nanoparticles,such as those coated with cell membranes,have garnered significant attention owing to their excellent biocompatibility and targeting abilities.Nanoparticles can be used to deliver a wide range of neuroprotective agents,such as antioxidants(e.g.,edaravone),anti-inflammatory drugs(e.g.,curcumin),and neurotrophic factors.Nanotechnology significantly enhances the efficacy of these drugs while minimizing adverse reactions.Although nanotechnology has demonstrated great potential in animal studies,its clinical application still faces several challenges,including the long-term safety of nanoparticles,the feasibility of large-scale production,quality control,and the ability to predict therapeutic effects in humans.In summary,nanotechnology holds significant promise for the treatment of ischemic stroke.Future research should focus on further exploring the mechanisms of action of nanoparticles,developing multifunctional nanoparticles,and validating their safety and efficacy through rigorous clinical trials.Moreover,interdisciplinary collaboration is essential for advancing the use of nanotechnology in stroke treatment.展开更多
Stroke remains a leading cause of death and disability worldwide,and electroacupuncture has a long history of use in stroke treatment.This meta-analysis and systematic review aimed to evaluate the efficacy of electroa...Stroke remains a leading cause of death and disability worldwide,and electroacupuncture has a long history of use in stroke treatment.This meta-analysis and systematic review aimed to evaluate the efficacy of electroacupuncture and explore its potential mechanisms in animal models of ischemic stroke.The PubMed,EMBASE,Web of Science,CENTRAL,and CINAHL databases were comprehensively searched up to May 1,2024.This review included articles on preclinical investigations of the efficacy and mechanisms of electroacupuncture in treating ischemic stroke.Data from 70 eligible studies were analyzed in Stata 18.0,using a random-effects model to calculate the standardized mean difference(Hedge’s g).The risk of bias was assessed using RevMan 5.4 software,and the quality of evidence was rated according to the Grading of Recommendations,Assessment,Development,and Evaluation(GRADE)system.Subgroup analyses were conducted to test the consistency of the results and sensitivity analyses were used to assess their robustness.The quality assessment revealed that most studies adequately handled incomplete data and selective reporting.However,several methodological limitations were identified:only 4 studies demonstrated a low risk of allocation concealment,26 achieved a low risk of outcome assessment bias,and 9 had a high risk of randomization bias.Additionally,there was an unclear risk regarding participant blinding and other methodological aspects.The GRADE assessment rated 12 outcomes as moderate quality and 6 as low quality.The mechanisms of electroacupuncture treatment for ischemic stroke can be categorized as five primary pathways:(1)Electroacupuncture significantly reduced infarct volume and apoptotic cell death(P<0.01)in ischemic stroke models;(2)electroacupuncture significantly decreased the levels of pro-inflammatory factors(P<0.01)while increasing the levels of anti-inflammatory factors(P=0.02);(3)electroacupuncture reduced the levels of oxidative stress indicators(P<0.01)and enhanced the expression of antioxidant enzymes(P<0.01);(4)electroacupuncture significantly promoted nerve regeneration(P<0.01);and(5)electroacupuncture influenced blood flow remodeling(P<0.01)and angiogenesis(P<0.01).Subgroup analyses indicated that electroacupuncture was most effective in the transient middle cerebral artery occlusion model(P<0.01)and in post-middle cerebral artery occlusion intervention(P<0.01).Dispersive waves were found to outperform continuous waves with respect to neuroprotection and anti-inflammatory effects(P<0.01),while scalp acupoints demonstrated greater efficacy than body acupoints(P<0.01).The heterogeneity among the included studies was minimal,and sensitivity analyses indicated stable results.Their methodological quality was generally satisfactory.In conclusion,electroacupuncture is effective in treating cerebral ischemia by modulating cell apoptosis,oxidative stress,inflammation,stroke-induced nerve regeneration,blood flow remodeling,and angiogenesis.The efficacy of electroacupuncture may be influenced by factors such as the middle cerebral artery occlusion model,the timing of intervention onset,waveform,and acupoint selection.Despite the moderate to low quality of evidence,these findings suggest that electroacupuncture has clinical potential for improving outcomes in ischemic stroke.展开更多
Background:Neurological disorders(NDs),including ischemic stroke(IS),Parkinson’s disease(PD),and Alzheimer’s disease(AD),are major contributors to global morbidity and mortality.Boswellia extract has demonstrated ne...Background:Neurological disorders(NDs),including ischemic stroke(IS),Parkinson’s disease(PD),and Alzheimer’s disease(AD),are major contributors to global morbidity and mortality.Boswellia extract has demonstrated neuroprotective properties,yet a comprehensive systematic review assessing its efficacy remains absent.This study aims to evaluate the efficacy of Boswellia extract in treating NDs,with a particular focus on its effects in AD and its potential for long-term neurorestoration,thereby supporting further investigation into Boswellia’s therapeutic role in ND management.Methods:A systematic literature search was performed in PubMed,Web of Science,ScienceDirect,and Google Scholar for English-language studies published up to March 2024.Eighteen studies met the inclusion criteria and were included in the meta-analysis.The study protocol was registered on PROSPERO(CRD42024524386).Eligible studies involved rodent models of IS,PD,or AD with post-operative interventions using Boswellia extract.Data extraction focused on mechanisms of action,dosages,treatment durations,and therapeutic outcomes.Studies were excluded if they involved non-ND models,combined treatments,or had incomplete data.Two researchers independently conducted literature screening and data extraction.Statistical analyses were conducted using Stata(version 17)and RevMan(version 5.4),employing fixed or random-effects models based on heterogeneity assessments.Result s:Boswellia extract significantly improved the mean effect size for NDs(ES=1.28,95%CI(1.05,1.51),P<0.001).Specifically,it reduced cerebral infarct volume in IS(SMD=−2.87,95%CI(−3.42,−2.32))and enhanced behavioral outcomes in AD(SMD=3.26,95%CI(2.07,5.14))and PD(SMD=5.37,95%CI(3.93,6.80)).Subgroup analyses revealed that Boswellia extract exhibited superior efficacy in AD when administered orally and via intra-cerebroventricular injection.Long-term treatment with Boswellia extract suggested potential neurorestorative effects.Additionally,Boswellia extract was more effective than its monomeric constituents,highlighting its promising role in ND treatment.Conclusion:Boswellia extract demonstrates significant neuroprotective effects across various NDs,particularly in AD and in promoting long-term neurorestoration.These findings support the need for further research into Boswellia’s potential as a therapeutic agent in the management of neurological disorders.展开更多
Ischemic stroke,which is characterized by hypoxia and ischemia,triggers a cascade of injury responses,including neurotoxicity,inflammation,oxidative stress,disruption of the blood-brain barrier,and neuronal death.In t...Ischemic stroke,which is characterized by hypoxia and ischemia,triggers a cascade of injury responses,including neurotoxicity,inflammation,oxidative stress,disruption of the blood-brain barrier,and neuronal death.In this context,tryptophan metabolites and enzymes,which are synthesized through the kynurenine and 5-hydroxytryptamine pathways,play dual roles.The delicate balance between neurotoxic and neuroprotective substances is a crucial factor influencing the progression of ischemic stroke.Neuroprotective metabolites,such as kynurenic acid,exert their effects through various mechanisms,including competitive blockade of N-methyl-D-aspartate receptors,modulation ofα7 nicotinic acetylcholine receptors,and scavenging of reactive oxygen species.In contrast,neurotoxic substances such as quinolinic acid can hinder the development of vascular glucose transporter proteins,induce neurotoxicity mediated by reactive oxygen species,and disrupt mitochondrial function.Additionally,the enzymes involved in tryptophan metabolism play major roles in these processes.Indoleamine 2,3-dioxygenase in the kynurenine pathway and tryptophan hydroxylase in the 5-hydroxytryptamine pathway influence neuroinflammation and brain homeostasis.Consequently,the metabolites generated through tryptophan metabolism have substantial effects on the development and progression of ischemic stroke.Stroke treatment aims to restore the balance of various metabolite levels;however,precise regulation of tryptophan metabolism within the central nervous system remains a major challenge for the treatment of ischemic stroke.Therefore,this review aimed to elucidate the complex interactions between tryptophan metabolites and enzymes in ischemic stroke and develop targeted therapies that can restore the delicate balance between neurotoxicity and neuroprotection.展开更多
