期刊文献+
共找到370,821篇文章
< 1 2 250 >
每页显示 20 50 100
Topology,Size,and Shape Optimization in Civil Engineering Structures:A Review
1
作者 Ahmed Manguri Hogr Hassan +1 位作者 Najmadeen Saeed Robert Jankowski 《Computer Modeling in Engineering & Sciences》 2025年第2期933-971,共39页
The optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering applications.Structural optimization approaches seek to determine the optimal de... The optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering applications.Structural optimization approaches seek to determine the optimal design,by considering material performance,cost,and structural safety.The design approaches aim to reduce the built environment’s energy use and carbon emissions.This comprehensive review examines optimization techniques,including size,shape,topology,and multi-objective approaches,by integrating these methodologies.The trends and advancements that contribute to developing more efficient,cost-effective,and reliable structural designs were identified.The review also discusses emerging technologies,such as machine learning applications with different optimization techniques.Optimization of truss,frame,tensegrity,reinforced concrete,origami,pantographic,and adaptive structures are covered and discussed.Optimization techniques are explained,including metaheuristics,genetic algorithm,particle swarm,ant-colony,harmony search algorithm,and their applications with mentioned structure types.Linear and non-linear structures,including geometric and material nonlinearity,are distinguished.The role of optimization in active structures,structural design,seismic design,form-finding,and structural control is taken into account,and the most recent techniques and advancements are mentioned. 展开更多
关键词 Structural optimization topology optimization size optimization shape optimization multi-objective optimization
在线阅读 下载PDF
An Adaptive Cubic Regularisation Algorithm Based on Affine Scaling Methods for Constrained Optimization
2
作者 PEI Yonggang WANG Jingyi 《应用数学》 北大核心 2026年第1期258-277,共20页
In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the op... In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported. 展开更多
关键词 Constrained optimization Adaptive cubic regularisation Affine scaling Global convergence
在线阅读 下载PDF
PID Steering Control Method of Agricultural Robot Based on Fusion of Particle Swarm Optimization and Genetic Algorithm
3
作者 ZHAO Longlian ZHANG Jiachuang +2 位作者 LI Mei DONG Zhicheng LI Junhui 《农业机械学报》 北大核心 2026年第1期358-367,共10页
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion... Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots. 展开更多
关键词 agricultural robot steering PID control particle swarm optimization algorithm genetic algorithm
在线阅读 下载PDF
Emittance optimization of gridded thermionic‑cathode electron gun for high‑quality beam injectors
4
作者 Xiao‑Yu Peng Hao Hu +3 位作者 Tong‑Ning Hu Jian Pang Jian‑Jun Deng Guang‑Yao Feng 《Nuclear Science and Techniques》 2026年第1期119-129,共11页
Electron beam injectors are pivotal components of large-scale scientific instruments,such as synchrotron radiation sources,free-electron lasers,and electron-positron colliders.The quality of the electron beam produced... Electron beam injectors are pivotal components of large-scale scientific instruments,such as synchrotron radiation sources,free-electron lasers,and electron-positron colliders.The quality of the electron beam produced by the injector critically influences the performance of the entire accelerator-based scientific research apparatus.The injectors of such facilities usually use photocathode and thermionic-cathode electron guns.Although the photocathode injector can produce electron beams of excellent quality,its associated laser system is massive and intricate.The thermionic-cathode electron gun,especially the gridded electron gun injector,has a simple structure capable of generating numerous electron beams.However,its emittance is typically high.In this study,methods to reduce beam emittance are explored through a comprehensive analysis of various grid structures and preliminary design results,examining the evolution of beam phase space at different grid positions.An optimization method for reducing the emittance of a gridded thermionic-cathode electron gun is proposed through theoretical derivation,electromagnetic-field simulation,and beam-dynamics simulation.A 50%reduction in emittance was achieved for a 50 keV,1.7 A electron gun,laying the foundation for the subsequent design of a high-current,low-emittance injector. 展开更多
关键词 Electron gun Gridded Beam injector Beam dynamics Emittance optimization
在线阅读 下载PDF
Research on Electric Vehicle Charging Optimization Strategy Based on Improved Crossformer for Carbon Emission Factor Prediction
5
