Small-scale farmland water conservancy projects are crucial infrastructure for ensuring agricultural production and enhancing water resource utilization efficiency,with their water-saving benefits directly linked to n...Small-scale farmland water conservancy projects are crucial infrastructure for ensuring agricultural production and enhancing water resource utilization efficiency,with their water-saving benefits directly linked to national food security and sustainable agricultural development.This study focuses on small-scale farmland water conservancy projects in China,identifying issues such as aging facilities,outdated technology,and management deficiencies through field research and data analysis.Targeted pathways for enhancing water-saving efficiency are proposed from three dimensions:engineering technology optimization,management mechanism innovation,and policy support.Research indicates that by promoting efficient water-saving technologies,establishing a diversified management model,and improving policy incentive mechanisms,the irrigation water utilization coefficient of small-scale farmland water conservancy projects can be increased by 0.1-0.15,and water consumption per unit area of farmland can be reduced by 15-20%.The findings provide theoretical references and practical guidance for the quality improvement and water-saving enhancement of small-scale farmland water conservancy projects in China.展开更多
This study uses geographically weighted regression to determine the spatial distribution of the effective utilization coefficient of irrigation water in Zhejiang Province,China,owing to the influences of spatial attri...This study uses geographically weighted regression to determine the spatial distribution of the effective utilization coefficient of irrigation water in Zhejiang Province,China,owing to the influences of spatial attributes on the irrigation efficiency.The sample set of this study comprised 165 agricultural test sites.A multivariate linear regression model and a geographically weighted regression model were established using the effective utilization coefficient of agricultural irrigation water as the dependent variable in addition to a suite of independent variables,including the actual irrigation area,the percentage of farmland using water-saving irrigation,the type of irrigation area,the net water consumption per mu,the water intake method,the terrain slope,and the soil field capacity.Results revealed a positive spatial correlation and noticeable agglomeration features in the effective utilization coefficient of irrigation water in Zhejiang Province.The geographically weighted regression model performed better in terms of fit and prediction accuracy than the multivariate linear regression model.The obtained findings confirm the suitability of the geographically weighted regression model for determining the spatial distribution of the effective utilization coefficient of irrigation water in Zhejiang,and offer a new approach on a regional scale.展开更多
文摘Small-scale farmland water conservancy projects are crucial infrastructure for ensuring agricultural production and enhancing water resource utilization efficiency,with their water-saving benefits directly linked to national food security and sustainable agricultural development.This study focuses on small-scale farmland water conservancy projects in China,identifying issues such as aging facilities,outdated technology,and management deficiencies through field research and data analysis.Targeted pathways for enhancing water-saving efficiency are proposed from three dimensions:engineering technology optimization,management mechanism innovation,and policy support.Research indicates that by promoting efficient water-saving technologies,establishing a diversified management model,and improving policy incentive mechanisms,the irrigation water utilization coefficient of small-scale farmland water conservancy projects can be increased by 0.1-0.15,and water consumption per unit area of farmland can be reduced by 15-20%.The findings provide theoretical references and practical guidance for the quality improvement and water-saving enhancement of small-scale farmland water conservancy projects in China.
基金This study was supported by the National Key R&D Program of China(Nos.2016YFC0401005 and 2016YFA0601703)the National Natural Science Foundation of China(Grant Nos.42075191,92047203 and 91847301)Nanjing Hydraulic Research Institute Fund(No.Y520009).We thank Chinese Academy of Meteorological Sciences for providing monitoring data of the study area.
文摘This study uses geographically weighted regression to determine the spatial distribution of the effective utilization coefficient of irrigation water in Zhejiang Province,China,owing to the influences of spatial attributes on the irrigation efficiency.The sample set of this study comprised 165 agricultural test sites.A multivariate linear regression model and a geographically weighted regression model were established using the effective utilization coefficient of agricultural irrigation water as the dependent variable in addition to a suite of independent variables,including the actual irrigation area,the percentage of farmland using water-saving irrigation,the type of irrigation area,the net water consumption per mu,the water intake method,the terrain slope,and the soil field capacity.Results revealed a positive spatial correlation and noticeable agglomeration features in the effective utilization coefficient of irrigation water in Zhejiang Province.The geographically weighted regression model performed better in terms of fit and prediction accuracy than the multivariate linear regression model.The obtained findings confirm the suitability of the geographically weighted regression model for determining the spatial distribution of the effective utilization coefficient of irrigation water in Zhejiang,and offer a new approach on a regional scale.