Ischemic stroke is a serious medical event that cannot be predicted in advance and can have longlasting effects on patients,families,and communities.A deeper understanding of the changes in gene expression and the fun...Ischemic stroke is a serious medical event that cannot be predicted in advance and can have longlasting effects on patients,families,and communities.A deeper understanding of the changes in gene expression and the fundamental molecular mechanisms involved could help address this critical issue.In recent years,research into regulatory long non-coding(lnc)RNAs,a diverse group of RNA molecules with regulatory functions,has emerged as a promising direction in the study of cerebral infarction.This review paper aims to provide a comprehensive exploration of the roles of regulatory lncRNAs in cerebral infarction,as well as potential strategies for their application in clinical settings.LncRNAs have the potential to act as“sponges”that attract specific microRNAs,thereby regulating the expression of microRNA target genes.These interactions influence various aspects of ischemic stroke,including reperfusion-induced damage,cell death,immune responses,autophagy,angiogenesis,and the generation of reactive oxygen species.We highlight several regulatory lncRNAs that have been utilized in animal model treatments,including lncRNA NKILA,lncRNA Meg8,and lncRNA H19.Additionally,we discuss lncRNAs that have been used as biomarkers for the diagnosis and prognosis of cerebral infarction,such as lncRNA FOXO3,lncRNA XIST,and lncRNA RMST.The lncRNAs hold potential for genetic-level treatments in patients.However,numerous challenges,including inefficiency,low targeting accuracy,and side effects observed in preliminary studies,indicate the need for thorough investigation.The application of lncRNAs in ischemic stroke presents challenges that require careful and extensive validation.展开更多
Ischemic stroke is a significant global health crisis,frequently resulting in disability or death,with limited therapeutic interventions available.Although various intrinsic reparative processes are initiated within t...Ischemic stroke is a significant global health crisis,frequently resulting in disability or death,with limited therapeutic interventions available.Although various intrinsic reparative processes are initiated within the ischemic brain,these mechanisms are often insufficient to restore neuronal functionality.This has led to intensive investigation into the use of exogenous stem cells as a potential therapeutic option.This comprehensive review outlines the ontogeny and mechanisms of activation of endogenous neural stem cells within the adult brain following ischemic events,with focus on the impact of stem cell-based therapies on neural stem cells.Exogenous stem cells have been shown to enhance the proliferation of endogenous neural stem cells via direct cell-tocell contact and through the secretion of growth factors and exosomes.Additionally,implanted stem cells may recruit host stem cells from their niches to the infarct area by establishing so-called“biobridges.”Furthermore,xenogeneic and allogeneic stem cells can modify the microenvironment of the infarcted brain tissue through immunomodulatory and angiogenic effects,thereby supporting endogenous neuroregeneration.Given the convergence of regulatory pathways between exogenous and endogenous stem cells and the necessity for a supportive microenvironment,we discuss three strategies to simultaneously enhance the therapeutic efficacy of both cell types.These approaches include:(1)co-administration of various growth factors and pharmacological agents alongside stem cell transplantation to reduce stem cell apoptosis;(2)synergistic administration of stem cells and their exosomes to amplify paracrine effects;and(3)integration of stem cells within hydrogels,which provide a protective scaffold for the implanted cells while facilitating the regeneration of neural tissue and the reconstitution of neural circuits.This comprehensive review highlights the interactions and shared regulatory mechanisms between endogenous neural stem cells and exogenously implanted stem cells and may offer new insights for improving the efficacy of stem cell-based therapies in the treatment of ischemic stroke.展开更多
Intrathecal administration of human umbilical cord mesenchymal stem cells may be a promising approach for the treatment of stroke,but its safety,effectiveness,and mechanism remain to be elucidated.In this study,good m...Intrathecal administration of human umbilical cord mesenchymal stem cells may be a promising approach for the treatment of stroke,but its safety,effectiveness,and mechanism remain to be elucidated.In this study,good manufacturing practice-grade human umbilical cord mesenchymal stem cells(5×105 and 1×106 cells)and saline were administered by cerebellomedullary cistern injection 72 hours after stroke induced by middle cerebral artery occlusion in rats.The results showed(1)no significant difference in mortality or general conditions among the three groups.There was no abnormal differentiation or tumor formation in various organs of rats in any group.(2)Compared with saline-treated animals,those treated with human umbilical cord mesenchymal stem cells showed significant functional recovery and reduced infarct volume,with no significant differences between different human umbilical cord mesenchymal stem cell doses.(3)Human umbilical cord mesenchymal stem cells were found in the ischemic brain after 14 and 28 days of follow-up,and the number of positive cells significantly decreased over time.(4)Neuronal nuclei expression in the human umbilical cord mesenchymal stem cell group was greater than that in the saline group,while glial fibrillary acidic protein and ionized calcium binding adaptor molecule 1 expression levels decreased.(5)Human umbilical cord mesenchymal stem cell treatment increased the number of CD31+microvessels and doublecortin-positive cells after ischemic stroke.Human umbilical cord mesenchymal stem cells also upregulated the expression of CD31+/Ki67+.(6)At 14 days after intrathecal administration,brain-derived neurotrophic factor expression in the peri-infarct area and the concentrations of brain-derived neurotrophic factor in the cerebrospinal fluid in both human umbilical cord mesenchymal stem cell groups were significantly greater than those in the saline group and persisted until the 28th day.Taken together,these results indicate that the intrathecal administration of human umbilical cord mesenchymal stem cells via cerebellomedullary cistern injection is safe and effective for the treatment of ischemic stroke in rats.The mechanisms may include alleviating the local inflammatory response in the peri-infarct region,promoting neurogenesis and angiogenesis,and enhancing the production of neurotrophic factors.展开更多
AAV-PHP.eB is an artificial adeno-associated virus(AAV)that crosses the blood-brain barrier and targets neurons more efficiently than other AAVs when administered systematically.While AAV-PHP.eB has been used in vario...AAV-PHP.eB is an artificial adeno-associated virus(AAV)that crosses the blood-brain barrier and targets neurons more efficiently than other AAVs when administered systematically.While AAV-PHP.eB has been used in various disease models,its cellular tropism in cerebrovascular diseases remains unclear.In the present study,we aimed to elucidate the tropism of AAV-PHP.eB for different cell types in the brain in a mouse model of ischemic stroke and evaluate its effectiveness in mediating basic fibroblast growth factor(bFGF)gene therapy.Mice were injected intravenously with AAV-PHP.eB either 14 days prior to(pre-stroke)or 1 day following(post-stroke)transient middle cerebral artery occlusion.Notably,we observed a shift in tropism from neurons to endothelial cells with post-stroke administration of AAV-PHP.eB-mNeonGreen(mNG).This endothelial cell tropism correlated strongly with expression of the endothelial membrane receptor lymphocyte antigen 6 family member A(Ly6A).Furthermore,AAV-PHP.eB-mediated overexpression of bFGF markedly improved neurobehavioral outcomes and promoted long-term neurogenesis and angiogenesis post-ischemic stroke.Our findings underscore the significance of considering potential tropism shifts when utilizing AAV-PHP.eB-mediated gene therapy in neurological diseases and suggest a promising new strategy for bFGF gene therapy in stroke treatment.展开更多