作者 Hongyu Wang Wenwu Cui +4 位作者 Kai Cui Zixuan Meng BinLi Wei Zhang Wenwen Li 《Energy Engineering》 2026年第1期332-355,共24页
To achieve low-carbon regulation of electric vehicle(EV)charging loads under the“dual carbon”goals,this paper proposes a coordinated scheduling strategy that integrates dynamic carbon factor prediction and multiobje... To achieve low-carbon regulation of electric vehicle(EV)charging loads under the“dual carbon”goals,this paper proposes a coordinated scheduling strategy that integrates dynamic carbon factor prediction and multiobjective optimization.First,a dual-convolution enhanced improved Crossformer prediction model is constructed,which employs parallel 1×1 global and 3×3 local convolutionmodules(Integrated Convolution Block,ICB)formultiscale feature extraction,combinedwith anAdaptive Spectral Block(ASB)to enhance time-series fluctuationmodeling.Based on high-precision predictions,a carbon-electricity cost joint optimization model is further designed to balance economic,environmental,and grid-friendly objectives.The model’s superiority was validated through a case study using real-world data from a renewable-heavy grid.Simulation results show that the proposed multi-objective strategy demonstrated a superior balance compared to baseline and benchmark models,achieving a 15.8%reduction in carbon emissions and a 5.2%reduction in economic costs,while still providing a substantial 22.2%reduction in the peak-valley difference.Its balanced performance significantly outperformed both a single-objective strategy and a state-of-the-art Model Predictive Control(MPC)benchmark,highlighting the advantage of a global optimization approach.This study provides theoretical and technical pathways for dynamic carbon factor-driven EV charging optimization. 展开更多
关键词 Carbon factor prediction electric vehicles ordered charging multi-objective optimization Crossformer
在线阅读 下载PDF
High-Dimensional Multi-Objective Computation Offloading for MEC in Serial Isomerism Tasks via Flexible Optimization Framework
6
作者 Zheng Yao Puqing Chang 《Computers, Materials & Continua》 2026年第1期1160-1177,共18页
As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays... As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays a pivotal role in MEC performance but remains challenging due to complex task topologies,conflicting objectives,and limited resources.This paper addresses high-dimensional multi-objective offloading for serial heterogeneous tasks in MEC.We jointly consider task heterogeneity,high-dimensional objectives,and flexible resource scheduling,modeling the problem as a Many-objective optimization.To solve it,we propose a flexible framework integrating an improved cooperative co-evolutionary algorithm based on decomposition(MOCC/D)and a flexible scheduling strategy.Experimental results on benchmark functions and simulation scenarios show that the proposed method outperforms existing approaches in both convergence and solution quality. 展开更多
关键词 Edge computing offload serial Isomerism applications many-objective optimization flexible resource scheduling
在线阅读 下载PDF
A Boundary Element Reconstruction (BER) Model for Moving Morphable Component Topology Optimization
7
作者 Zhao Li Hongyu Xu +2 位作者 Shuai Zhang Jintao Cui Xiaofeng Liu 《Computers, Materials & Continua》 2026年第1期2213-2230,共18页
The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is m... The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is mainly used for finite element analysis at present,and the effectiveness of the surrogate material model has been fully confirmed.However,there are some accuracy problems when dealing with boundary elements using the surrogate material model,which will affect the topology optimization results.In this study,a boundary element reconstruction(BER)model is proposed based on the surrogate material model under the MMC topology optimization framework to improve the accuracy of topology optimization.The proposed BER model can reconstruct the boundary elements by refining the local meshes and obtaining new nodes in boundary elements.Then the density of boundary elements is recalculated using the new node information,which is more accurate than the original model.Based on the new density of boundary elements,the material properties and volume information of the boundary elements are updated.Compared with other finite element analysis methods,the BER model is simple and feasible and can improve computational accuracy.Finally,the effectiveness and superiority of the proposed method are verified by comparing it with the optimization results of the original surrogate material model through several numerical examples. 展开更多
关键词 Topology optimization MMC method boundary element reconstruction surrogate material model local mesh
在线阅读 下载PDF
