期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Irradiation-induced void evolution in iron:A phase-field approach with atomistic derived parameters 被引量:2
1
作者 Yuan-Yuan Wang Jian-Hua Ding +5 位作者 Wen-Bo Liu Shao-Song Huang Xiao-Qin Ke Yun-Zhi Wang Chi Zhang Ji-Jun Zhao 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第2期363-369,共7页
A series of material parameters are derived from atomistic simulations and implemented into a phase field(PF) model to simulate void evolution in body-centered cubic(bcc) iron subjected to different irradiation do... A series of material parameters are derived from atomistic simulations and implemented into a phase field(PF) model to simulate void evolution in body-centered cubic(bcc) iron subjected to different irradiation doses at different temperatures.The simulation results show good agreement with experimental observations — the porosity as a function of temperature varies in a bell-shaped manner and the void density monotonically decreases with increasing temperatures; both porosity and void density increase with increasing irradiation dose at the same temperature. Analysis reveals that the evolution of void number and size is determined by the interplay among the production, diffusion and recombination of vacancy and interstitial. 展开更多
关键词 phase field method atomistic simulation void evolution irradiation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部