Recent studies have shown that fibrotic scar formation following cerebral ischemic injury has varying effects depending on the microenvironment.However,little is known about how fibrosis is induced and regulated after...Recent studies have shown that fibrotic scar formation following cerebral ischemic injury has varying effects depending on the microenvironment.However,little is known about how fibrosis is induced and regulated after cerebral ischemic injury.Sonic hedgehog signaling participates in fibrosis in the heart,liver,lung,and kidney.Whether Shh signaling modulates fibrotic scar formation after cerebral ischemic stroke and the underlying mechanisms are unclear.In this study,we found that Sonic Hedgehog expression was upregulated in patients with acute ischemic stroke and in a middle cerebral artery occlusion/reperfusion injury rat model.Both Sonic hedgehog and Mitofusin 2 showed increased expression in the middle cerebral artery occlusion rat model and in vitro fibrosis cell model induced by transforming growth factor-beta 1.Activation of the Sonic hedgehog signaling pathway enhanced the expression of phosphorylated Smad 3 and Mitofusin 2 proteins,promoted the formation of fibrotic scars,protected synapses or promoted synaptogenesis,alleviated neurological deficits following middle cerebral artery occlusion/reperfusion injury,reduced cell apoptosis,facilitated the transformation of meninges fibroblasts into myofibroblasts,and enhanced the proliferation and migration of meninges fibroblasts.The Smad3 phosphorylation inhibitor SIS3 reversed the effects induced by Sonic hedgehog signaling pathway activation.Bioinformatics analysis revealed significant correlations between Sonic hedgehog and Smad3,between Sonic hedgehog and Mitofusin 2,and between Smad3 and Mitofusin 2.These findings suggest that Sonic hedgehog signaling may influence Mitofusin 2 expression by regulating Smad3 phosphorylation,thereby modulating the formation of early fibrotic scars following cerebral ischemic stroke and affecting prognosis.The Sonic Hedgehog signaling pathway may serve as a new therapeutic target for stroke treatment.展开更多
Ischemic retinopathy is a leading cause of blindness:Ischemic retinopathies including diabetic retinopathy(DR),retinopathy of prematurity,and retinal artery and vein occlusion are major causes of visual impairment.Isc...Ischemic retinopathy is a leading cause of blindness:Ischemic retinopathies including diabetic retinopathy(DR),retinopathy of prematurity,and retinal artery and vein occlusion are major causes of visual impairment.Ischemic retinopathy can be acute,such as in central or branch retinal artery occlusion,or chronic,such as with DR(Figure 1).Although the causes of retinopathies are diverse,one pathogenic event shared by these conditions is the myeloid cell response to retinal ischemia(Shahror et al.,2024a).展开更多
Resting-state functional magnetic resonance imaging has revealed disrupted brain network connectivity in adults and teenagers with cerebral palsy. However, the specific brain networks implicated in neonatal cases rema...Resting-state functional magnetic resonance imaging has revealed disrupted brain network connectivity in adults and teenagers with cerebral palsy. However, the specific brain networks implicated in neonatal cases remain poorly understood. In this study, we recruited 14 termborn infants with mild hypoxic ischemic encephalopathy and 14 term-born infants with severe hypoxic ischemic encephalopathy from Changzhou Children's Hospital, China. Resting-state functional magnetic resonance imaging data showed efficient small-world organization in whole-brain networks in both the mild and severe hypoxic ischemic encephalopathy groups. However, compared with the mild hypoxic ischemic encephalopathy group, the severe hypoxic ischemic encephalopathy group exhibited decreased local efficiency and a low clustering coefficient. The distribution of hub regions in the functional networks had fewer nodes in the severe hypoxic ischemic encephalopathy group compared with the mild hypoxic ischemic encephalopathy group. Moreover, nodal efficiency was reduced in the left rolandic operculum, left supramarginal gyrus, bilateral superior temporal gyrus, and right middle temporal gyrus. These results suggest that the topological structure of the resting state functional network in children with severe hypoxic ischemic encephalopathy is clearly distinct from that in children with mild hypoxic ischemic encephalopathy, and may be associated with impaired language, motion, and cognition. These data indicate that it may be possible to make early predictions regarding brain development in children with severe hypoxic ischemic encephalopathy, enabling early interventions targeting brain function. This study was approved by the Regional Ethics Review Boards of the Changzhou Children's Hospital(approval No. 2013-001) on January 31, 2013. Informed consent was obtained from the family members of the children. The trial was registered with the Chinese Clinical Trial Registry(registration number: ChiCTR1800016409) and the protocol version is 1.0.展开更多
Previous studies have demonstrated the protective effect of hypoxic preconditioning on acute cerebral infarction, but the mechanisms underlying this protection remain unclear. To investigate the protective mechanisms ...Previous studies have demonstrated the protective effect of hypoxic preconditioning on acute cerebral infarction, but the mechanisms underlying this protection remain unclear. To investigate the protective mechanisms of hypoxic preconditioning in relation to its effects on angiogenesis, we in- duced a photochemical model of cerebral infarction in an inbred line of mice (BALB/c). Mice were then exposed to hypoxic preconditioning 30 minutes prior to model establishment. Results showed significantly increased vascular endothelial growth factor and CD31 expression in the ischemic penumbra at 24 and 72 hours post infarction, mainly in neurons and vascular endothelial cells. Hypoxic preconditioning increased vascular endothelial growth factor and CD31 expression in the ischemic penumbra and the expression of vascular endothelial growth factor was positively related to that of CD31. Moreover, hypoxic preconditioning reduced the infarct volume and improved neu- rological function in mice. These findings indicate that the protective role of hypoxic preconditioning in acute cerebral infarction may possibly be due to an increase in expression of vascular endothelial growth factor and CD31 in the ischemic penumbra, which promoted angiogenesis.展开更多
Secondary brain damage caused by hyperactivation of autophagy and inflammatory responses in neurons plays an important role in hypoxic-ischemic brain damage(HIBD).Although previous studies have implicated Toll-like re...Secondary brain damage caused by hyperactivation of autophagy and inflammatory responses in neurons plays an important role in hypoxic-ischemic brain damage(HIBD).Although previous studies have implicated Toll-like receptor 4(TLR4)and nuclear factor kappa-B(NF-κB)in the neuroinflammatory response elicited by brain injury,the role and mechanisms of the TLR4-mediated autophagy signaling pathway in neonatal HIBD are still unclear.We hypothesized that this pathway can regulate brain damage by modulating neuron autophagy and neuroinflammation in neonatal rats with HIBD.Hence,we established a neonatal HIBD rat model using the Rice-Vannucci method,and injected 0.75,1.5,or 3 mg/kg of the TLR4 inhibitor resatorvid(TAK-242)30 minutes after hypoxic ischemia.Our results indicate that administering TAK-242 to neonatal rats after HIBD could significantly reduce the infarct volume and the extent of cerebral edema,alleviate neuronal damage and neurobehavioral impairment,and decrease the expression levels of TLR4,phospho-NF-κB p65,Beclin-1,microtubule-associated protein l light chain 3,tumor necrosis factor-α,and interleukin-1βin the hippocampus.Thus,TAK-242 appears to exert a neuroprotective effect after HIBD by inhibiting activation of autophagy and the release of inflammatory cytokines via inhibition of the TLR4/NF-κB signaling pathway.This study was approved by the Laboratory Animal Ethics Committee of Affiliated Hospital of Yangzhou University,China(approval No.20180114-15)on January 14,2018.展开更多
Acute coronary syndromes remain a leading single cause of death worldwide. Therapeutic strategies to treat cardiomyocyte threatening ischemia/reperfusion injury are urgently needed. Remote ischemic preconditioning(r I...Acute coronary syndromes remain a leading single cause of death worldwide. Therapeutic strategies to treat cardiomyocyte threatening ischemia/reperfusion injury are urgently needed. Remote ischemic preconditioning(r IPC) applied by brief ischemic episodes to heartdistant organs has been tested in several clinical studies, and the major body of evidence points to beneficial effects of r IPC for patients. The underlying signaling, however, remains incompletely understood. This relates particularly to the mechanism by which the protective signal is transferred from the remote site to the target organ. Many pathways have been forwarded but none can explain the protective effects completely. In light of recent experimental studies, we here outline the current knowledge relating to the generation of the protective signal in the remote organ, the signal transfer to the target organ and the transduction of the transferred signal into cardioprotection. The majority of studies favors a humoral factor that activates cardiomyocyte downstream signaling- receptor-dependent and independently. Cellular targets include deleterious calcium(Ca2+) signaling, reactive oxygen species, mitochondrial function and structure, and cellular apoptosis and necrosis. Following an outline of the existing evidence, we will furthermore characterize the existing knowledge and discuss future perspectives with particular emphasis on the interaction between the recently discovered hypoxic nitrite-nitric oxide signaling in r IPC. This refers to the protective role of nitrite, which can be activated endogenously using r IPC and which then contributes to cardioprotection by rIPC.展开更多