Robust Pose Graph Optimization Against Outliers Using Consistency Credibility Factor
8
作者 Jie Cai Guoliang Wei +1 位作者 Wangyan Li Yaolei Wang 《IEEE/CAA Journal of Automatica Sinica》 2025年第5期1044-1046,共3页
Dear Editor,Pose graph optimization(PGO)is a popular optimization approach that plays a crucial role in the simultaneous localization and mapping(SLAM)back-end.However,when incorrect loop closure constraints(referred ... Dear Editor,Pose graph optimization(PGO)is a popular optimization approach that plays a crucial role in the simultaneous localization and mapping(SLAM)back-end.However,when incorrect loop closure constraints(referred to as outliers)are present in the SLAM front-end,the standard PGO algorithm fails catastrophically and can not return an accurate map.To address this issue,this letter proposes a novel algorithm that leverages classical optimization methods to effectively handle outliers.The proposed algorithm introduces a new formulation that incorporates a credibility factor model,which improves the robustness of the optimization process.Additionally,an innovative consistency classification algorithm is developed to detect outliers.Extensive experiments are conducted on multiple benchmark datasets to evaluate the consistency and accuracy of the proposed algorithm. 展开更多
关键词 graph optimization pgo pose graph optimization OUTLIERS consistency classification robustness optimization approach credibility factor classical optimization methods
在线阅读 下载PDF
CAPGen: An MLLM-Based Framework Integrated with Iterative Optimization Mechanism for Cultural Artifacts Poster Generation
9
作者 Qianqian Hu Chuhan Li +1 位作者 Mohan Zhang Fang Liu 《Computers, Materials & Continua》 2026年第1期494-510,共17页
Due to the digital transformation tendency among cultural institutions and the substantial influence of the social media platform,the demands of visual communication keep increasing for promoting traditional cultural ... Due to the digital transformation tendency among cultural institutions and the substantial influence of the social media platform,the demands of visual communication keep increasing for promoting traditional cultural artifacts online.As an effective medium,posters serve to attract public attention and facilitate broader engagement with cultural artifacts.However,existing poster generation methods mainly rely on fixed templates and manual design,which limits their scalability and adaptability to the diverse visual and semantic features of the artifacts.Therefore,we propose CAPGen,an automated aesthetic Cultural Artifacts Poster Generation framework built on a Multimodal Large Language Model(MLLM)with integrated iterative optimization.During our research,we collaborated with designers to define principles of graphic design for cultural artifact posters,to guide the MLLM in generating layout parameters.Later,we generated these parameters into posters.Finally,we refined the posters using an MLLM integrated with a multi-round iterative optimization mechanism.Qualitative results show that CAPGen consistently outperforms baseline methods in both visual quality and aesthetic performance.Furthermore,ablation studies indicate that the prompt,iterative optimization mechanism,and design principles significantly enhance the effectiveness of poster generation. 展开更多
关键词 Aesthetic poster generation prompt engineering multimodal large language models iterative optimization design principles
在线阅读 下载PDF
Cooperative Metaheuristics with Dynamic Dimension Reduction for High-Dimensional Optimization Problems
10
作者 Junxiang Li Zhipeng Dong +2 位作者 Ben Han Jianqiao Chen Xinxin Zhang 《Computers, Materials & Continua》 2026年第1期1484-1502,共19页
Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when ta... Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when tackling high-dimensional optimization challenges.To effectively address these challenges,this study introduces cooperative metaheuristics integrating dynamic dimension reduction(DR).Building upon particle swarm optimization(PSO)and differential evolution(DE),the proposed cooperative methods C-PSO and C-DE are developed.In the proposed methods,the modified principal components analysis(PCA)is utilized to reduce the dimension of design variables,thereby decreasing computational costs.The dynamic DR strategy implements periodic execution of modified PCA after a fixed number of iterations,resulting in the important dimensions being dynamically identified.Compared with the static one,the dynamic DR strategy can achieve precise identification of important dimensions,thereby enabling accelerated convergence toward optimal solutions.Furthermore,the influence of cumulative contribution rate thresholds on optimization problems with different dimensions is investigated.Metaheuristic algorithms(PSO,DE)and cooperative metaheuristics(C-PSO,C-DE)are examined by 15 benchmark functions and two engineering design problems(speed reducer and composite pressure vessel).Comparative results demonstrate that the cooperative methods achieve significantly superior performance compared to standard methods in both solution accuracy and computational efficiency.Compared to standard metaheuristic algorithms,cooperative metaheuristics achieve a reduction in computational cost of at least 40%.The cooperative metaheuristics can be effectively used to tackle both high-dimensional unconstrained and constrained optimization problems. 展开更多