We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation r...We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation remains unclear.In this study,we used a neonatal mouse model of hypoxic ischemic brain injury and a lipopolysaccharide-stimulated BV2 cell model and found that treatment with L-cysteine,a H2S precursor,attenuated the cerebral infarction and cerebral atrophy induced by hypoxia and ischemia and increased the expression of miR-9-5p and cystathionineβsynthase(a major H2S synthetase in the brain)in the prefrontal cortex.We also found that an miR-9-5p inhibitor blocked the expression of cystathionineβsynthase in the prefrontal cortex in mice with brain injury caused by hypoxia and ischemia.Furthermore,miR-9-5p overexpression increased cystathionine-β-synthase and H2S expression in the injured prefrontal cortex of mice with hypoxic ischemic brain injury.L-cysteine decreased the expression of CXCL11,an miR-9-5p target gene,in the prefrontal cortex of the mouse model and in lipopolysaccharide-stimulated BV-2 cells and increased the levels of proinflammatory cytokines BNIP3,FSTL1,SOCS2 and SOCS5,while treatment with an miR-9-5p inhibitor reversed these changes.These findings suggest that H2S can reduce neuroinflammation in a neonatal mouse model of hypoxic ischemic brain injury through regulating the miR-9-5p/CXCL11 axis and restoringβ-synthase expression,thereby playing a role in reducing neuroinflammation in hypoxic ischemic brain injury.展开更多
基金the Scientific and Technological Foundation of Hubei Educational Bureau,No. D200528006
文摘BACKGROUND: Some researches report that He-Ne laser can activate function of erythrocytes and increase content of blood and oxygen via bio-stimulating effect; therefore, it suspects that laser radiation at Baihui and Dazhui can partially increase blood circulation for oxygen-supplying content of brain and improve functional status of neurons. OBJECTIVE: To verify the effects of laser radiation at Baihui and Dazhui on the expression of Nissl body of brain tissue neurons and brain-derived neurotrophic factor (BDNF) in newborn rats with ischemic/hypoxic cerebral injury. DESIGN: Randomized controlled animal study. SETTING: Department of Neurological Histochemistry, Xianning University. MATERIALS: Forty Wistar rats of 7 - 8 days old, weighing 15 - 20 g and of both genders, were selected from Wuhan Experimental Animal Center. All the rats were randomly divided into sham operation group (n =8), model group (n =16) and radiation group (n = 16). The experimental animals were disposed according to ethical criteria. BDNF kit was provided by Wuhan Boster Bioengineering Co., Ltd. METHODS: The experiment was carried out in the Department of Neurological Histochemistry, Xianning University from April 2005 to October 2006. Rats in the radiation group and model group were performed with ligation of left common carotid artery, recovered at room temperature for 1 - 6 days, maintained in self-made hypoxic cabin under normal pressure and injected mixture gas (0.05 volume fraction of 02 and 0.92 volume fraction of N2) for 2 hours. In addition, rats in the sham operation group were treated with separation of left common carotid artery but not ligation and hypoxia. Rats in the model group were not given any treatment; while, rats in the radiation group were exposed with He-Ne laser of 63.28 nm in the wave length at Baihui and Dazhui acupoints on the second day after ischemia-hypoxia. The radiation was given for 10 minutes per day and once a day. Ten days were regarded as a course and the rats were exposed for 2 courses in total. At 20 days after routine breeding, left hemisphere tissues of rats in the three groups were collected for staining of Nissl body and immunohistochemistry of BDNF. MAIN OUTCOME MEASURES: Nissl body staining in left hemisphere tissue and expression of immune positive cells of BDNF. RESULTS: All 40 rats were involved in the final analysis. (1) Nissl body staining: Neuronal cytoplasm of brain tissue was full of blue granule Nissl bodies in the sham operation group; while, Nissl body in neuronal cytoplasm in the model group was stained slightly and had a certain degree of degeneration; meanwhile, there were a lot of blank area in ischemic region. Nissl body in neuron cytoplasm was gradually recovered in the radiation group and relieved as compared with that in the model group. (2) Positive cells of BDNF: Number of immune positive cells of BDNF which were ligated in lateral cerebral hemisphere of rats in the model group was higher than that in the sham operation group (P 〈 0.05); while, BDNF expression in the radiation group was increased as compared with that in the model group (P 〈 0.05). CONCLUSION: After laser acupoint radiation, Nissl body is increased and BDNF expression is also increased. This suggests that laser acupoint radiation has neuroprotective effect on brain tissue after ischemia-hypoxia injury.
基金supported by Fundação de AmparoàPesquisa do Estado do Rio de Janeiro(FAPERJ,E-26/010.002160/2019,E-26/203.227/2017,E-260003/001177/2020,and E-26/201.279/2021)Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq,313757/2020-8,311188/2023-0)(to PMPC).
文摘Neonatal hypoxic-ischemic encephalopathy(HIE)is a significant cause of disability in children.Improving brain function and accelerating neurological recovery may require a combination of neuroprotective and pro-regenerative treatments at different stages of HIE.While the first hours after the neonatal insult are the most critical period for neuroprotection,the existence of secondary and tertiary mechanisms of brain injury offers the possibility of preventing delayed neurodegeneration in the subsequent days,weeks,or months(Levison et al.,2022).
基金supported by grants from the Swiss National Science Foundation(310030-182332 and 310030L-208141)(to JP)。
文摘The challenge of protecting the brain resides in the unique characteristics of neurons,as they are postmitotic,long-lived,excitable,and polarized cells with long and fragile axons and dendrites.The complexity of the multiple potential cell death pathways further complicates this issue.In addition,the immature brain is prone to a“cell death continuum,”which involves intricate molecular interconnections between cell death processes.
基金supported by the National Natural Science Foundation of China,82471345(to LC)the Key Research and Development Program for Social Development by the Jiangsu Provincial Department of Science and Technology.No.BE2022668(to LC).
文摘Ischemic stroke is a major cause of neurological deficits and high disability rate.As the primary immune cells of the central nervous system,microglia play dual roles in neuroinflammation and tissue repair following a stroke.Their dynamic activation and polarization states are key factors that influence the disease process and treatment outcomes.This review article investigates the role of microglia in ischemic stroke and explores potential intervention strategies.Microglia exhibit a dynamic functional state,transitioning between pro-inflammatory(M1)and anti-inflammatory(M2)phenotypes.This duality is crucial in ischemic stroke,as it maintains a balance between neuroinflammation and tissue repair.Activated microglia contribute to neuroinflammation through cytokine release and disruption of the blood-brain barrier,while simultaneously promoting tissue repair through anti-inflammatory responses and regeneration.Key pathways influencing microglial activation include Toll-like receptor 4/nuclear factor kappa B,mitogen-activated protein kinases,Janus kinase/signal transducer and activator of transcription,and phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathways.These pathways are targets for various experimental therapies aimed at promoting M2 polarization and mitigating damage.Potential therapeutic agents include natural compounds found in drugs such as minocycline,as well as traditional Chinese medicines.Drugs that target these regulatory mechanisms,such as small molecule inhibitors and components of traditional Chinese medicines,along with emerging technologies such as single-cell RNA sequencing and spatial transcriptomics,offer new therapeutic strategies and clinical translational potential for ischemic stroke.
基金supported by the Chinese Medicine"Dual Chain Integration"Young and Middle-aged Scientific Research and Innovation Teams(No.2022-SLRH-YQ-006)the Key R&D Programme Projects of Xianyang Municipality(No.L2023-ZDYF-SF-014)+1 种基金the Shaanxi University of Traditional Chinese Medicine Science,Education and Research Collaborative Educational Achievement Transformation Project(No.2024KC03)the open research topic from the Key Laboratory of Neurological Diseases in Traditional Chinese Medicine,Shaanxi Province(No.KF202315).
文摘Background:Baicalin(BC)and geniposide(GD)are effective components of natural remedies,and studies have shown that they protect against cerebral ischemic stroke(CIS).Transient receptor potential vanilloid 4(TRPV4)is a calcium-permeable channel that plays important roles in vascular function and vasodilation.However,no studies are available on the effect of BC/GD on the TRPV4 channel and rat cerebral basilar artery(CBA).This study examined the effect of the combination of BC/GD(7:3)on cerebral vascular function after CIS.Methods:We used western blotting to determine TRPV4 protein levels and live cell fluorescence Ca 2+imaging and patch clamp to determine how BC/GD activates TRPV4 channels.Isolated vessel experiments were used to observe the dilatory effects of BC/GD on CBA under different conditions.Laser Doppler imaging was used to measure cerebral blood flow in rats.Triphenyl tetrazolium chloride and Nissl stainings were used to determine the infarct area in the rat brain and neuronal damage,respectively.Results:BC/GD significantly boosted TRPV4 protein levels in vascular smooth muscle cells(VSMCs)during oxygen-glucose deprivation and increased[Ca 2+]i in TRPV4-HEK 293 cells and VSMCs.This effect was not observed in vector-HEK 293 cells.In patch clamp experiments,BC/GD increased Ca 2+currents in TRPV4-HEK 293 cells,whereas no significant changes were observed in vector-HEK 293 cells.BC/GD dilated CBA contractions induced by U46619 and KCl,with a concentration-dependent increase of the dilatory effect.In the middle cerebral artery occlusion model,cerebral blood flow in the ischemic side significantly decreased,whereas BC/GD intervention significantly increased cerebral blood perfusion in the ischemic side,reduced the infarct area,and improved neurological function scores and neuronal damage.Conclusion:BC/GD activates the TRPV4 channel,leading to Ca ^(2+) influx,which in turn activates the intermediate conductance calcium-activated potassium channels channel to regulate vasodilation in vascular smooth muscle.
基金supported by the National Natural Science Foundation of China,Nos.82301093(to QC)and 22334004(to HY)the Fuzhou University Fund for Testing Precious Equipment,No.2025T038(to QC)。
文摘The mechanisms underlying the pathophysiology of ischemic stroke are complex and multifactorial and include excitotoxicity,oxidative stress,inflammatory responses,and blood–brain barrier disruption.While vascular recanalization treatments such as thrombolysis and mechanical thrombectomy have achieved some success,reperfusion injury remains a significant contributor to the exacerbation of brain injury.This emphasizes the need for developing neuroprotective strategies to mitigate this type of injury.The purpose of this review was to examine the application of nanotechnology in the treatment of ischemic stroke,covering research progress in nanoparticlebased drug delivery,targeted therapy,and antioxidant and anti-inflammatory applications.Nanobased drug delivery systems offer several advantages compared to traditional therapies,including enhanced blood–brain barrier penetration,prolonged drug circulation time,improved drug stability,and targeted delivery.For example,inorganic nanoparticles,such as those based on CeO_(2),have been widely studied for their strong antioxidant capabilities.Biomimetic nanoparticles,such as those coated with cell membranes,have garnered significant attention owing to their excellent biocompatibility and targeting abilities.Nanoparticles can be used to deliver a wide range of neuroprotective agents,such as antioxidants(e.g.,edaravone),anti-inflammatory drugs(e.g.,curcumin),and neurotrophic factors.Nanotechnology significantly enhances the efficacy of these drugs while minimizing adverse reactions.Although nanotechnology has demonstrated great potential in animal studies,its clinical application still faces several challenges,including the long-term safety of nanoparticles,the feasibility of large-scale production,quality control,and the ability to predict therapeutic effects in humans.In summary,nanotechnology holds significant promise for the treatment of ischemic stroke.Future research should focus on further exploring the mechanisms of action of nanoparticles,developing multifunctional nanoparticles,and validating their safety and efficacy through rigorous clinical trials.Moreover,interdisciplinary collaboration is essential for advancing the use of nanotechnology in stroke treatment.
基金supported by the National Natural Science Foundation of China,Nos.82174496(to NW),82374574(to NW),82302865(to LL)Shanghai Science and Technology Committee Sailing Program,Nos.23YF1403800(to LL),23YF1405200(to YX)Shanghai Hospital Development Center Foundation-Shanghai Municipal Hospital Rehabilitation Medicine Specialty Alliance,No.SHDC22023304(to YW).
文摘Stroke remains a leading cause of death and disability worldwide,and electroacupuncture has a long history of use in stroke treatment.This meta-analysis and systematic review aimed to evaluate the efficacy of electroacupuncture and explore its potential mechanisms in animal models of ischemic stroke.The PubMed,EMBASE,Web of Science,CENTRAL,and CINAHL databases were comprehensively searched up to May 1,2024.This review included articles on preclinical investigations of the efficacy and mechanisms of electroacupuncture in treating ischemic stroke.Data from 70 eligible studies were analyzed in Stata 18.0,using a random-effects model to calculate the standardized mean difference(Hedge’s g).The risk of bias was assessed using RevMan 5.4 software,and the quality of evidence was rated according to the Grading of Recommendations,Assessment,Development,and Evaluation(GRADE)system.Subgroup analyses were conducted to test the consistency of the results and sensitivity analyses were used to assess their robustness.The quality assessment revealed that most studies adequately handled incomplete data and selective reporting.However,several methodological limitations were identified:only 4 studies demonstrated a low risk of allocation concealment,26 achieved a low risk of outcome assessment bias,and 9 had a high risk of randomization bias.Additionally,there was an unclear risk regarding participant blinding and other methodological aspects.The GRADE assessment rated 12 outcomes as moderate quality and 6 as low quality.The mechanisms of electroacupuncture treatment for ischemic stroke can be categorized as five primary pathways:(1)Electroacupuncture significantly reduced infarct volume and apoptotic cell death(P<0.01)in ischemic stroke models;(2)electroacupuncture significantly decreased the levels of pro-inflammatory factors(P<0.01)while increasing the levels of anti-inflammatory factors(P=0.02);(3)electroacupuncture reduced the levels of oxidative stress indicators(P<0.01)and enhanced the expression of antioxidant enzymes(P<0.01);(4)electroacupuncture significantly promoted nerve regeneration(P<0.01);and(5)electroacupuncture influenced blood flow remodeling(P<0.01)and angiogenesis(P<0.01).Subgroup analyses indicated that electroacupuncture was most effective in the transient middle cerebral artery occlusion model(P<0.01)and in post-middle cerebral artery occlusion intervention(P<0.01).Dispersive waves were found to outperform continuous waves with respect to neuroprotection and anti-inflammatory effects(P<0.01),while scalp acupoints demonstrated greater efficacy than body acupoints(P<0.01).The heterogeneity among the included studies was minimal,and sensitivity analyses indicated stable results.Their methodological quality was generally satisfactory.In conclusion,electroacupuncture is effective in treating cerebral ischemia by modulating cell apoptosis,oxidative stress,inflammation,stroke-induced nerve regeneration,blood flow remodeling,and angiogenesis.The efficacy of electroacupuncture may be influenced by factors such as the middle cerebral artery occlusion model,the timing of intervention onset,waveform,and acupoint selection.Despite the moderate to low quality of evidence,these findings suggest that electroacupuncture has clinical potential for improving outcomes in ischemic stroke.