关键词 Dimension reduction modified principal components analysis high-dimensional optimization problems cooperative metaheuristics metaheuristic algorithms
在线阅读 下载PDF
Multi-objective spatial optimization by considering land use suitability in the Yangtze River Delta region
11
作者 CHENG Qianwen LI Manchun +4 位作者 LI Feixue LIN Yukun DING Chenyin XIAO Lishan LI Weiyue 《Journal of Geographical Sciences》 2026年第1期45-78,共34页
Rapid urbanization in China has led to spatial antagonism between urban development and farmland protection and ecological security maintenance.Multi-objective spatial collaborative optimization is a powerful method f... Rapid urbanization in China has led to spatial antagonism between urban development and farmland protection and ecological security maintenance.Multi-objective spatial collaborative optimization is a powerful method for achieving sustainable regional development.Previous studies on multi-objective spatial optimization do not involve spatial corrections to simulation results based on the natural endowment of space resources.This study proposes an Ecological Security-Food Security-Urban Sustainable Development(ES-FS-USD)spatial optimization framework.This framework combines the non-dominated sorting genetic algorithm II(NSGA-II)and patch-generating land use simulation(PLUS)model with an ecological protection importance evaluation,comprehensive agricultural productivity evaluation,and urban sustainable development potential assessment and optimizes the territorial space in the Yangtze River Delta(YRD)region in 2035.The proposed sustainable development(SD)scenario can effectively reduce the destruction of landscape patterns of various land-use types while considering both ecological and economic benefits.The simulation results were further revised by evaluating the land-use suitability of the YRD region.According to the revised spatial pattern for the YRD in 2035,the farmland area accounts for 43.59%of the total YRD,which is 5.35%less than that in 2010.Forest,grassland,and water area account for 40.46%of the total YRD—an increase of 1.42%compared with the case in 2010.Construction land accounts for 14.72%of the total YRD—an increase of 2.77%compared with the case in 2010.The ES-FS-USD spatial optimization framework ensures that spatial optimization outcomes are aligned with the natural endowments of land resources,thereby promoting the sustainable use of land resources,improving the ability of spatial management,and providing valuable insights for decision makers. 展开更多
关键词 multi-objective spatial optimization multi-scenario simulation ecological protection importance comprehensive agricultural productivity urban sustainable development land-use suitability
原文传递
Energy Optimization for Autonomous Mobile Robot Path Planning Based on Deep Reinforcement Learning
12
作者 Longfei Gao Weidong Wang Dieyun Ke 《Computers, Materials & Continua》 2026年第1期984-998,共15页
At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown ... At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown and complex environments,this paper proposes an Attention-Enhanced Dueling Deep Q-Network(ADDueling DQN),which integrates a multi-head attention mechanism and a prioritized experience replay strategy into a Dueling-DQN reinforcement learning framework.A multi-objective reward function,centered on energy efficiency,is designed to comprehensively consider path length,terrain slope,motion smoothness,and obstacle avoidance,enabling optimal low-energy trajectory generation in 3D space from the source.The incorporation of a multihead attention mechanism allows the model to dynamically focus on energy-critical state features—such as slope gradients and obstacle density—thereby significantly improving its ability to recognize and avoid energy-intensive paths.Additionally,the prioritized experience replay mechanism accelerates learning from key decision-making experiences,suppressing inefficient exploration and guiding the policy toward low-energy solutions more rapidly.The effectiveness of the proposed path planning algorithm is validated through simulation experiments conducted in multiple off-road scenarios.Results demonstrate that AD-Dueling DQN consistently achieves the lowest average energy consumption across all tested environments.Moreover,the proposed method exhibits faster convergence and greater training stability compared to baseline algorithms,highlighting its global optimization capability under energy-aware objectives in complex terrains.This study offers an efficient and scalable intelligent control strategy for the development of energy-conscious autonomous navigation systems. 展开更多