基金supported by the National Natural Science Foundation of China,specifically through grants(No.8227431382304947)Key Research and Development Project of Shaanxi Province(2023GHZD43).Peer re v iew information。
文摘Background:Neurological disorders(NDs),including ischemic stroke(IS),Parkinson’s disease(PD),and Alzheimer’s disease(AD),are major contributors to global morbidity and mortality.Boswellia extract has demonstrated neuroprotective properties,yet a comprehensive systematic review assessing its efficacy remains absent.This study aims to evaluate the efficacy of Boswellia extract in treating NDs,with a particular focus on its effects in AD and its potential for long-term neurorestoration,thereby supporting further investigation into Boswellia’s therapeutic role in ND management.Methods:A systematic literature search was performed in PubMed,Web of Science,ScienceDirect,and Google Scholar for English-language studies published up to March 2024.Eighteen studies met the inclusion criteria and were included in the meta-analysis.The study protocol was registered on PROSPERO(CRD42024524386).Eligible studies involved rodent models of IS,PD,or AD with post-operative interventions using Boswellia extract.Data extraction focused on mechanisms of action,dosages,treatment durations,and therapeutic outcomes.Studies were excluded if they involved non-ND models,combined treatments,or had incomplete data.Two researchers independently conducted literature screening and data extraction.Statistical analyses were conducted using Stata(version 17)and RevMan(version 5.4),employing fixed or random-effects models based on heterogeneity assessments.Result s:Boswellia extract significantly improved the mean effect size for NDs(ES=1.28,95%CI(1.05,1.51),P<0.001).Specifically,it reduced cerebral infarct volume in IS(SMD=−2.87,95%CI(−3.42,−2.32))and enhanced behavioral outcomes in AD(SMD=3.26,95%CI(2.07,5.14))and PD(SMD=5.37,95%CI(3.93,6.80)).Subgroup analyses revealed that Boswellia extract exhibited superior efficacy in AD when administered orally and via intra-cerebroventricular injection.Long-term treatment with Boswellia extract suggested potential neurorestorative effects.Additionally,Boswellia extract was more effective than its monomeric constituents,highlighting its promising role in ND treatment.Conclusion:Boswellia extract demonstrates significant neuroprotective effects across various NDs,particularly in AD and in promoting long-term neurorestoration.These findings support the need for further research into Boswellia’s potential as a therapeutic agent in the management of neurological disorders.
基金supported by Shanghai Shenkang Center Demonstration Research Ward Construction,No.SHDC2022CRW010(to MF)Shanghai Shenkang Center Medical Enterprise Integration and Innovation Collaborative Special Project,No.SHDC2022CRT018(to MF)+4 种基金Shanghai Health System Key Supported Discipline-Rehabilitation Medicine,No.2023ZDFC0301(to JT)Science and Technology Development Project of Shanghai University of Traditional Chinese Medicine,No.23KFL009(to JT)Shanghai Postdoctoral Excellence Program,No.2022515(to CY)Yangfan Special Project of Shanghai Science and Technology Innovation Action Plan,No.23YF1447600(to CY)China Postdoctoral Science Foundation,No.2023M732338(to CY).
文摘Ischemic stroke,which is characterized by hypoxia and ischemia,triggers a cascade of injury responses,including neurotoxicity,inflammation,oxidative stress,disruption of the blood-brain barrier,and neuronal death.In this context,tryptophan metabolites and enzymes,which are synthesized through the kynurenine and 5-hydroxytryptamine pathways,play dual roles.The delicate balance between neurotoxic and neuroprotective substances is a crucial factor influencing the progression of ischemic stroke.Neuroprotective metabolites,such as kynurenic acid,exert their effects through various mechanisms,including competitive blockade of N-methyl-D-aspartate receptors,modulation ofα7 nicotinic acetylcholine receptors,and scavenging of reactive oxygen species.In contrast,neurotoxic substances such as quinolinic acid can hinder the development of vascular glucose transporter proteins,induce neurotoxicity mediated by reactive oxygen species,and disrupt mitochondrial function.Additionally,the enzymes involved in tryptophan metabolism play major roles in these processes.Indoleamine 2,3-dioxygenase in the kynurenine pathway and tryptophan hydroxylase in the 5-hydroxytryptamine pathway influence neuroinflammation and brain homeostasis.Consequently,the metabolites generated through tryptophan metabolism have substantial effects on the development and progression of ischemic stroke.Stroke treatment aims to restore the balance of various metabolite levels;however,precise regulation of tryptophan metabolism within the central nervous system remains a major challenge for the treatment of ischemic stroke.Therefore,this review aimed to elucidate the complex interactions between tryptophan metabolites and enzymes in ischemic stroke and develop targeted therapies that can restore the delicate balance between neurotoxicity and neuroprotection.
基金supported by the China Postdoctoral Science Foundation,No.2022M712689the Natural Science Foundation of the Jiangsu Higher Education Institutions of China,No.22KJB1800029+1 种基金The University Student Innovation Project of Yangzhou University,No.XCX20240856The Jiangsu Provincial Science and Technology Talent Project,No.FZ20240964(all to TX).
文摘Ischemic stroke is a serious medical event that cannot be predicted in advance and can have longlasting effects on patients,families,and communities.A deeper understanding of the changes in gene expression and the fundamental molecular mechanisms involved could help address this critical issue.In recent years,research into regulatory long non-coding(lnc)RNAs,a diverse group of RNA molecules with regulatory functions,has emerged as a promising direction in the study of cerebral infarction.This review paper aims to provide a comprehensive exploration of the roles of regulatory lncRNAs in cerebral infarction,as well as potential strategies for their application in clinical settings.LncRNAs have the potential to act as“sponges”that attract specific microRNAs,thereby regulating the expression of microRNA target genes.These interactions influence various aspects of ischemic stroke,including reperfusion-induced damage,cell death,immune responses,autophagy,angiogenesis,and the generation of reactive oxygen species.We highlight several regulatory lncRNAs that have been utilized in animal model treatments,including lncRNA NKILA,lncRNA Meg8,and lncRNA H19.Additionally,we discuss lncRNAs that have been used as biomarkers for the diagnosis and prognosis of cerebral infarction,such as lncRNA FOXO3,lncRNA XIST,and lncRNA RMST.The lncRNAs hold potential for genetic-level treatments in patients.However,numerous challenges,including inefficiency,low targeting accuracy,and side effects observed in preliminary studies,indicate the need for thorough investigation.The application of lncRNAs in ischemic stroke presents challenges that require careful and extensive validation.
基金supported by the National Key Research and Development Program of China,No.2018YFA0108602the CAMS Initiative for Innovative Medicine,No.2021-1-I2M-019National High-Level Hospital Clinical Research Funding,No.2022-PUMCH-C-042(all to XB)。
文摘Ischemic stroke is a significant global health crisis,frequently resulting in disability or death,with limited therapeutic interventions available.Although various intrinsic reparative processes are initiated within the ischemic brain,these mechanisms are often insufficient to restore neuronal functionality.This has led to intensive investigation into the use of exogenous stem cells as a potential therapeutic option.This comprehensive review outlines the ontogeny and mechanisms of activation of endogenous neural stem cells within the adult brain following ischemic events,with focus on the impact of stem cell-based therapies on neural stem cells.Exogenous stem cells have been shown to enhance the proliferation of endogenous neural stem cells via direct cell-tocell contact and through the secretion of growth factors and exosomes.Additionally,implanted stem cells may recruit host stem cells from their niches to the infarct area by establishing so-called“biobridges.”Furthermore,xenogeneic and allogeneic stem cells can modify the microenvironment of the infarcted brain tissue through immunomodulatory and angiogenic effects,thereby supporting endogenous neuroregeneration.Given the convergence of regulatory pathways between exogenous and endogenous stem cells and the necessity for a supportive microenvironment,we discuss three strategies to simultaneously enhance the therapeutic efficacy of both cell types.These approaches include:(1)co-administration of various growth factors and pharmacological agents alongside stem cell transplantation to reduce stem cell apoptosis;(2)synergistic administration of stem cells and their exosomes to amplify paracrine effects;and(3)integration of stem cells within hydrogels,which provide a protective scaffold for the implanted cells while facilitating the regeneration of neural tissue and the reconstitution of neural circuits.This comprehensive review highlights the interactions and shared regulatory mechanisms between endogenous neural stem cells and exogenously implanted stem cells and may offer new insights for improving the efficacy of stem cell-based therapies in the treatment of ischemic stroke.