关键词 Autonomous mobile robot deep reinforcement learning energy optimization multi-attention mechanism prioritized experience replay dueling deep Q-Network
在线阅读 下载PDF
Federated Multi-Label Feature Selection via Dual-Layer Hybrid Breeding Cooperative Particle Swarm Optimization with Manifold and Sparsity Regularization
13
作者 Songsong Zhang Huazhong Jin +5 位作者 Zhiwei Ye Jia Yang Jixin Zhang Dongfang Wu Xiao Zheng Dingfeng Song 《Computers, Materials & Continua》 2026年第1期1141-1159,共19页
Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant chal... Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics. 展开更多
关键词 Multi-label feature selection federated learning manifold regularization sparse constraints hybrid breeding optimization algorithm particle swarm optimizatio algorithm privacy protection
在线阅读 下载PDF
Enhancing box-wing design efficiency through machine learning based optimization 被引量:1
14
作者 Mehedi HASAN Azad KHANDOKER 《Chinese Journal of Aeronautics》 2025年第2期46-59,共14页
The optimization of wings typically relies on computationally intensive high-fidelity simulations,which restrict the quick exploration of design spaces.To address this problem,this paper introduces a methodology dedic... The optimization of wings typically relies on computationally intensive high-fidelity simulations,which restrict the quick exploration of design spaces.To address this problem,this paper introduces a methodology dedicated to optimizing box wing configurations using low-fidelity data driven machine learning approach.This technique showcases its practicality through the utilization of a tailored low-fidelity machine learning technique,specifically designed for early-stage wing configuration.By employing surrogate model trained on small dataset derived from low-fidelity simulations,our method aims to predict outputs within an acceptable range.This strategy significantly mitigates computational costs and expedites the design exploration process.The methodology's validation relies on its successful application in optimizing the box wing of PARSIFAL,serving as a benchmark,while the primary focus remains on optimizing the newly designed box wing by Bionica.Applying this method to the Bionica configuration led to a notable 14%improvement in overall aerodynamic effciency.Furthermore,all the optimized results obtained from machine learning model undergo rigorous assessments through the high-fidelity RANS analysis for confirmation.This methodology introduces innovative approach that aims to streamline computational processes,potentially reducing the time and resources required compared to traditional optimization methods. 展开更多
关键词 Box wing optimization Aerodynamic shape optimization Multi-objective optimization Machine learning Multi-fidelity method
原文传递
Narwhal Optimizer:A Nature-Inspired Optimization Algorithm for Solving Complex Optimization Problems
15
作者 Raja Masadeh Omar Almomani +4 位作者 Abdullah Zaqebah Shayma Masadeh Kholoud Alshqurat Ahmad Sharieh Nesreen Alsharman 《Computers, Materials & Continua》 2025年第11期3709-3737,共29页
This research presents a novel nature-inspired metaheuristic optimization algorithm,called theNarwhale Optimization Algorithm(NWOA).The algorithm draws inspiration from the foraging and prey-hunting strategies of narw... This research presents a novel nature-inspired metaheuristic optimization algorithm,called theNarwhale Optimization Algorithm(NWOA).The algorithm draws inspiration from the foraging and prey-hunting strategies of narwhals,“unicorns of the sea”,particularly the use of their distinctive spiral tusks,which play significant roles in hunting,searching prey,navigation,echolocation,and complex social interaction.Particularly,the NWOA imitates the foraging strategies and techniques of narwhals when hunting for prey but focuses mainly on the cooperative and exploratory behavior shown during group hunting and in the use of their tusks in sensing and locating prey under the Arctic ice.These functions provide a strong assessment basis for investigating the algorithm’s prowess at balancing exploration and exploitation,convergence speed,and solution accuracy.The performance of the NWOA is evaluated on 30 benchmark test functions.A comparison study using the Grey Wolf Optimizer(GWO),Whale Optimization Algorithm(WOA),Perfumer Optimization Algorithm(POA),Candle Flame Optimization(CFO)Algorithm,Particle Swarm Optimization(PSO)Algorithm,and Genetic Algorithm(GA)validates the results.As evidenced in the experimental results,NWOA is capable of yielding competitive outcomes among these well-known optimizers,whereas in several instances.These results suggest thatNWOAhas proven to be an effective and robust optimization tool suitable for solving many different complex optimization problems from the real world. 展开更多
关键词 optimization metaheuristic optimization algorithm narwhal optimization algorithm benchmarks
在线阅读 下载PDF
Dynamics Simulation and Optimization of Hydraulic Excavator Working Device
16
作者 Dongjun He 《机械工程与设计(中英文版)》 2025年第2期1-6,共6页
The performance and efficiency of hydraulic excavators heavily depend on the design and optimization of their working devices.The working device,which consists of the boom,arm,and bucket,plays a crucial role in determ... The performance and efficiency of hydraulic excavators heavily depend on the design and optimization of their working devices.The working device,which consists of the boom,arm,and bucket,plays a crucial role in determining the machine's digging capacity,stability,and overall operational efficiency.This paper presents a comprehensive study on the dynamics simulation and optimization of hydraulic excavator working devices.The paper outlines the fundamental principles of dynamic modeling,incorporating multi-body dynamics and hydraulic system analysis.It further explores various simulation techniques to evaluate the performance of the working device under varying operational conditions,including load and hydraulic system effects.The study also addresses performance optimization,focusing on multi-objective optimization methods that balance multiple factors such as energy efficiency,speed,and load capacity.Additionally,the paper discusses key factors influencing performance,such as mechanical design,material properties,and operational conditions.The results of the dynamic simulations and optimization analyses demonstrate potential improvements in operational efficiency and system stability,providing a valuable framework for the design and enhancement of hydraulic excavator working devices. 展开更多
关键词 Hydraulic Excavator Working Device Dynamic Modeling Performance optimization Multi-body Dynamics Hydraulic System SIMULATION Design optimization Multi-objective optimization Excavator Performance
在线阅读 下载PDF
Dynamic Multi-Objective Gannet Optimization(DMGO):An Adaptive Algorithm for Efficient Data Replication in Cloud Systems
17
作者 P.William Ved Prakash Mishra +3 位作者 Osamah Ibrahim Khalaf Arvind Mukundan Yogeesh N Riya Karmakar 《Computers, Materials & Continua》 2025年第9期5133-5156,共24页
Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple dat... Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance. 展开更多
关键词 Cloud computing data replication dynamic optimization multi-objective optimization gannet optimization algorithm adaptive algorithms resource efficiency SCALABILITY latency reduction energy-efficient computing
在线阅读 下载PDF
Rail profile optimization through balancing of wear and fatigue
18
作者 Binjie XU Zhiyong SHI +2 位作者 Yun YANG Jianxi WANG Kaiyun WANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第10期967-982,共16页
Rail profile optimization is a critical strategy for mitigating wear and extending service life.However,damage at the wheel-rail contact surface goes beyond simple rail wear,as it also involves fatigue phenomena.Focus... Rail profile optimization is a critical strategy for mitigating wear and extending service life.However,damage at the wheel-rail contact surface goes beyond simple rail wear,as it also involves fatigue phenomena.Focusing solely on wear and not addressing fatigue in profile optimization can lead to the propagation of rail cracks,the peeling of material off the rail,and even rail fractures.Therefore,we propose an optimization approach that balances rail wear and fatigue for heavy-haul railway rails to mitigate rail fatigue damage.Initially,we performed a field investigation to acquire essential data and understand the characteristics of track damage.Based on theory and measured data,a simulation model for wear and fatigue was then established.Subsequently,the control points of the rail profile according to cubic non-uniform rational B-spline(NURBS)theory were set as the research variables.The rail’s wear rate and fatigue crack propagation rate were adopted as the objective functions.A multi-objective,multi-variable,and multi-constraint nonlinear optimization model was then constructed,specifically using a Levenberg Marquardt-back propagation neural network as optimized by the particle swarm optimization algorithm(PSO-LM-BP neural network).Ultimately,optimal solutions from the model were identified using a chaos microvariation adaptive genetic algorithm,and the effectiveness of the optimization was validated using a dynamics model and a rail damage model. 展开更多