基金supported by the Medicine-Engineering Interdisciplinary Project of Sun Yat-sen Memorial Hospital,China,No.YXYGRH202203(to YW)Key-Area Research and Development Program of Guangdong Province,China,No.2023B1111050003(to HC)Guangzhou Science and Technology Talent Project of China,No.201909020006(to HC).
文摘Intrathecal administration of human umbilical cord mesenchymal stem cells may be a promising approach for the treatment of stroke,but its safety,effectiveness,and mechanism remain to be elucidated.In this study,good manufacturing practice-grade human umbilical cord mesenchymal stem cells(5×105 and 1×106 cells)and saline were administered by cerebellomedullary cistern injection 72 hours after stroke induced by middle cerebral artery occlusion in rats.The results showed(1)no significant difference in mortality or general conditions among the three groups.There was no abnormal differentiation or tumor formation in various organs of rats in any group.(2)Compared with saline-treated animals,those treated with human umbilical cord mesenchymal stem cells showed significant functional recovery and reduced infarct volume,with no significant differences between different human umbilical cord mesenchymal stem cell doses.(3)Human umbilical cord mesenchymal stem cells were found in the ischemic brain after 14 and 28 days of follow-up,and the number of positive cells significantly decreased over time.(4)Neuronal nuclei expression in the human umbilical cord mesenchymal stem cell group was greater than that in the saline group,while glial fibrillary acidic protein and ionized calcium binding adaptor molecule 1 expression levels decreased.(5)Human umbilical cord mesenchymal stem cell treatment increased the number of CD31+microvessels and doublecortin-positive cells after ischemic stroke.Human umbilical cord mesenchymal stem cells also upregulated the expression of CD31+/Ki67+.(6)At 14 days after intrathecal administration,brain-derived neurotrophic factor expression in the peri-infarct area and the concentrations of brain-derived neurotrophic factor in the cerebrospinal fluid in both human umbilical cord mesenchymal stem cell groups were significantly greater than those in the saline group and persisted until the 28th day.Taken together,these results indicate that the intrathecal administration of human umbilical cord mesenchymal stem cells via cerebellomedullary cistern injection is safe and effective for the treatment of ischemic stroke in rats.The mechanisms may include alleviating the local inflammatory response in the peri-infarct region,promoting neurogenesis and angiogenesis,and enhancing the production of neurotrophic factors.
基金supported by the National Natural Science Foundation of China,Nos.81870921(to YW),81974179(to ZZ),82271320(to ZZ),82071284(to YT)National Key R&D Program of China,No.2022YFA1603600(to ZZ),2019YFA0112000(to YT)+1 种基金Scientific Research and Innovation Program of Shanghai Education Commission,No.2019-01-07-00-02-E00064(to GYY)Scientific and Technological Innovation Act Program of Shanghai Science and Technology Commission,No.20JC1411900(to GYY).
文摘AAV-PHP.eB is an artificial adeno-associated virus(AAV)that crosses the blood-brain barrier and targets neurons more efficiently than other AAVs when administered systematically.While AAV-PHP.eB has been used in various disease models,its cellular tropism in cerebrovascular diseases remains unclear.In the present study,we aimed to elucidate the tropism of AAV-PHP.eB for different cell types in the brain in a mouse model of ischemic stroke and evaluate its effectiveness in mediating basic fibroblast growth factor(bFGF)gene therapy.Mice were injected intravenously with AAV-PHP.eB either 14 days prior to(pre-stroke)or 1 day following(post-stroke)transient middle cerebral artery occlusion.Notably,we observed a shift in tropism from neurons to endothelial cells with post-stroke administration of AAV-PHP.eB-mNeonGreen(mNG).This endothelial cell tropism correlated strongly with expression of the endothelial membrane receptor lymphocyte antigen 6 family member A(Ly6A).Furthermore,AAV-PHP.eB-mediated overexpression of bFGF markedly improved neurobehavioral outcomes and promoted long-term neurogenesis and angiogenesis post-ischemic stroke.Our findings underscore the significance of considering potential tropism shifts when utilizing AAV-PHP.eB-mediated gene therapy in neurological diseases and suggest a promising new strategy for bFGF gene therapy in stroke treatment.
基金supported by the National Natural Science Foundation of China,Nos.82171456(to QY)and 81971229(to QY)the Natural Science Foundation of Chongqing,Nos.CSTC2021JCYJ-MSXMX0263(to QY)and CSTB2023NSCQ-MSX1015(to XL)Doctoral Innovation Project of The First Affiliated Hospital of Chongqing Medical University,Nos.CYYY-BSYJSCXXM-202318(to JW)and CYYY-BSYJSCXXM-202327(to HT).
文摘Recent studies have shown that fibrotic scar formation following cerebral ischemic injury has varying effects depending on the microenvironment.However,little is known about how fibrosis is induced and regulated after cerebral ischemic injury.Sonic hedgehog signaling participates in fibrosis in the heart,liver,lung,and kidney.Whether Shh signaling modulates fibrotic scar formation after cerebral ischemic stroke and the underlying mechanisms are unclear.In this study,we found that Sonic Hedgehog expression was upregulated in patients with acute ischemic stroke and in a middle cerebral artery occlusion/reperfusion injury rat model.Both Sonic hedgehog and Mitofusin 2 showed increased expression in the middle cerebral artery occlusion rat model and in vitro fibrosis cell model induced by transforming growth factor-beta 1.Activation of the Sonic hedgehog signaling pathway enhanced the expression of phosphorylated Smad 3 and Mitofusin 2 proteins,promoted the formation of fibrotic scars,protected synapses or promoted synaptogenesis,alleviated neurological deficits following middle cerebral artery occlusion/reperfusion injury,reduced cell apoptosis,facilitated the transformation of meninges fibroblasts into myofibroblasts,and enhanced the proliferation and migration of meninges fibroblasts.The Smad3 phosphorylation inhibitor SIS3 reversed the effects induced by Sonic hedgehog signaling pathway activation.Bioinformatics analysis revealed significant correlations between Sonic hedgehog and Smad3,between Sonic hedgehog and Mitofusin 2,and between Smad3 and Mitofusin 2.These findings suggest that Sonic hedgehog signaling may influence Mitofusin 2 expression by regulating Smad3 phosphorylation,thereby modulating the formation of early fibrotic scars following cerebral ischemic stroke and affecting prognosis.The Sonic Hedgehog signaling pathway may serve as a new therapeutic target for stroke treatment.
基金supported by the National Institute of Health/National Eye Institute(NIH/NEI)grants(R00 EY029373,R01 EY035658)to AYFKnights Templar Eye Foundation Research Grant to ESIntramural UAMS Hornick and Sturgis grants to AYF and ES respectively。
文摘Ischemic retinopathy is a leading cause of blindness:Ischemic retinopathies including diabetic retinopathy(DR),retinopathy of prematurity,and retinal artery and vein occlusion are major causes of visual impairment.Ischemic retinopathy can be acute,such as in central or branch retinal artery occlusion,or chronic,such as with DR(Figure 1).Although the causes of retinopathies are diverse,one pathogenic event shared by these conditions is the myeloid cell response to retinal ischemia(Shahror et al.,2024a).