关键词 Heavy-haul railway Rail wear Rail fatigue Levenberg Marquardt-back propagation neural network as optimized by the particle swarm optimization algorithm(PSO-LM-BP neural network) Rail profile optimization Multi-objective optimization
原文传递
Optimization and Scheduling of Green Power System Consumption Based on Multi-Device Coordination and Multi-Objective Optimization
19
作者 Liang Tang Hongwei Wang +2 位作者 Xinyuan Zhu Jiying Liu Kaiyue Li 《Energy Engineering》 2025年第6期2257-2289,共33页
The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of... The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of energy systems.To enhance the consumption capacity of green power,the green power system consumption optimization scheduling model(GPS-COSM)is proposed,which comprehensively integrates green power system,electric boiler,combined heat and power unit,thermal energy storage,and electrical energy storage.The optimization objectives are to minimize operating cost,minimize carbon emission,and maximize the consumption of wind and solar curtailment.The multi-objective particle swarm optimization algorithm is employed to solve the model,and a fuzzy membership function is introduced to evaluate the satisfaction level of the Pareto optimal solution set,thereby selecting the optimal compromise solution to achieve a dynamic balance among economic efficiency,environmental friendliness,and energy utilization efficiency.Three typical operating modes are designed for comparative analysis.The results demonstrate that the mode involving the coordinated operation of electric boiler,thermal energy storage,and electrical energy storage performs the best in terms of economic efficiency,environmental friendliness,and renewable energy utilization efficiency,achieving the wind and solar curtailment consumption rate of 99.58%.The application of electric boiler significantly enhances the direct accommodation capacity of the green power system.Thermal energy storage optimizes intertemporal regulation,while electrical energy storage strengthens the system’s dynamic regulation capability.The coordinated optimization of multiple devices significantly reduces reliance on fossil fuels. 展开更多
关键词 Multi-objective optimization scheduling model multi-objective particle swarm optimization algorithm consumption capacity of green power wind and solar curtailment coordinated optimization of multiple devices
在线阅读 下载PDF
Efficient Arabic Essay Scoring with Hybrid Models: Feature Selection, Data Optimization, and Performance Trade-Offs
20
作者 Mohamed Ezz Meshrif Alruily +4 位作者 Ayman Mohamed Mostafa Alaa SAlaerjan Bader Aldughayfiq Hisham Allahem Abdulaziz Shehab 《Computers, Materials & Continua》 2026年第1期2274-2301,共28页
Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic... Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic poses distinct challenges due to the language’s complex morphology,diglossia,and the scarcity of annotated datasets.This paper presents a hybrid approach to Arabic AES by combining text-based,vector-based,and embeddingbased similarity measures to improve essay scoring accuracy while minimizing the training data required.Using a large Arabic essay dataset categorized into thematic groups,the study conducted four experiments to evaluate the impact of feature selection,data size,and model performance.Experiment 1 established a baseline using a non-machine learning approach,selecting top-N correlated features to predict essay scores.The subsequent experiments employed 5-fold cross-validation.Experiment 2 showed that combining embedding-based,text-based,and vector-based features in a Random Forest(RF)model achieved an R2 of 88.92%and an accuracy of 83.3%within a 0.5-point tolerance.Experiment 3 further refined the feature selection process,demonstrating that 19 correlated features yielded optimal results,improving R2 to 88.95%.In Experiment 4,an optimal data efficiency training approach was introduced,where training data portions increased from 5%to 50%.The study found that using just 10%of the data achieved near-peak performance,with an R2 of 85.49%,emphasizing an effective trade-off between performance and computational costs.These findings highlight the potential of the hybrid approach for developing scalable Arabic AES systems,especially in low-resource environments,addressing linguistic challenges while ensuring efficient data usage. 展开更多
关键词 Automated essay scoring text-based features vector-based features embedding-based features feature selection optimal data efficiency
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部