基金supported by the Jiangsu Maternal and Child Health Research Project of China,No.F201612(to HXL)Changzhou Science and Technology Support Plan of China,No.CE20165027(to HXL)+1 种基金Changzhou City Planning Commission Major Science and Technology Projects of China,No.ZD201515(to HXL)Changzhou High Level Training Fund for Health Professionals of China,No.2016CZBJ028(to HXL)
文摘Resting-state functional magnetic resonance imaging has revealed disrupted brain network connectivity in adults and teenagers with cerebral palsy. However, the specific brain networks implicated in neonatal cases remain poorly understood. In this study, we recruited 14 termborn infants with mild hypoxic ischemic encephalopathy and 14 term-born infants with severe hypoxic ischemic encephalopathy from Changzhou Children's Hospital, China. Resting-state functional magnetic resonance imaging data showed efficient small-world organization in whole-brain networks in both the mild and severe hypoxic ischemic encephalopathy groups. However, compared with the mild hypoxic ischemic encephalopathy group, the severe hypoxic ischemic encephalopathy group exhibited decreased local efficiency and a low clustering coefficient. The distribution of hub regions in the functional networks had fewer nodes in the severe hypoxic ischemic encephalopathy group compared with the mild hypoxic ischemic encephalopathy group. Moreover, nodal efficiency was reduced in the left rolandic operculum, left supramarginal gyrus, bilateral superior temporal gyrus, and right middle temporal gyrus. These results suggest that the topological structure of the resting state functional network in children with severe hypoxic ischemic encephalopathy is clearly distinct from that in children with mild hypoxic ischemic encephalopathy, and may be associated with impaired language, motion, and cognition. These data indicate that it may be possible to make early predictions regarding brain development in children with severe hypoxic ischemic encephalopathy, enabling early interventions targeting brain function. This study was approved by the Regional Ethics Review Boards of the Changzhou Children's Hospital(approval No. 2013-001) on January 31, 2013. Informed consent was obtained from the family members of the children. The trial was registered with the Chinese Clinical Trial Registry(registration number: ChiCTR1800016409) and the protocol version is 1.0.
基金supported by the National Natural Science Foundation of China,No.30870854the Natural Science Foundation of Beijing,No.7111003the Natural Science Foundation of Shandong Province,No.ZR2010HM029
文摘Previous studies have demonstrated the protective effect of hypoxic preconditioning on acute cerebral infarction, but the mechanisms underlying this protection remain unclear. To investigate the protective mechanisms of hypoxic preconditioning in relation to its effects on angiogenesis, we in- duced a photochemical model of cerebral infarction in an inbred line of mice (BALB/c). Mice were then exposed to hypoxic preconditioning 30 minutes prior to model establishment. Results showed significantly increased vascular endothelial growth factor and CD31 expression in the ischemic penumbra at 24 and 72 hours post infarction, mainly in neurons and vascular endothelial cells. Hypoxic preconditioning increased vascular endothelial growth factor and CD31 expression in the ischemic penumbra and the expression of vascular endothelial growth factor was positively related to that of CD31. Moreover, hypoxic preconditioning reduced the infarct volume and improved neu- rological function in mice. These findings indicate that the protective role of hypoxic preconditioning in acute cerebral infarction may possibly be due to an increase in expression of vascular endothelial growth factor and CD31 in the ischemic penumbra, which promoted angiogenesis.
基金financially supported by the National Natural Science Foundation of China,No.81771625(to XF)the Jiangsu Provincial Key Medical Discipline of China,No.ZDXKA2016013(to XF)the Pediatric Clinical Center of Suzhou City of China,No.Szzx201504(to XF)
文摘Secondary brain damage caused by hyperactivation of autophagy and inflammatory responses in neurons plays an important role in hypoxic-ischemic brain damage(HIBD).Although previous studies have implicated Toll-like receptor 4(TLR4)and nuclear factor kappa-B(NF-κB)in the neuroinflammatory response elicited by brain injury,the role and mechanisms of the TLR4-mediated autophagy signaling pathway in neonatal HIBD are still unclear.We hypothesized that this pathway can regulate brain damage by modulating neuron autophagy and neuroinflammation in neonatal rats with HIBD.Hence,we established a neonatal HIBD rat model using the Rice-Vannucci method,and injected 0.75,1.5,or 3 mg/kg of the TLR4 inhibitor resatorvid(TAK-242)30 minutes after hypoxic ischemia.Our results indicate that administering TAK-242 to neonatal rats after HIBD could significantly reduce the infarct volume and the extent of cerebral edema,alleviate neuronal damage and neurobehavioral impairment,and decrease the expression levels of TLR4,phospho-NF-κB p65,Beclin-1,microtubule-associated protein l light chain 3,tumor necrosis factor-α,and interleukin-1βin the hippocampus.Thus,TAK-242 appears to exert a neuroprotective effect after HIBD by inhibiting activation of autophagy and the release of inflammatory cytokines via inhibition of the TLR4/NF-κB signaling pathway.This study was approved by the Laboratory Animal Ethics Committee of Affiliated Hospital of Yangzhou University,China(approval No.20180114-15)on January 14,2018.
文摘Acute coronary syndromes remain a leading single cause of death worldwide. Therapeutic strategies to treat cardiomyocyte threatening ischemia/reperfusion injury are urgently needed. Remote ischemic preconditioning(r IPC) applied by brief ischemic episodes to heartdistant organs has been tested in several clinical studies, and the major body of evidence points to beneficial effects of r IPC for patients. The underlying signaling, however, remains incompletely understood. This relates particularly to the mechanism by which the protective signal is transferred from the remote site to the target organ. Many pathways have been forwarded but none can explain the protective effects completely. In light of recent experimental studies, we here outline the current knowledge relating to the generation of the protective signal in the remote organ, the signal transfer to the target organ and the transduction of the transferred signal into cardioprotection. The majority of studies favors a humoral factor that activates cardiomyocyte downstream signaling- receptor-dependent and independently. Cellular targets include deleterious calcium(Ca2+) signaling, reactive oxygen species, mitochondrial function and structure, and cellular apoptosis and necrosis. Following an outline of the existing evidence, we will furthermore characterize the existing knowledge and discuss future perspectives with particular emphasis on the interaction between the recently discovered hypoxic nitrite-nitric oxide signaling in r IPC. This refers to the protective role of nitrite, which can be activated endogenously using r IPC and which then contributes to cardioprotection by rIPC.
基金supported by the National Natural Science Foundation of China,Nos.82271327(to ZW),82072535(to ZW),81873768(to ZW),and 82001253(to TL).
文摘We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation remains unclear.In this study,we used a neonatal mouse model of hypoxic ischemic brain injury and a lipopolysaccharide-stimulated BV2 cell model and found that treatment with L-cysteine,a H2S precursor,attenuated the cerebral infarction and cerebral atrophy induced by hypoxia and ischemia and increased the expression of miR-9-5p and cystathionineβsynthase(a major H2S synthetase in the brain)in the prefrontal cortex.We also found that an miR-9-5p inhibitor blocked the expression of cystathionineβsynthase in the prefrontal cortex in mice with brain injury caused by hypoxia and ischemia.Furthermore,miR-9-5p overexpression increased cystathionine-β-synthase and H2S expression in the injured prefrontal cortex of mice with hypoxic ischemic brain injury.L-cysteine decreased the expression of CXCL11,an miR-9-5p target gene,in the prefrontal cortex of the mouse model and in lipopolysaccharide-stimulated BV-2 cells and increased the levels of proinflammatory cytokines BNIP3,FSTL1,SOCS2 and SOCS5,while treatment with an miR-9-5p inhibitor reversed these changes.These findings suggest that H2S can reduce neuroinflammation in a neonatal mouse model of hypoxic ischemic brain injury through regulating the miR-9-5p/CXCL11 axis and restoringβ-synthase expression,thereby playing a role in reducing neuroinflammation in hypoxic ischemic brain injury.